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ABSTRACT

Himalayan watersheds are characterized by mountainous topography and a lack of available data.

Due to the complexity of rainfall–runoff relationships in mountainous watersheds and the lack of

hydrological data in many of these watersheds, process-based models have limited applicability for

runoff forecasting in these areas. In light of this, accurate forecasting methods that do not

necessitate extensive data sets are required for runoff forecasting in mountainous watersheds. In

this study, multivariate adaptive regression spline (MARS), wavelet transform artificial neural network

(WA-ANN), and regular artificial neural network (ANN) models were developed and compared for

runoff forecasting applications in the mountainous watershed of Sainji in the Himalayas, an area with

limited data for runoff forecasting. To develop and test the models, three micro-watersheds were

gauged in the Sainji watershed in Uttaranchal State in India and data were recorded from July 1 2001

to June 30 2003. It was determined that the best WA-ANN and MARS models were comparable in

terms of forecasting accuracy, with both providing very accurate runoff forecasts compared to the

best ANN model. The results indicate that the WA-ANN and MARS methods are promising new

methods of short-term runoff forecasting in mountainous watersheds with limited data, and warrant

additional study.
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NOTATION

CWT continuous wavelet transform

g activation function

Ii input value to node i of the input layer

L number of wavelet decomposition

N number of data points used

Ok output at node k of the output layer

R2 coefficient of determination

RMSE root mean square error

SEE sum of squared errors

Vj hidden value to node j of the hidden layer

s scale parameter

x(t) signal

�yi mean value taken over N

yi observed peak weekly water demand

ŷi forecasted peak weekly water demand

τ translation parameter

* complex conjugate

ψ(t) mother wavelet

INTRODUCTION

In the Himalayan region of India, conversion of forest areas

into agricultural areas and other land use changes have
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altered existing water runoff patterns, resulting in increased

surface runoff and reduced ground water recharge (Sharda

et al. ). In an area where agriculture is the major econ-

omic activity (Sharda et al. ), it is important for future

water use planning to analyze the effect of environmental

and morphological parameters on the hydrological cycle

of micro-watersheds in this area, and to be able to accurately

forecast runoff in a watershed.

Process-based models can be used in runoff forecasting,

and examples of such models include SWAT (Soil Water

Assessment Tool) (Arnold & Fohre ), ANSWERS

(Areal Nonpoint Source Watershed Environment Response

Simulation) (Dillaha et al. ), and AnnAGNPS (Annual-

ized Agricultural Non-Point Source) (Bosch et al. ).

However, process-based models usually necessitate large

numbers of input parameters that are not easily obtained

in mountainous regions such as the Himalayas. In addition,

temporal and spatial unpredictability in watershed charac-

teristics can increase the complexity of rainfall–runoff

relationships, resulting in difficulties in developing accurate

process-based models.

‘Data based models’ are an alternate method used for

runoff forecasting, and are particularly useful in areas such

as the Himalayas where there is a lack of data. Multiple

linear regression (MLR) and autoregressive moving average

(ARMA) models are probably the most common data based

methods currently employed for forecasting runoff (e.g.,

Raman & Sunilkumar ; Young ; Adamowski

a, c). Data based artificial intelligence models can also

be developed for areas with limited data and without

a priori knowledge of the mathematical relationships inter-

linking inputs with outputs. Artificial intelligence models

often require few (and generally more easily available and

measurable) input parameters. These models are generally

still able to model complex phenomena satisfactorily.

Recently, artificial neural networks (ANNs) have been intro-

duced for runoff forecasting applications (e.g., Tawfik ;

Kisi ; Corani & Guaris ; Adamowski a, c;

Akhtar et al. ; Nourani et al. a; Piotrowski &

Napiorkowski ). An advantage of ANNs is that they

are often effective with non-linear data. However, ANNs

and other linear and non-linear data based methods often

have restrictions with time series data that is non-stationary

(Cannas et al. ). Methods such as ANNs may not be

able to deal with non-stationary data if input data

pre-processing is not done.

