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1 Formely.
s u m m a r y

In this paper, a two-level self-organizing map (SOM) clustering technique was used to identify spatially
homogeneous clusters of precipitation satellite data, and to choose the most operative and effective data
for a feed-forward neural network (FFNN) to model rainfall–runoff process on a daily and multi-step
ahead time scale. The wavelet transform (WT) was also used to extract dynamic and multi-scale features
of the non-stationary runoff time series and to remove noise. The performance of the coupled SOM–FFNN
model was compared to the newly proposed combined SOM–WT–FFNN model. The performance of these
two models was also compared to that of a conventional forecasting method, namely the auto regressive
integrated moving average with exogenous input (ARIMAX) model. Daily precipitation data from two sat-
ellites and four rain gauges, as well as runoff values recorded from January 2003 to December 2007 in the
Gilgel Abay watershed in Ethiopia were used to calibrate and validate the models. Runoff predictions via
all of the above methods were investigated for both single-step-ahead and multi-step-ahead lead times.
The results indicated that the use of spatial and temporal pre-processed data in the FFNN model led to a
promising improvement in its performance for rainfall–runoff forecasting. In the validation phase of sin-
gle and multi-step-ahead forecasting, it was determined that the SOM–WT–FFNN models provide more
accurate forecasts than the SOM–FFNN models (the determination coefficients for validation of the SOM–
FFNN and SOM–WT–FFNN models were 0.80 and 0.93, respectively). The proposed FFNN model coupled
with the SOM clustering method decreased the dimensionality of the input variables and consequently
the complexity of the FFNN models. On the other hand, the application of the wavelet transform to the
runoff data increased the performance of the FFNN rainfall–runoff models in predicting runoff peak
values by removing noise and revealing the dominant periods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Accurate models of the rainfall–runoff process that are embed-
ded with high complexity, non-stationarity, and non-linearity in
both spatial and temporal scales can provide important informa-
tion for watershed management, including for environmental engi-
neering and management of land use, flooding, and water
resources. In light of this, numerous models have been developed
to simulate this complex process. Due to the large number of
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ambiguous physical parameters in the rainfall–runoff process,
black box (lumped) models are frequently used, since they may
have some advantages over fully distributed models (Nourani
and Mano, 2007). Conventional black box time series models such
as auto regressive integrated moving average (ARIMA), seasonal
ARIMA, ARIMA with exogenous input (ARIMAX) and multiple lin-
ear regression (MLR), are widely applied to forecast hydrological
time series (e.g. Adamowski et al., 2012; Cleaveland and Stahle,
1989; Graumlich, 1987; Hansen and Nelson, 1997; Nourani et al.,
2011; Pulido-Calvo and Portela, 2007; Salas et al., 1980; Tankersley
et al., 1993; Zhang, 2003; Zhang et al., 2011). These models are lin-
ear and assume stationarity of the dataset. Although these models
may sometimes be inaccurate because of their inability to handle
non-stationarity and non-linearity, such conventional methods
are still used both in practice because they are simple to use, and
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because they can be used as ‘comparison models’ to evaluate new-
er methods.

During recent decades, artificial neural networks (ANNs) as
black box models have increasingly been of interest for modeling
complex non-linear hydrological processes such as rainfall–runoff.
ANNs are effective for handling high dimensional datasets with
non-linear and noisy characteristics, especially in cases where
the underlying physical relationships are not clear. Over the course
of the last 15 years, one can find numerous examples of rainfall–
runoff modeling studies using ANNs (e.g. Antar et al., 2006;
Dawson and Wilby, 1998; Hsu et al., 1995; Jain et al., 2004;
Lallahem and Maina, 2003; Nourani et al., 2009a, 2011; Sajikumara
and Thandaveswara, 1999; Senthil Kumar et al., 2004; Sudheer
et al., 2000; Tokar and Johnson, 1999).

One of the concerns regarding the use of ANNs in rainfall–runoff
modeling is whether they are capable of multi-step-ahead
forecasting, which is important in reducing flood damages. Thus,
several researches have been completed to investigate multi-
step-ahead predictions using ANNs. For example, Vos and Rientjes
(2005) utilized multi-step-ahead discharge predictions to assess
the constraints of ANNs for rainfall–runoff modeling. Chang et al.
(2007) developed multi-step-ahead ANN models for flood forecast-
ing, where they examined multi-input multi-output (MIMO), mul-
ti-input single-output (MISO) and serial-propagated structures and
concluded that MISO could lead to more reliable results. More re-
cently, Yonaba et al. (2010) applied multi-step-ahead ANNs to
evaluate sigmoid transfer functions in stream flow forecasting.

The performance of an ANN-based rainfall–runoff model relies
on the quality and quantity of the input data. Rainfall is conven-
tionally measured using rain gauges, but this method only allows
relatively sparse sampling of a watershed. Development in satellite
remote-sensing technology has enabled the global distribution of
rainfall to be monitored, which may provide a good basis for
improving the accuracy of hydrologic predictions (Lábó, 2012). Sa-
tellite data have been utilized in a small number of ANN-based
rainfall–runoff modeling studies. For example, Artan et al. (2007)
established the adequacy of satellite-derived rainfall data for flood
and stream flow modeling using a spatially distributed hydrologic
model. The results demonstrated the usefulness of remotely sensed
precipitation data for hydrologic modeling. Satellite-based data
were used to estimate stream flow by Akhtar et al. (2009),
Sawunyama and Hunghes (2010), and Shrestha et al. (2008). For
example, because of the sparseness of ground-based observations,
Akhtar et al. (2009) used satellite precipitation data in an ANN
model to forecast river flow after pre-processing by flow length
and travel time. It was concluded that incorporating remote sens-
ing data of spatially distributed precipitation as a pre-processing
step is a promising alternative for setting up ANN models to fore-
cast river flow.

In spite of the flexibility of ANNs in rainfall–runoff modeling,
deficiencies in estimations sometimes arise because of the non-
stationarity of signal fluctuations and their seasonalities, which
vary over a range of scales from one day to several decades. An
ANN model may produce misleading estimations if specific fea-
tures, seasonality selection, and noise reduction are not carefully
taken into account. Therefore, time and/or space pre-processing
of data in such situations may be an effective approach to over-
come these deficiencies.