It has been noted that techniques for handling non-

stationary data are not as advanced as techniques for

stationary data (Cannas et al. ). Two recent publications

(Solomatine & Ostfeld ; Maier et al. ) on future

directions in the use of data based modeling in hydrological

forecasting noted two very important issues that need to be

investigated in more depth: (i) the development and

testing of hybrid model architectures that build on the

strengths of different modeling methods; and (ii) the devel-

opment and testing of robust modeling techniques that are

able to handle ‘noisy’ data. This research project was

focused on addressing these two issues in the context of

runoff forecasting in mountainous watersheds with limited

data.

One method that deals effectively with multi-scale and

non-stationary behavior is wavelet analysis, which can be

used to detect and extract signal variance both in time and

scale simultaneously. It does not require any assumptions

of stationarity. Wavelet transforms are able to deal with

non-stationary time series in forecasting because they can

automatically localize and filter the non-stationary com-

ponent of a signal, instead of attempting to de-trend or

suppress quasi-periodic smooth components as, for

example, in the non-stationary autoregressive integrated

moving average approach. Over the course of the last 10

years, wavelet analysis has begun to be explored in the

hydrology and water resources literature.

Several studies have recently been published that

investigate the use of hybrid wavelet transform and

ANN (WA-ANN) models for hydrological forecasting

applications. A WA-ANN model for monthly runoff fore-

casting was developed by Cannas et al. () for a

watershed on the Italian island of Sardinia. Kisi ()

and Partal () developed a hybrid model for monthly

runoff forecasting in Turkey. Kisi () explored the

use of WA-ANN models for daily runoff forecasting

of intermittent rivers. Wu et al. (a) developed

WA-ANN models for 1, 2, and 3 days ahead forecasting.

Nourani et al. (b) proposed a WA-ANN model that

can predict both short- and long-term runoff discharges.

Adamowski & Sun () developed a coupled wavelet

transform and neural network method for runoff
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forecasting of non-perennial rivers in semi-arid regions.

These studies found that the WA-ANN models outper-

formed ANN models for runoff forecasting.

Regarding other new methods, Wu et al. (b) pro-

posed a crisp distributed support vector regression

(CDSVR) model for monthly streamflow forecasting and

compared it with four other methods: autoregressive

moving average (ARMA), K-nearest neighbors (KNN),

ANNs and crisp distributed artificial neural networks

(CDANN). To improve model performance, the data pre-

processing techniques of singular spectrum analysis (SSA)

and moving average (MA) were coupled with all five

models. They found that models fed by pre-processed

data performed better than models fed by original data,

and that the CDSVR method outperformed other models.

Wang et al. () compared ARMA, ANN, adaptive

neural-based fuzzy inference systems (ANFIS), genetic

programming (GP) and support vector machine (SVM)

models for monthly river flow forecasting, and found that

the best models were the ANFIS and SVM models. Nourani

et al. () proposed a wavelet-ANFIS method for watershed

rainfall–runoff modeling. They found that thewavelet-ANFIS

method provided accurate forecasts because it used

multi-scale time series of rainfall and runoff data in the

ANFIS input layer.

Another new artificial intelligence method, multivariate

adaptive regression splines (MARS), was first introduced by

Friedman (). MARS has been found to be a rapid, flex-

ible and accurate method for forecasting continuous and

binary output variables (Salford Systems ). MARS

models use a nonparametric modeling approach without

identifying the functional relationship between the input

and output variables (Friedman ). Instead, MARS

models construct this functional relation from a set of coef-

ficients and basis functions from the regression data. The

main advantage of MARS models is that the relationship

of the MARS models is additive and interactive, which

involves fewer variable interactions (Lee et al. ). In

recent years, various environmental and hydrological

research studies have been conducted using the MARS

method. Yang et al. () simulated pesticide transport

trends in soils with the MARS method. Leathwick et al.

() used the MARS method to predict the distributions

of New Zealand’s freshwater diadromous fish. Bera et al.

() simulated pesticide concentrations in soil with the

MARS method. Leathwick et al. () used the MARS

method to study the relationships between the distributions

of 15 freshwater fish species and their environment. Sharda

et al. (, ) utilized the MARS method for the predic-

tion of runoff from the Sainji watershed in India, and

concluded that MARS models have the potential to accu-

rately forecast total runoff for hilly watersheds. Balshi

et al. () analyzed the response of burned areas due to

climate change in western boreal North America using the

MARS method. And finally, Latinez-Sotomayor () con-

cluded that the performance of the MARS method is more

accurate than the ANN method for the forecasting of rain

and temperature in the Mantaro River basin in Peru.