The wavelet transform is an appropriate temporal pre-process-
ing method that can be utilized to extract a variety of features from
the data, such as short-term and long-term fluctuations, by decom-
posing the time series into different sub-components. The wavelet
decomposition of a non-stationary time series into various scales
provides an interpretation of the time series structure and extracts
significant information about its history. As a result of these
features, the wavelet transform has been applied to time series
analysis of non-stationary hydrological signals (e.g. Adamowski,
2008a,b). The use of decomposed sub-signals as inputs into an
ANN model helps the ANN model to distinguish the dominant
sub-signals by applying relatively strong weights (Nourani et al.,
2009a, 2011).

A hybrid wavelet–ANN model was first proposed by Aussem
et al. (1998) for financial time series forecasting. Different compo-
nents of the hydrologic cycle, including precipitation, groundwater,
river flow, and sedimentation, have since been modeled using
the wavelet–ANN approach (e.g. Adamowski and Chan, 2011;
Adamowski et al., 2012; Mirbagheri et al., 2010; Nourani et al.,
2009a,b, 2011; Partal and Cigizoglu, 2008; Partal and Kisi, 2007;
Wang and Ding, 2003). In the field of rainfall–runoff modeling,
Anctil and Tape (2004) used the wavelet transform to decompose
the time series into three sub-series depicting the rainfall–runoff
process, which were short, intermediate and long wavelet periods.
Three multi-layer networks were then trained for the sub-series in
order to estimate the runoff values. Their results revealed that
short-term fluctuations are crucial for any further improvement
in ANN-based rainfall–runoff simulation. Nourani et al. (2009a)
utilized the combined wavelet–ANN approach for modeling the
rainfall–runoff process at daily time scale and showed that the
proposed model could predict both short and long-term runoff
discharges. Furthermore, Nourani et al. (2011) presented a rain-
fall–runoff model by taking advantage of wavelet pre-processing
to handle the seasonal features of the process.

Hydrologic process data may also be spatially distributed, as
well as varying temporally. Therefore, pre-processing of spatial
data can improve the efficiency of data-driven methods such as
ANNs. Clustering is one suggested method to conduct spatial pre-
processing of data, in combination with a temporal pre-processing
technique. In the context of ANN-based rainfall–runoff modeling,
clustering is usually performed for classification of the data, sta-
tions or zones into homogeneous classes (Nourani and Kalantari,
2010), and/or for optimization of the model structure by selecting
dominant and relevant inputs (Bowden et al., 2005). Clustering
techniques identify structure in an unlabeled data set by objec-
tively arranging data into homogeneous groups, where the with-
in-group-object dissimilarity is minimized, and the between-
group-object dissimilarity is maximized. Conventional clustering
methods, such as K-mean, that proceed according to linear charac-
teristics require the number of clusters to be specified in advance
(Hsu and Li, 2010).

The SOM is an unsupervised ANN approach (Kohonen, 1997,
1998) that is used to cluster complex data sets and does not require
the number of clusters to be specified in advance. The SOM operates
as an effective tool to convert complex, nonlinear, statistical
relationships between high-dimensional data items into simple,
geometric relationships on a low-dimensional display. Further-
more, the SOM preserves the data space and topology during the
clustering process. The SOM maps high-dimensional data sets onto
a regular one or two-dimensional grid.

Several studies have reported successful applications of the
SOM technique to water resources problems and others in related
disciplines. Furundzic (1998) applied SOM to analyze the rainfall–
runoff process and the feed-forward multi-layer perceptron (MLP)
ANN model for forecasting purposes. Hsu et al. (2002) presented a
multivariate ANN procedure entitled self-organizing linear output
map (SOLO), which was applied to classic rainfall–runoff problems.
The results demonstrated the predominant characteristics of SOLO,
such as its ability to rapidly and precisely estimate network struc-
ture/parameters and system outputs. Furthermore, SOLO provided
features that provided insight into the underlying processes. Toth
(2009) utilized SOM for stream flow forecasting and indicated that
the SOM method consistently identifies the different parts of the
hydrograph, based on the information available in the forecast.
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Hsu and Li (2010) applied the SOM to objectively identify spatially
homogeneous clusters of precipitation stations on the high-dimen-
sional wavelet-transformed feature space. Lin and Wu (2011) em-
ployed SOM to train radial basis function network. SOM was also
applied to group design hyetographs (Lin and Wu, 2007) and
groundwater levels (Nourani et al., 2012a). Finally, the analysis,
modeling and applications of SOM to water resources problems
were reviewed by Kalteh et al. (2008) and for meteorology and
oceanography by Liu and Weisberg (2011).

In this paper, a novel methodology is proposed that considers
the spatiotemporal features of the rainfall and runoff process. An
SOM-based clustering method is proposed to select the dominant
inputs for the FFNN model. To further enhance the efficiency of
the proposed rainfall–runoff model, wavelet-based (WT) temporal
pre-processing is also conducted to specify the important features
and seasonality of the process. The proposed SOM-WT–FFNN
method uses satellite-derived rainfall data, which provide informa-
tion about the spatial distribution and temporal variability of pre-
cipitation. However, satellite data may suffer from inadequate
reliability, accuracy, and resolution in space and time (Petty,
1995), which introduces uncertainties in the rainfall–runoff model
or may lead to incorrect forecasts. Thus, it is useful to compare
model outputs using both satellite and gauge data sets.

This study proposes, for the first time, a new method of rainfall–
runoff modeling based on the coupling of three techniques, namely
SOM, wavelet transform, and FFNN. The proposed method is tested
for single and multi-step ahead forecasting in the Gilgel Abay wa-
tershed in Ethiopia. In the next sections of the paper, the concepts
of the forecasting methods (i.e. FFNN and ARIMAX), the wavelet
transform, and SOM are reviewed. The following sections describe
the study area and data sources, and the methodology for model
development, as well as the evaluation criteria. The results ob-
tained using the proposed methodology are then presented and
discussed, followed by some concluding remarks.