Based on the results of the above studies, it can be seen

that the MARS method has the potential to produce com-

parable or even better results than the ANN method,

which has been widely used in runoff forecasting in the

last decade. To the best knowledge of the authors: (i) the

WA-ANN method has not been tested for runoff forecasting

in mountainous watersheds with limited data; and (ii) the

MARS and WA-ANN methods have not been compared to

date for runoff forecasting.

To address the above described issues, in this research

WA-ANN, ANN and MARS models were developed and

compared for runoff forecasting in three micro-watersheds

with limited data in the mountainous watershed of Sainji

in the Himalayan region of India. The MARS models were

developed by one of the authors of this paper in a previous

study (Sharda et al. ) for the same data set from the

three Himalayan micro-watersheds located in Uttaranchal

State, India.

METHODS

MARS

MARS models are developed to forecast continuous

numeric outcomes. The MARS algorithm consists of a for-

ward and a backward stepwise procedure. In the forward

stepwise procedure, it can be viewed as a selection of a set

of appropriated input variables. However, after a number

of splits, this excessive forward stepwise selection procedure
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could generate a complex and over-fitted model (Andres

et al. ). Such a model will have poor forecasting per-

formance. To improve forecasting accuracy, the backward

stepwise procedure eliminates the unnecessary variables

among the previously selected set. This function projects

variable X to a new variable Y by using either of the follow-

ing two basis functions, using a knot or value of a variable

that defines an inflection point along the range of inputs

(Sharda et al. ):

Y ¼ max (0, X� c) (1)

Y ¼ max (0, c�X) (2)

where c is some chosen threshold value. Two adjacent

splines will intersect at a knot to maintain the continuity

of the basis functions. The function is applied in a forward–

backward stepwise approach to each input variable to

recognize the location of knots where the function value

changes. For more detailed information on the development

of the MARS models used in this research the reader can

refer to Sharda et al. ().

Artificial neural networks

An artificial neural network is composed of many artificial

neurons that are linked together according to a specific net-

work architecture. The objective of the neural network is to

transform the inputs into meaningful outputs. A neural net-

work can be used to predict future values of possibly noisy

multivariate time series based on past histories. In the last

decade, ANNs have become popular for hydrological fore-

casting such as runoff modeling, ground water and

precipitation forecasting, and water quality forecasting

(e.g., Shrestha et al. ; Han et al. ; Sahoo & Ray

; Han et al. ; Adamowski b; Banerjee et al.

, Pramanik & Panda ; Wu & Chau ). The

most popular ANN model used in these applications is the

multilayer perceptron (MLP). The structure of the MLP

has nodes organized in layers, with each node only con-

nected with the nodes in adjoining layers. An overall

relationship is formed through weighted linear functions at

each of the nodes, with the output of each node forming

the input of the nodes in the following layers. By having

many layers and many functions, a non-linear function is

created.

Coupled wavelet and artificial neural networks

(WA-ANN)

Wavelets are mathematical functions that use time-scale rep-

resentations to analyze time series that may contain non-

stationarities. There are two types of wavelet transforms:

the continuous wavelet transform (CWT) and the discrete

wavelet transform (DWT).

The CWT is shown by Cannas et al. ():

CWTψ
x (τ, s) ¼ jsj1=2ψ�

Zþ∞

�∞

t� τ

s

� �
dt (3)

while the DWT is also shown by Cannas et al. ():

ψ j,k(t) ¼ s�j=2
0 ψ

t� kτ0s
j
0

sj0

 !
(4)

In these equations, s is the scale parameter, τ is the trans-

lation parameter, ψ(t) is the mother wavelet and

transforming function, ‘*’ denotes the complex conjugate, j

and k are integers and s0> 1 is a fixed dilation step. The

DWT is obtained by modifying the mother wavelet function

ψ(t) to the form shown in Equation (4).

The DWT is the more commonly used of the two trans-

forms because by rendering the continuous function discrete

it requires less computational time and resources to

implement (Cannas et al. ). Another advantage of using

the DWT is that it allows for the implementation of digital fil-

tering effects. High and low pass filters can be easily

implemented, producing detailed coefficients and approxi-

mation series (Cannas et al. ). This allows for the

analysis of trends in specific frequency bands that may not

otherwise be apparent, and the separation of these trends for

further analysis. In this study, the DWT was used. In forecast-

ing models that use wavelet transforms, attention must be

given to the boundaries of the signal to ensure that future infor-

mation is not included (e.g., Kim&Valdes ;Murtagh et al.

, Renaud et al. ). As such, the ‘a trous’ DWT algor-

ithm used in this study was modified to address this issue.
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The coupled wavelet and neural network models

are ANN models which use wavelet decomposed

sub-series components as inputs. The development of

the WA-ANN models is described in detail in the

section ‘Coupled wavelet and artificial neural network

models’.

Model performance comparison

The performance of different models may be assessed

in terms of goodness of fit. For this research two

commonly used performance indices were used to

evaluate the accuracy of the models: the coefficient of

determination (R2) and the root mean squared error

(RMSE).

R2 shows the discrepancy between the observed

and forecasted data and indicates how close the points

are to the bisector in the scatter plot of two variables. R2

is calculated via the following formula:

R2 ¼ 1�
PN

i¼1 (yi � ŷi)
2PN

i¼1 (ŷi � �yi)
2

 !
(5)

where N, ŷi, yi, �yi are the number of observations, observed

data, predicted values and mean of observed data, respec-

tively. A perfect fit between observed and forecasted

values is described by an R2 of 1.

The RMSE evaluates the variance of errors indepen-

dently of the sample size via the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
SEE
N

r
(6)

where

SEE ¼
XN
i¼1

(yi � ŷi)
2 (7)

and N is the number of data points used. SEE is known as

the sum of squared errors, with the variables as defined

above. RSME values range from 0 to infinity, with a perfect

fit between observed and forecasted values described by an

RMSE of 0.

Study areas and data

Study watershed

The data used for the development of the models in this

researchwere obtained from the Sainji watershed in the Uttar-

anchal State of India. The main watershed (WS1) consists of

two sub-watersheds (WS2 and WS3), having third order and

second order streams, respectively. WS1, WS2 and WS3 are

shown in Figure 1. The areas of WS1, WS2 and WS3 are

255, 52 and 163 ha, respectively. WS1 is composed mainly of

mixed forest scrub, WS2 is composed mainly of agriculture

and scrub forest, and WS3 is composed mainly of mixed

forest. The average slopes of the watersheds are between 62

and 66%, and the drainage densities are between 2.2 and

3.83 km/km2. For further information on the watersheds the

reader is referred to Table 1.

Data

The morphological variables used in this study were: length of

thewatershed (m); area of thewatershed (ha); relief (m); circu-

latory ratio (CR); compactness coefficient (CC); elongation

ratio (ER); drainage density (DD); time of concentration

(TOC, min); stream length (m); main channel length (m); and

the percentage of land under agriculture, forest and scrub.

The contour map of the main watershed was digitized and

the morphometric parameters extracted with ArcInfo 8.0 GS

at 20 m vertical intervals (Sharda et al. ). The following

variables were also used in this study: antecedent precipitation

index (API5), rainfall, day of the year, and runoff number.

Runoff was estimated using the SCS curve number.

Due to the absence of available data, all three micro-

watersheds (WS1, WS2, and WS3) were gauged specifically

for this research project to monitor daily rainfall and runoff

at their respective outlets. This was done by constructing

broad crested weir-type structures and equipping them

with automatic stage level recorders and recording and

non-recording rain gauges. Data from all three sub-

watersheds were recorded continuously on a daily basis

for a 2-year period from July 1, 2001 to June 30, 2003.

All of the above data was then used together (i.e., data

from all the three watersheds was compiled together) to

develop theMARS, ANN andWA-ANNmodels of this study.
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Model development

MARS models

The MARS™ software (version 2.0) (Salford Systems )

was used to build the MARS models (Sharda et al. ).