2. Forecasting models

2.1. Feed forward neural network (FFNN)

The FFNN is widely applied in hydrology and water resource
studies as a forecasting tool. It has already been demonstrated that
an FFNN model trained by the back-propagation (BP) algorithm
with three layers is satisfactory for forecasting and simulating
hydrological engineering problems (ASCE, 2000; Hornik et al.,
1989). Three-layered FFNNs, which have usually been used in
Fig. 1. A three layered feed-forward neura
forecasting hydrologic time series, provide a general framework
for representing nonlinear functional mapping between a set of
input and output variables (Fig. 1). They are based on a linear
combination of the input variables, which are transformed by a
nonlinear activation function. The term ‘‘feed-forward’’ means that
a neuron connection only exists from a neuron in the input layer to
other neurons in the hidden layer or from a neuron in the hidden
layer to neurons in the output layer. The neurons within a layer
are not interconnected.

In Fig. 1 i, j and k denote input layer, hidden layer and output
layer neurons, respectively, and w is the applied weight by the
neuron. The explicit expression for an output value of a three-
layered FFNN is given by Nourani et al. (2012b):

ŷk ¼ f�
XMN

j¼1

wkj � fh

XNN

i¼1

wjixi þwjo

 !
þwko

" #
ð1Þ

where wji is a weight in the hidden layer connecting the ith neuron
in the input layer and the jth neuron in the hidden layer, wjo is the
bias for the jth hidden neuron, fh is the activation function of the
hidden neuron, wkj is a weight in the output layer connecting the
jth neuron in the hidden layer and the kth neuron in the output
layer, wko is the bias for the kth output neuron, fo is the activation
function for the output neuron, xi is ith input variable for input layer
and ŷk and y are computed and observed output variables, respec-
tively. NN and MN are the number of the neurons in the input and
hidden layers, respectively. The weights are different in the hidden
and output layers, and their values can be changed during the
network training process.

In any FFNN-based modeling, there are two important points to
which attention must be paid: firstly, the architecture, i.e. the
number of neurons in the input and hidden layers, and secondly,
the training iteration (epoch) number. Appropriate selection of
these two parameters improves model efficiency in both the train-
ing and testing steps. Furthermore, a high epoch number and poor
quality or quantity of data could cause the network to over fit dur-
ing the training step. If this occurs, the model cannot adequately
generalize new data outside of the training set.

2.2. Auto regressive integrated moving average with exogenous input
(ARIMAX)

The auto regressive integrated moving average (ARIMA)
methodology has the ability to identify complex patterns in data
and generate forecasts (Box and Jenkins, 1976). It is used to predict
l network with BP training algorithm.
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the future according to the past input and/or output data of the
process. ARIMA models can be used to analyze and forecast univar-
iate time series data. The three steps to develop ARIMA models are
identification, estimation, and forecasting. The ARIMA model func-
tion is represented by (p, d, q), with p representing the number of
autoregressive terms, d the number of non-seasonal differences,
and q the number of lagged forecast errors in the prediction equa-
tion. A model described as (2, 1, 3) signifies that it contains two
autoregressive (p) parameters, and three moving average (q)
parameters, which were computed for the series after it was differ-
enced (d) once. ARIMA (p, d, q) models are defined as follows (Box
and Jenkins, 1976):

Wt ¼ lþ hqðBÞ
wpðBÞ

at ð2Þ

where Wt ¼ ð1� BÞdYt is the difference of Yt which is the univariate
time series under investigation, B is the backshift operator; that is,
BXt = Xt�1, l is a constant value, wp(B) is the auto regressive
polynomial of B of order p: wpðBÞ ¼ 1� w1ðBÞ � � � � � wpðBÞ

p, hq(B)
is the moving average polynomial of B of order q: hqðBÞ ¼
1� h1ðBÞ � � � � � hqðBÞq, and d is the order of differencing used for
the regular or non-seasonal part of the series, and at is a random
perturbation or white noise (zero mean, constant variant, and zero
covariance).

When an ARIMA model includes more than one time series as in-
put variables, the model is known as an auto regressive integrated
moving average with exogenous inputs (ARIMAX) model. Because
more information is used in forecasting when exogenous inputs
are considered, results usually show improvement in comparison
to univariate ARIMA models. In the current study, the precipitation
and antecedents of runoff data are considered as exogenous inputs,
which are used to predict future runoff values as the output.

The ARIMAX model, which is an extension of the ARIMA model,
is written as (Pankratz, 1991):

Wt ¼ lþ
X

i

xiðBÞ
diðBÞ

Bki Xi;t þ
hðBÞ
wðBÞ at ð3Þ

where Xi;t is the ith input time series or a difference of the ith input
series at time t, ki is the pure time delay for the effect of the ith in-
put series, xi(B) is the numerator polynomial of the transfer func-
tion for the ith input series, and di(B) is the denominator
polynomial of the transfer function for the ith input series. The
model can also be written more compactly as:

Wt ¼ lþ
X

i

WiðBÞXi;t þ gt ð4Þ

where WiðBÞ is the transfer function weights for the ith input series
modeled as a ratio of the x and d polynomials: WiðBÞ ¼ ðxiðBÞ=
diðBÞÞBki , and gt is the noise series: gt = (h(B)/w(B)at.

This model expresses the prediction series as a combination of
past values of the exogenous input series and noise series. The
output and input series can be considered as the dependent and
independent series, respectively.

3. Wavelet transform

The wavelet transform has increased in usage and popularity in
recent years since its inception in the early 1980s, but it is still not
as widely used as the Fourier transform. Fourier analysis has a seri-
ous drawback, namely that time information is lost in transforming
to the frequency domain so that it is impossible to tell from a
Fourier transform of a signal when a particular event took place.
However, wavelet analysis allows the use of long time intervals
to give more precise low-frequency information, as well as shorter
regions to give high-frequency information. The time-scale
localization of processes derives from the compact support of the
wavelet transform’s basic function, as opposed to the classical
trigonometric function of Fourier analysis. The wavelet transform
searches for correlations between the signal and the wavelet
function. This calculation is done at different scales of a and locally
around the time of b. The result is a wavelet coefficient (T(a,b))
contour map known as a scalogram. Grossmann and Morlet
(1984) introduced wavelet transform applications in the field of
earth sciences, particularly on geo-physical seismic signals. A com-
prehensive literature survey of wavelet applications in geosciences
can be found in Foufoula-Georgiou and Kumar (1995); the most
recent contributions have been cited by Labat (2005). Wavelet
theory is discussed thoroughly in Labat et al. (2000) and Mallat
(1998).

The time-scale wavelet transform of a continuous time signal,
x(t), is defined as (Mallat, 1998):

Tða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
g�

t � b
a

� �
xðtÞ � dt ð5Þ

where g⁄ corresponds to the complex conjugate and g(t) is the
wavelet function or mother wavelet. The parameter a acts as a
dilation factor, while b corresponds to a temporal translation of
the function g(t), which allows the study of the signal around b.

For practical applications in hydrology, discrete time signals are
usually available, rather than continuous time signal processes. A
discretization of Eq. (5) based on the trapezoidal rule is the
simplest discretization of the continuous wavelet transform. This
transform produces N2 coefficients from a data set of length N;
hence, redundant information is locked up within the coefficients,
which may or may not be a desirable property (Addison et al.,
2001). To overcome this redundancy, logarithmic uniform spacing
can be used for the a scale discretization with correspondingly
coarser resolution of the b locations, which allows for N transform
coefficients to completely describe a signal of length N. Such a
discrete wavelet has the form (Mallat, 1998):

gm;nðtÞ ¼
1ffiffiffiffiffiffi
am

0

p g
t � nb0am

0

am
0

� �
ð6Þ

where m and n are integers that control the wavelet dilation and
translation, respectively; a0 is a specified dilation step greater than
1; and b0 is the location parameter, which must be greater than
zero. The most common and simplest choice for parameters are
a0 = 2 and b0 = 1.

This power of two logarithmic scaling of the translation and
dilation is known as the dyadic grid arrangement. The dyadic
wavelet can be written in more compact notation as (Mallat,
1998):

gm;nðtÞ ¼ 2�m=2gð2�mt � nÞ ð7Þ

Discrete dyadic wavelets of this form are commonly chosen to be
orthonormal; i.e. (Mallat, 1998):Z þ1

�1
gm;nðtÞgm0 ;n0 ðtÞdt ¼ dm;m0dn;n0 ð8Þ

where d is the Kronecker delta. This allows for the complete
regeneration of the original signal as an expansion of a linear
combination of translation and dilation orthonormal wavelets.

For a discrete time series, xi, the dyadic wavelet transform
becomes (Mallat, 1998):

Tm;n ¼ 2�m=2
XN�1

i¼0

gð2�mi� nÞxi ð9Þ

where Tm,n is the wavelet coefficient for the discrete wavelet of scale
a = 2m and location b = 2mn. Eq. (6) considers a finite time series, xi,



Fig. 2. Schematic view of the two-level SOM neural network.
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i = 0, 1, 2, . . . , N � 1; and N is an integer power of 2: N = 2M. This
gives the ranges of m and n as, respectively, 0 < n < 2M�m � 1 and
1 < m < M. At the largest wavelet scale (i.e. 2m where m = M) only
one wavelet is required to cover the time interval, and only one
coefficient is produced. At the next scale (2m�1), two wavelets cover
the time interval, hence two coefficients are produced, and so on
down to m = 1. At m = 1, the a scale is 21, i.e. 2M�1or N/2 coefficients
are required to describe the signal at this scale. The total number of
wavelet coefficients for a discrete time series of length N = 2M is
then 1 + 2 + 4 + 8 + � � � + 2M�1 = N � 1.

In addition to this, a signal-smoothed component, T , is left,
which is the signal mean. Thus, a time series of length N is broken
into N components, i.e. with zero redundancy. The inverse discrete
transform is given by (Mallat, 1998):

xi ¼ T þ
XM

m¼1

X2M�m�1

n¼0

Tm;n2�m=2gð2�mi� nÞ ð10Þ

or in a simple format as (Mallat, 1998):

xi ¼ TðtÞ þ
XM

m¼1

WmðtÞ ð11Þ

where TðtÞ is the approximation sub-signal at level M and WmðtÞ are
detail sub-signals at levels m = 1, 2, . . . , M. The wavelet coefficients,
WmðtÞ (m = 1, 2, . . . , M), provide the detail signals, which can cap-
ture small features of interpretational value in the data. The resid-
ual term TðtÞ represents the background information of data.

Because of the simplicity of W1(t), W2(t), . . . , WM(t), TðtÞ, some
interesting characteristics, such as period (time taken to see a clear
repeat in extreme values of the process), hidden period (a period
that is not very clear in the time series but can be depicted by de-
tail sub-series at different scales), dependence (correlation be-
tween two sub-series at two distinct scales) and jump or shift
(e.g., a shift in the flow discharge time series due to construction
of a dam) can be easily diagnosed through wavelet components.

4. Self-organizing map (SOM)

The SOM is an effective tool for the visualization of high-dimen-
sional data. It implements an orderly mapping of a high-dimen-
sional distribution onto a regular low-dimensional grid.
Therefore, it is able to convert complex, nonlinear statistical rela-
tionships between high-dimensional data items into simple geo-
metric relationships on a low-dimensional display while
preserving the topology structure of the data (Kohonen, 1997).
SOM reduces dimensions by producing a map of usually 1 or 2
dimensions that plots the similarities of the data by grouping sim-
ilar data items together. Thus, SOMs accomplish two things: they
reduce dimensions and display similarities. The SOM network gen-
erally consists of two layers, an input layer and a Kohonen layer.
The input layer is fully connected to the Kohonen layer, which in
most common applications is two-dimensional. A two-level SOM
neural network is a promising approach to capture a preliminary
overview of intricate data sets. It augments the conventional
SOM network with an additional one-dimensional Kohonen layer
in which each neuron is connected to neurons in the previous
Kohonen layer (Hsu and Li, 2010). The schematic view of the
two-level SOM network is shown in Fig. 2.

The SOM is trained iteratively, and initially the weights are ran-
domly assigned. When the n-dimensional input vector x is sent
through the network, the distance between the w weight neurons
of SOM and the inputs is computed. The most common criterion to
compute the distance is Euclidean distance (Kohonen, 1997):

kx�wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi �wiÞ2

q
ð12Þ
The weight with the closest match to the presented input pat-
tern is the winner neuron or the best matching unit (BMU). The
BMU and its neighboring neurons are allowed to learn by changing
the weights at each training iteration t, to further reduce the dis-
tance between the weights and the input vector (Kohonen, 1997):

wðt þ 1Þ ¼ wðtÞ þ aðtÞhlmðx�wðtÞÞ ð13Þ

where a is the learning rate, ranging in [0 1], l and m are the posi-
tions of the winning neuron and its neighboring output nodes, and
hlm is the neighborhood function. The most commonly used neigh-
borhood function is the Gaussian function (Kohonen, 1997):

hlm ¼ exp �kl�mk2

2rðtÞ2

 !
ð14Þ

where hlm is the neighborhood function of the best matching neuron
l at iteration t; and l �m is the distance between neurons l and m on
the map grid; and r is the width of the topological neighborhood.
The training steps are repeated until convergence. After the SOM
network is constructed, the homogeneous regions, or clusters, are
defined on the map.