The MARS™ software first maximizes the number of knots

and the corresponding basis functions by a trial and error

approach. It then prunes the unwanted knots and basis

functions to create a simplified model, and also assesses

the relative importance of each input variable in the devel-

opment of the model by sequentially eliminating input

parameters while assessing the corresponding change in

the goodness of fit. Different combinations of the data

described in the previous section were tested as inputs to

determine the best MARS model.

In order to develop MARS models with smaller data sets

(e.g., the 2-year data sets from all three watersheds used in

Figure 1 | Land use map of the Sainji watershed and location of gauging stations in the three sub-watersheds (Sharda et al. 2006).
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this study), a 10-fold cross-validation procedure has been

recommended to assess the generalization ability of the

model (Weiss & Kulikowski ). As such, all the models

in this study were developed with a 10-fold cross-validation

procedure to verify the generalization ability of the model.

In this process, the data are randomized and then divided

into 10 equal parts. The first nine parts of the data are

used to train the model, and the final 10th part of the data

is used to test the model (Sharda et al. ). Repeating

this procedure for all 10 possible combinations allows for

the development of a robust model, with each ‘fold’ being

tested on ‘unseen’ data. The MARS models that were devel-

oped were then compared using statistical measures of

goodness of fit (R2 and RMSE).

Artificial neural network models

The primary objective of ANN modeling is to optimize the

architecture of the ANN that captures the relationship

between the input and output variables. The regular ANN

models (i.e., those not using wavelet decomposed input

data) consisted of an input layer, one single hidden layer,

and one output layer consisting of one node denoting the

targeted daily total runoff. The number of nodes in the

input and output layers directly corresponds to the number

of input and output parameters being modeled. The optimal

structure of the hidden layer is determined through a trial

and error procedure (Jain et al. ). Each ANN model

was tested for one to 10 hidden neurons to determine the

optimum number of neurons in the one hidden layer

(found to be seven).

The Levenberg-Marquardt (LM) algorithm was utilized

to train the ANN models in MATLAB because it has been

found to be accurate and reliable (e.g., Adamowski &

Karapataki ). It was determined by the MARS modeling

process that rainfall, antecedent precipitation index (API5),

season (day of the year), and the runoff number are the most

important input parameters (Sharda et al. ). Therefore,

in order to determine the best ANN model, various combi-

nations of these variables were tested as input nodes in the

ANN models.

Individual ANN models for total runoff were developed

with a 10-fold cross-validation procedure to verify the gener-

alization ability of the model (Weiss & Kulikowski ). To

do this the data were randomized, and then divided into 10

equal parts. The model was created using nine parts of the

data (the training data set) and the remaining ‘unseen’

10th part was used to test the model (Sharda et al. ).

This procedure was repeated for all 10 possible combi-

nations. Thus, each time, a model was constructed and

Table 1 | Morphological characteristics of the three Sainji sub-watersheds (Sharda et al. 2006)

Category Watershed characteristics WS1 WS2 WS3

General features Area (ha) 255 52 163

Length (m) 2,950 1,360 2,100

Relief (m) 1,020 635 870

Shape indicators Circulatory ratio (dimensionless) 0.553 0.704 0.705

Compactness coefficient (dimensionless) 134 1.19 1.18

Elongation ratio 0.610 0.598 0.686

Drainage pattern Drainage density (km/km2) 2.76 3.83 2.2

Time of concentration (minutes) 14 6.76 9.86

Length of streams (m) 7,050 2,010 3,595

Main channel length (m) 2,950 1,360 2,100

Land use pattern Agriculture (%) 16.55 22.94 14.87

Forest (%) 36.53 0.64 54.01

Scrubs (%) 46.92 76.42 29.12

Hydrologic soil cover complex Weighted curve number 64.99 69.57 62.57
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tested with an ‘unseen’ data set. The ANN models that were

developed were then compared using statistical measures of

goodness of fit (R2 and RMSE).

Coupled wavelet and artificial neural network models

As mentioned above, it was determined by the MARS

models that rainfall, antecedent precipitation index

(API5), season (day of the year), and the runoff number

are the most important input parameters (Sharda et al.