5. Study region and data

5.1. Study region

The Gilgel Abay watershed in Ethiopia is located in the north-
western highlands of Ethiopia (36�48́E–37�24́E and 10�56́N–
11�23́N), and has an area of 1656 km2 (Fig. 3). The topography of
the watershed is complex, with elevations ranging from 1880 to
3530 m above sea level. Within the watershed there are rugged
mountainous areas and a plateau with gentle slopes; overall more
than 40% of the land has slopes greater than 10%. The climate is
semi-humid, with a mean annual rainfall of 1300 mm and a mean
annual temperature of 17–20 �C. The dry season, which occurs
from October to May, lasts longer than the wet season. However,
more than 70% of the precipitation falls during the summer mon-
soon season, and droughts are recurrent. The climate varies within
the watershed, with the highlands having a temperate climate, and
the areas at lower elevation having a tropical climate. Soil textural
classes include clay (33.3%), clay loam (33.7%), and silt loam (33%).
The land is used for rain-fed agriculture (74%), grassland (15%), and
forest and shrubs (11%). Due to the recurrent droughts and depen-
dence on rainfall for agriculture, the Gilgel Abay watershed re-
quires effective management of its water resources. To enable
this, a reliable method to translate rainfall values to runoff dis-
charges is needed.

5.2. Rain gauges and runoff data

The watershed is equipped with one stream gauge at its outlet,
and there are four rain gauges in its vicinity (Fig. 3), which record
daily runoff and rainfall values, respectively. However, this



Fig. 3. Study area map.
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network of ground based hydrological observations is sparsely dis-
tributed, and none of the rain gauge stations are located within the
watershed. Therefore, accurate data that reflect changes in precip-
itation with topography is not available from rain gauges on the
ground.

5.3. High resolution satellite rainfall products

Remote sensing, for example using satellite data, may provide
better and/or additional coverage of precipitation data than
ground-based rain gauges. The CMORPH and TMPA 3B42RT high-
resolution satellite rainfall data were used in this study, as they of-
fer the best performance for this region (Bitew and Gebremichael,
2011). Both products use microwave data as the primary source of
rainfall information, and infrared data as the secondary source. The
CMORPH (Climate Prediction Center Morphing) method obtains
rainfall estimates from microwave data, but uses geostationary
infrared data to construct the storm patterns between successive
Table 1
Statistics of rainfall and runoff data.

Rainfall time series (mm)

Zone CMORPH satellite data set 3B42RT satellite data set

Max Min Mean Standard
deviation

Max Min Mean

Zone 1 74.1 0 4.63 8.29 72.48 0 3.64
Zone 2 69.69 0 4.14 7.89 96.09 0 4.05

Zone 3 61.53 0 3.55 6.90 86.1 0 3.33
Zone 4 65.88 0 4.72 7.82 64.9 0 4.00

Zone 5 58.98 0 4.06 6.82 82.71 0 3.92
Zone 6 51.66 0 3.45 5.94 93.42 0 3.32

Zone 7 69.81 0 4.54 7.05 64.83 0 4.16
Zone 8 71.37 0 3.91 6.34 63.03 0 3.87

Zone 9 57.81 0 3.45 5.83 80.13 0 3.66

Runoff time
series (m3/s)

Max

400.2
microwave overpasses (Joyce et al., 2004). The TMPA (Tropical
Rainfall Measuring Mission Multi-Satellite Precipitation Analysis)
method estimates rainfall from microwave data whenever they
are available, and estimates rainfall from infrared data when
microwave data are unavailable. The parameters of the infrared
data are calibrated based on coinciding microwave-infrared over-
passes (Huffman et al., 2007). In this study, the daily rainfall and
runoff data from the gauges, and satellite for 2003–2007 were used
for modeling; the first 3.5 years of data was used for training and
the rest for verification purposes. Totally, 1827 data points were
used, 1370 and 456 data points for training and verification pur-
poses, respectively. In this way, it was tried to have extreme values
of the observed data in the training period to help the models to
learn the pattern of the process more reliably. The statistics for
both rainfall data sources in daily time scale and for runoff data
from the stream gauge at the outlet of the watershed are shown
in Table 1. The rainfall time series of zone 2 from the satellite data
and from the Gundi gauge are shown in Fig. 4 as examples.
Rain gauge data sets

Standard
deviation

Station Max Min Mean Standard
deviation

7.83
8.96 Gundi

(2540 m.a.s.l.)
98.9 0 6.74 12.26

7.53
7.98 Kidmij

(2514 m.a.s.l.)
96.1 0 6.07 10.9

8.03
7.19 Dang

(2100 m.a.s.l.)
61 0 4.28 8.13

7.75
7.76 Wete

(1900 m.a.s.l.)
74 0 4.46 8.53

7.45

Min Mean Standard
deviation

0 54.5 69.9



Fig. 4. Rainfall time series of (a) 3B42RT. (b) CMORPH satellite data. (c) Gundi rain
gauge.
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6. Methodology

To optimize the input layer and improve the efficiency of the
ANN-based rainfall–runoff model of the watershed, the satellite
and runoff data were spatially and temporally pre-processed, using
a newly proposed method involving the SOM and wavelet trans-
form (WT), respectively. For the SOM–FFNN model, the dominant
input data selected by SOM-based spatial clustering were used in
the FFNN model for single and multi-step-ahead rainfall–runoff
modeling. For the proposed SOM–WT–FFNN method, wavelet anal-
ysis was also used for temporal pre-processing to improve the
model’s efficiency and its handling of the non-stationarity and sea-
sonal effects of the process. Finally, a conventional ARIMAX model
was developed for comparison with the two newly proposed FFNN
based methods.

6.1. Data normalization

Input and output variables for ANN-based modeling are usually
normalized by scaling between zero and one, to ensure that all
variables receive equal attention during the training step of a mod-
el. The following simple linear mapping of the variables is the most
common method for this purpose (Grimes et al., 2003):

ri ¼
bi � bmin

bmax � bmin
ð15Þ
where bi is the actual value and ri is the respective normalized
value. bmin and bmax are the minimum and maximum of the values,
respectively. In this study, the normalized data were divided into
training and verification sets. Three and a half years of data were
used for model training, and the remaining 1.5 years of data were
used for validation.

6.2. SOM clustering

The selection of the most relevant and appropriate inputs is an
important step in ANN-based modeling of the rainfall–runoff pro-
cess when various data sources, such as for precipitation, are avail-
able in the watershed. As satellite rainfall data are available over
the nine zones of the watershed (Fig. 3), the zones that contribute
highly to runoff generation and those that best represent the rain-
fall process in the watershed were identified. As the details are pre-
sented in the below lines, the SOM-based clustering was led to
select zones 2, 5, 8 and zones 5, 8 as the representative zones using
CMORPH and 3B42RT satellites data sets, respectively. Using only
data from these zones allowed the dimensionality of the original
set of inputs to be reduced, resulting in an appropriate and opti-
mized FFNN for rainfall–runoff modeling of the watershed.

The conventional trial and error methodology for selecting the
most dominant inputs from large datasets is a time consuming
process, because many different combinations of the input vari-
ables need to be examined. The number of trials for a model with
n input variables is 2n � 1.

Therefore, if the trial–error method were used in this study to
determine the effective and dominant precipitation zones of the
watershed, 29 � 1 = 511 combinations of zones would need to be
examined as the FFNN inputs for each satellite data set. Since the
nine precipitation zones do not have an equal effect on runoff val-
ues or do not provide ‘informative’ input data, the use of only se-
lected inputs into the FFNN simplifies the model structure and
leads to better results.

Dominant precipitation zones that are representative of the wa-
tershed precipitation can be identified using a spatial clustering
method, such as the two-step SOM clustering method. In the first
step of this method, a two-dimensional SOM was used to classify
the precipitation zones of each satellite data set into classes with
similar precipitation patterns. This provided an overview of the
homogeneous regions and the approximate number of clusters in
relation to the watershed topography. Secondly, a one-dimensional
SOM was applied to classify the rainfall zones with the specific
class numbers determined in the first step. The number of neurons
in the Kohonen layer was set to be equal to the number of clusters
determined in the first step, so that each cluster was represented
by a neuron. The Euclidean distance criterion (Bowden et al.,
2005) was then utilized to select the centroid zone of each cluster,
which is the best representation of the precipitation pattern of the
cluster.

To apply the two-step SOM on the CMORPH satellite data, the
size of the Kohonen layer used in the first step was determined
as a 3-by-3 grid via a trial–error process. Since there is no theoret-
ical principle for determining the optimum size of the Kohonen
layer, the Kohonen layer should be large enough to ensure that a
suitable number of clusters are formed from the training data
(Cai et al., 1994). After creation of the 3-by-3 Kohonen layer, the
relevant zones of each cluster on the map were identified accord-
ing to the number of zones assigned to the neurons (Fig. 5a). A
1-dimensional SOM with the neurons organized in a 1-by-3
Kohonen layer was then formed as the second step of the cluster-
ing (Fig. 6). Zones 2 and 3 were classified in one cluster because of
similar precipitation data. The other seven zones were classified
individually into seven separate clusters. Fig. 5b shows the
neighbor weight distances, where the dark hexagons represent



Fig. 5. The 2-Dimensional SOM clustering of CMORPH satellite data (a) SOM hits. (b). SOM neighbor weight distances plan.

Fig. 6. The 1-dimensional SOM clustering of CMORPH satellite data.
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the neurons. The colors in the regions indicate the distances be-
tween neurons, with the darker colors representing larger dis-
tances, and the lighter colors representing smaller distances.
6.3. Proposed SOM–FFNN model

For each type of satellite data, the rainfall values of representa-
tive zones were used in the FFNN to model the rainfall–runoff pro-
cess in the watershed. This type of ANN model accompanied by a
back-propagation training algorithm is widely used in hydrologic
modeling (ASCE, 2000). The proposed FFNN models comprised
both single- and multi-step ahead predictions.

Various combinations of the selected zones were examined using
the FFNN model (Tables 2 and 3 for CMORPH and 3B42RT satellite
data, respectively). Each FFNN was trained by examining 3–20
hidden neurons in a single hidden layer using the Levenberg–
Marquardt training scheme (Hagan and Menhaj, 1994) and up to
200 training epochs, with 10�4 as the goal performance. The training
was terminated at the point where the error in the validation data
set began to rise to ensure that the network did not over fit the train-
ing data and then fail to generalize the un-seen test data set. No
great improvement in model performance was found when the
number of hidden neurons was increased above a threshold. At this
stage, the model efficiency criteria for each satellite data set were
used to determine the best model. Sensitivity analysis of the FFNN
rainfall–runoff models with various input combinations allowed
the best combination of the representative zones.
6.3.1. One-step-ahead forecasting using SOM–FFNN
In order to get appropriate 1-day-ahead forecasts of runoff, the

input layer needs to include all relevant information on the target
data. The size of the sliding window of the previous days of data for
precipitation and runoff was identified by the trial–error proce-
dure. Based on sensitivity analysis, the input layer was then opti-
mized such that only the most important signals were included.
The use of runoff values at current day together with one and
two days lag (i.e.Q(t), Q(t � 1), Q(t � 2)) was determined to be opti-
mal by sensitivity analysis over different sliding input windows of
the previous days’ runoff data (up to 7 past days were tested). This
was therefore used in all models. The use of previous time steps up



Table 2
Results of single-step-ahead SOM–FFNN model for CMORPH satellite data.