). Therefore, in order to determine the best WA-ANN

model, various combinations of these variables were

tested as input nodes in the WA-ANN models. The original

data (rainfall, antecedent precipitation index (API5), season

(day of the year), and the runoff number data series) were

decomposed using a modified version of the ‘a trous’ wave-

let algorithm (to ensure that future data are not used). The

original time series for each variable was first decomposed

into an approximation and accompanying detail signal. The

decomposition process was then iterated with successive

approximation signals being decomposed in turn, and in

this way the original time series was broken down into

lower resolution components.

The following formula was used to determine the

number of decomposition levels (Nourani et al. a):

L ¼ int[ log (M)] (8)

where L and M are the decomposition level and number of

time series data, respectively. For this study M¼ 2,190

for training, which results in L¼ 4 approximately. Therefore,

four wavelet decomposition levels were selected. A

new series was obtained for each variable by adding the

details and approximate series for a specific variable, and

these series were then used as inputs to the ANN models.

The ANN networks developed for the WA-ANN models

(which also used the Levenberg-Marquardt training algor-

ithm) consisted of an input layer, a single hidden layer,

and one output layer. Each WA-ANN model was tested for

one to 10 hidden neurons to determine the optimum

number of neurons in the hidden layer (found to be seven).

Individual WA-ANN models for total runoff were

developed with a 10-fold cross-validation procedure to

verify the generalization ability of the model (Weiss &

Kulikowski ). To do this, the data were randomized,

and then divided into 10 equal parts. Models were created

using nine parts of the data (the training data set) and the

remaining ‘unseen’ 10th part was used to test a model

(Sharda et al. ). This was repeated for all 10 possible

combinations. The WA-ANN models that were developed

were then compared using statistical measures of good-

ness of fit (R2 and RMSE).

RESULTS AND DISCUSSION

MARS models

The results from the Sharda et al. () 10-fold cross-vali-

dation MARS modeling to forecast the total runoff are

presented in Table 2. The best MARS model had an R2

of 0.939 for the testing data set. The MARS results indi-

cate that the models were not only able to learn the

relationship between the inputs and the total runoff, but

were also able to apply it successfully to unseen data

sets. The low testing RMSE value (0.292) is a further indi-

cation of the good performance of the MARS model. It

can be seen that MARS modeling has the potential to fore-

cast total runoff effectively for mountainous watersheds

with limited data. Figure 2 illustrates the observed total

runoff and the forecasted total runoff using the best

MARS model.

Table 2 | Statistical comparison of the best MARS, WA-ANN and ANN models for total

runoff predicted from 10-fold cross validation

Model
MARS statistical
results

WA-ANN
statistical results

ANN statistical
results

Best network
structure

N/A (7-7-1) (6-7-1)

Training

Maximum R2 0.970 0.856 0.813

Minimum
RMSE (mm)

0.250 0.750 0.550

Testing

Maximum R2 0.939 0.907 0.724

Minimum
RMSE (mm)

0.292 0.423 0.624

Note: R2: coefficient of determination, RMSE: root mean square error.
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ANN models

The results of the 10-fold cross-validation ANN modeling to

forecast the total runoff using data from the three micro-

watersheds are shown in Table 2. The best ANN model is

a function of the rainfall from the previous day, the runoff

number from the current day and the previous day, and

the antecedent precipitation index from the current day, pre-

vious day and 2 days ago. This ANN model had seven

neurons in the hidden layer. The best ANNmodel had a test-

ing correlation coefficient (R2) of 0.724. The minimum

RMSE value of this ANN model for the testing period was

0.624. Figure 3 illustrates the observed total runoff and the

forecasted total runoff using the best ANN model.

Figure 2 | Comparison of forecasted versus observed total runoff using the best testing MARS model (Fold 8).

Figure 3 | Comparison of forecasted versus observed total runoff using the best testing ANN model (Fold 3).
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WA-ANN models

The results of the 10-fold cross-validation WA-ANN model-

ing to forecast the total runoff using data from the three

watersheds are presented in Table 2. The best WA-ANN

model is a function of the rainfall from the current day

and the previous day, the runoff number from the previous

day, and the antecedent precipitation from the current day,

previous day, 2 days ago and 3 days ago. This WA-ANN

model had seven neurons in the hidden layer. This WA-

ANN model had a testing correlation coefficient (R2) of

0.907. The minimum RMSE value of this WA-ANN model

for the testing period was 0.423, which is low. Figure 4 illus-

trates the observed total runoff and the forecasted total

runoff using the best WA-ANN model.