Applied rainfall zones Input variablesa Epoch Network structureb DC RMSEc

Calibration Verification Calibration Verification

Zone 2 I(t), Q(t), Q(t � 1), Q(t � 2) 190 4-10-1 0.88 0.77 0.059 0.064
Zone 5 I(t), Q(t), Q(t � 1), Q(t � 2) 180 4-9-1 0.87 0.66 0.061 0.080
Zone 8 I(t), Q(t), Q(t � 1), Q(t � 2) 150 4-12-1 0.88 0.63 0.058 0.082
Zones 2, 5 I(t), Q(t), Q(t � 1), Q(t � 2) 180 5-8-1 0.88 0.73 0.059 0.070
Zones 2, 8 I(t), Q(t), Q(t � 1), Q(t � 2) 150 5-12-1 0.91 0.63 0.051 0.083
Zones 5, 8 I(t), Q(t), Q(t � 1), Q(t � 2) 110 5-14-1 0.91 0.75 0.050 0.067
Zones 2, 5, 8 I(t), Q(t), Q(t � 1), Q(t � 2) 180 6-15-1 0.93 0.80 0.047 0.060

a Output is Q(t + 1) in all networks. The number of I(t) refers to the number of applied rainfall zones.
b The result has been presented for the best structure.
c The RMSE in all tables is dimensionless.

Table 3
Results of single-step-ahead SOM–FFNN model for 3B42RT satellite data.

Applied rainfall zones Input variablesa Epoch Network structureb DC RMSE

Calibration Verification Calibration Verification

Zone 5 I(t), Q(t), Q(t � 1), Q(t � 2) 170 4-7-1 0.87 0.60 0.060 0.200
Zone 8 I(t), Q(t), Q(t � 1), Q(t � 2) 180 4-8-1 0.88 0.66 0.059 0.079
Zones 5, 8 I(t), Q(t), Q(t � 1), Q(t � 2) 150 5-15-1 0.92 0.75 0.051 0.068

a Output is Q(t + 1) in all networks. The number of I(t) refers to the number of applied rainfall zones.
b The result has been presented for the best structure.
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to a week for rainfall data (e.g. I(t), I(t � 1), . . . , I(t � 7)) did not im-
prove model performance. However, the current day’s precipita-
tion (i.e. I(t)) had a significant effect on runoff prediction.
Therefore, the rainfall value for the current day was used in all
FFNNs. The outcome suggested that daily rainfall cannot be consid-
ered as a Markovian process, meaning that the next event depends
only on the current event and not on the sequence of events that
preceded it. This is in agreement with the outcomes of previous
studies (Nourani et al., 2009b), which found that the daily rainfall
process does not present a strong Markov chain.

6.3.2. Multi-step-ahead forecasting using SOM–FFNN
In order to explore runoff predictions several time steps ahead,

a multi-step-ahead FFNN approach was also applied to the selected
precipitation zones for each type of satellite data obtained from the
single-day-ahead SOM–FFNN model. Two methods can be used to
carry out multi-step-ahead forecasts. The first method relies on the
ability of the model to generate forecasts, where outputs of the
model are selected directly from the original data set. The second
method performs multi-step-ahead forecasting by using the ANN’s
Table 4
Results of multi-step-ahead FFNN model.

Data set Applied rainfall
zones

Input variables Output
variable

Epo

CMORPH 2, 5, 8 I(t), Q(t), Q(t � 2),
Q(t � 4)

Q(t + 2) 80

I(t), Q(t), Q(t � 3),
Q(t � 6)

Q(t + 3) 70

I(t), Q(t), Q(t � 4),
Q(t � 8)

Q(t + 4) 180

3B42RT 5, 8 I(t), Q(t), Q(t � 2),
Q(t � 4)

Q(t + 2) 120

I(t), Q(t), Q(t � 3),
Q(t � 6)

Q(t + 3) 90

I(t), Q(t), Q(t � 4),
Q(t � 8)

Q(t + 4) 150

a The result has been presented for the best structure.
own estimations as a source of information for further forecasts
(Vos and Rientjes, 2005). Both of these approaches led to similar
results in FFNN-based models up to 4-day-ahead forecasting in this
study, thus, the first method was selected because it is simpler to
use for two to 4-day-ahead (i.e. Q(t + 2), Q(t + 3), Q(t + 4)) forecasts
that were performed in our study. This is in agreement with the re-
sults of previous studies (e.g. Chang et al., 2007; Vos and Rientjes,
2005).

Precipitation data without any lag and runoff data with ante-
cedents were used as the input neurons. Lag sequences for the run-
off time series input were established based on the lead steps of
predictions by sensitivity analysis. Details of the input values and
predicted output values of daily data for each of the several-step-
ahead models are provided in Table 4.

6.4. Proposed SOM–WT–FFNN model

In addition to spatial patterns, some temporal features may also
exist in the rainfall–runoff process due to highly non-stationary
fluctuations of the time series. The wavelet transform can be used
ch Network
structurea

DC RMSE

Calibration Verification Calibration Verification

6-9-1 0.87 0.75 0.061 0.072

6-10-1 0.85 0.67 0.067 0.078

6-10-1 0.85 0.51 0.067 0.093

5-9-1 0.86 0.73 0.065 0.070

5-12-1 0.85 0.61 0.066 0.084

5-15-1 0.84 0.58 0.065 0.087
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as a temporal pre-processing technique for detection of temporal
features and seasonalities in the rainfall–runoff process by decom-
posing the time series into multi-resolution sub-series. As data are
processed at different temporal scales (levels), the large and small
features of a signal can be separated. For this purpose, the observed
runoff time series at the outlet was decomposed into one approx-
imation sub-signal, Qa(t) and i detailed sub-signals Qd1(t), . . . , Qdi(t)
where i denotes to the decomposition level. In this manner, each
sub-signal represents a different level of the seasonality
relationship.

Since runoff values are measured in discrete form, the dyadic
discrete wavelet transform was used rather than a continuous
wavelet. The Daubechies with four vanishing moments (db4,
Fig. 8d), as well as Haar mother wavelets as a step function (Mallat,
1998), were used to decompose the runoff time series into sub-
series at different levels, as their effects on rainfall–runoff model-
ing has already been investigated by one of the authors (Nourani
et al., 2009a, 2011).

The decomposed sub-series accompanied by the satellite rain-
fall data of the representative zones were then used in the FFNN
model in order to predict 1-day-ahead and multi-step ahead runoff
values. For instance, in decomposition level 4 there is one approx-
imation and 4 details, i.e. 21-day mode, 22-day mode, 23-day mode
(which is a nearly weekly mode), and 24-day mode (which is a
nearly 2-week mode) (Fig. 7).