Comparison of MARS, ANN and WA-ANN models

Table 2 shows that the best WA-ANN model had a similar

level of accuracy to the best MARS model. The MARS

model had a slightly better R2 (0.939) than the

WA-ANN model (0.907), and both the WA-ANN and

MARS models had a significantly better R2 than the

best ANN model (R2¼ 0.724). The best MARS model

had a testing RSME of 0.292, compared to the best

WA-ANN model (RMSE¼ 0.423) and the best ANN

model (RMSE¼ 0.624). The lower RMSE value indicates

that the best MARS model had smaller differences

between the total forecasted runoff and the total

observed runoff. Overall, it can be seen that the best

WA-ANN and MARS models were comparable in terms

of forecasting accuracy, with both model types providing

very accurate runoff forecasts compared to the best regu-

lar ANN model.

Figures 2–4 compare the observed and forecasted total

runoff from the best MARS, ANN and WA-ANN models,

respectively. It can be seen that the MARS model slightly

under forecasts total runoff peaks, as does the WA-ANN

model, but to a lesser degree. The ANN model tends to

over-forecast average and low runoff, and under-forecasts

runoff peaks. Overall, the MARS model provides closer esti-

mates to the corresponding observed total runoff compared

to the WA-ANN and ANN models.

Figures 5–7 are scatterplots that compare the observed

and forecasted runoff using the best MARS model, the best

ANN model and the best WA-ANN model during the test-

ing period. It can be seen from these plots that the values

for the MARS and WA-ANN models are less scattered and

more centered around the 1:1 line than for the ANN

model.

Figure 4 | Comparison of forecasted versus observed total runoff using the best testing WA-ANN model (Fold 1).
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CONCLUSIONS

This research involved the development and testing of a

novel hybrid model architecture (WA-ANN) for runoff

forecasting in mountainous watersheds with limited data

that attempted to draw on the strengths of two different

modeling methods (wavelet analysis and artificial neural

networks). The wavelet-neural network models were

Figure 6 | Scatterplot comparing observed and forecasted total runoff using the best testing ANN model (Fold 3).

Figure 5 | Scatterplot comparing observed and forecasted total runoff using the best testing MARS model (Fold 8).
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developed by combining discrete wavelet transforms and

artificial neural networks. The wavelet-neural network

models were compared with ANN models, as well as with

MARS models developed by Sharda et al. () for total

runoff forecasting.

It was found that the best WA-ANN and MARS

models were comparable in terms of forecasting accuracy,

with both providing very accurate runoff forecasts com-

pared to the best ANN model. This research found that

the use of carefully selected sub-series, obtained via wave-

let analysis, as inputs for ANN models results in very

accurate runoff forecasts in mountainous watersheds

with limited data. The results of this research study

confirm the initial findings of several authors (Cannas

et al. ; Kisi , ; Partal ; Wu et al. a;

Adamowski & Sun ) who also found that

wavelet-neural network models appear to be a promising

new method of short-term runoff forecasting. It is

hypothesized that the WA-ANN models are more accurate

than the regular ANN models since wavelet transforms

allow for the useful decomposition of original time

series data, and the decomposed data can then be

selectively used to develop artificial neural network

forecasting models. This process allows some of the

‘noisy’ data to be removed.

It was found that both theMARS andWA-ANNmethods

do not require extensive input data sets for highly accurate

runoff forecasting in mountainous watersheds, and as such

both methods warrant additional research in other mountai-

nous watersheds with limited data. Future suggested studies

stemming from this research include: testing the application

of WA-ANN and MARS models in a wide variety of different

mountainous watersheds with limited data; testing the appli-

cation of WA-ANN and MARS models using more recent

data of a longer duration; investigating different modified

mother wavelets for use in the coupled wavelet-neural net-

work models; comparing the WA-ANN and MARS

methods with other runoff forecasting methods such as sup-

port vector regression models; and exploring how to assess

the uncertainty of WA-ANN and MARS forecasts.
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