6.4.1. One-step-ahead forecasting using SOM–WT–FFNN
The SOM–WT–FFNN method enabled the wavelet decomposed

levels that had the most influence on the conversion of rainfall into
runoff over the watershed to be determined and used for forecast-
ing. In the training step, rainfall data and decomposed runoff val-
ues from the calibration dataset at distinct wavelet levels were
entered into the FFNN as input neurons in order to forecast the
runoff 1 day-ahead. The trained model was then validated using
the verification dataset.

When multi-level wavelet decomposed sub-signals are entered
into the model as input neurons, the weights applied to them by
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the FFNN differ between the decomposition levels. In this case,
the inputs were the rainfall time series of representative zones (ob-
tained via SOM) and the runoff sub-signals at different resolutions
(obtained via WT), with each resolution demonstrating a specific
seasonality feature of the process. In this way, the most important
level of a signal receives a high weight compared to the other lev-
els, which reflects the dominant seasonality of the rainfall–runoff
process.

6.4.2. Multi-step-ahead forecasting using SOM-WT–FFNN
The multi-step-ahead forecasting approach (in this case two to

four days ahead forecasting) was also investigated in order to de-
velop and test the SOM–WT–FFNN approach in terms of its ability
to provide accurate rainfall–runoff forecasts with sufficient lead
times for watershed management and flood mitigation in the wa-
tershed. Detailed sub-signals of the runoff time series along with
the precipitation data were used in the SOM–WT–FFNN model to
forecast runoff 2–4-days-ahead.

6.5. Proposed ARIMAX model

ARIMAX is a classic time series-forecasting model, and therefore
was used as a comparison model to evaluate the efficiencies of the
proposed hybrid models. Although a linear model like ARIMAX is
likely not able to model a complex nonlinear hydrological process,
it is still a commonly used method in practice and as such is useful
as a comparison model. The ARIMAX (p, q, d) model was checked
using different values of p, d and q. Precipitation and antecedents
of runoff data were used as exogenous inputs to predict future run-
off as the output. As with the other models, the ARIMAX model was
first calibrated using the training data set, and the calibrated model
was then validated using the verification data set.

6.6. Evaluation of model precision

Three different criteria were used to measure the efficiency of
the proposed forecasting methods; the root mean square error
800 1000 1200 1400 1600 1800

Time (Day)

b-signals of runoff time series.



Fig. 8. The results of SOM–WT–FFNN model using 3B42RT data (a) Computed and observed runoff time series. (b) A detail. (c) Scatter plot of verification data. (d) db4 Mother
wavelet.

238 V. Nourani et al. / Journal of Hydrology 476 (2013) 228–243
(RMSE), the determination coefficient (DC) and the ratio of abso-
lute error of peak flow (RAEp(%)). The RMSE and DC are used to
demonstrate discrepancies between forecasts and observations.
The RAEp measures the closeness of observed and estimated runoff
peak values. They are calculated as (Nourani and Kalantari, 2010):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðbi � b̂iÞ2

n

s
ð16Þ

DC ¼ 1�
Pn

i¼1ðbi � b̂iÞ2Pn
i¼1ðbi � �biÞ2

ð17Þ

RAEpð%Þ ¼
100
M

XM

m¼1

jbm � b̂mj
Im

ð18Þ

In Eqs. (16) and (17), n is the data number, bi and b̂i are the observed
data and the calculated values, respectively, and �bi is the averaged
value of the observed data. In Eq. (18), M, bm and b̂m are the number
of peak values, observed and predicted peak values, respectively.
High values for DC and small values for RMSE indicate that the
model is highly efficient (for the best model, the values of DC and
RMSE would be one and zero, respectively). Legates and McCabe
(1999) indicated that a hydrological model can be sufficiently eval-
uated by DC and RMSE, but RAEp is also used in this study due to
the importance of peak and extreme values in hydrologic processes.

7. Results and discussion

The results of the proposed single and multi-step-ahead FFNN-
based models using satellite data were compared with the models
using rain gauge data. The FFNN results were also compared with
those of the conventional ARIMAX model.
7.1. Results of SOM clustering

The first step of the SOM clustering method for the CMORPH
dataset resulted in the zones being clustered into three distinct
groups. Zone 1 is in the same cluster as zones 2 and 3 due to the
small distance between their neurons. Zones 4, 5 and 6 are clus-
tered together, while zones 7, 8 and 9 are located in the third clus-
ter according to the weight distances. Three clusters were again
identified during the second step of the method for the CMORPH
dataset. The first cluster contained zones 1, 2 and 3, which were lo-
cated at approximately the same altitude near the outlet of the wa-
tershed. Zones 4, 5 and 6 that cover the central area of the
watershed were classified in the second cluster. Zones 7, 8 and 9,
covering the mountainous area, were situated in the third cluster.
Therefore, the second step of the clustering method reconfirmed
the classification of the zones that was obtained from the first step.

The clustering results of the CMORPH satellite data are consis-
tent with the physical characteristics of the watershed, meaning
that the precipitation zones are spatially divided according to the
topography of the watershed. Therefore, by sampling one repre-
sentative zone from each cluster, it was possible to remove highly
correlated, redundant zones from that cluster. In this way, three
zones were selected from the original nine. Zones 2, 5 and 8 were
selected from clusters 1, 2 and 3, respectively, by means of the
Euclidean distance criterion to represent the rainfall pattern over
the whole watershed using CMORPH satellite rainfall data.

Similarly, the most important zones were extracted from the
3B42RT satellite data using the proposed 2-step SOM method. A
2-by-2 Kohonen layer was obtained from trial–error, in which
the first cluster contained zones 2, 3, 5, 6 and 9. Zones 7 and 8 were
classified in the second cluster, and zones 1 and 4 were dissimilar
to all others and hence were classified in two separate clusters. For
the second step of SOM, a one-dimensional 1-by-2 Kohonen layer
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was selected to capture more organized clusters. This revealed two
clusters, the first containing only zone 8, with the second including
the other eight zones. From the second cluster, zone 5 was identi-
fied as the central zone using the Euclidean distance criterion.
Therefore, zones 5 and 8 were considered as representative of
the rainfall pattern over the watershed using the 3B42RT satellite
data.

Although used SOM in both steps are independent, processing
of data by passing through the first SOM (Eq. (14)) leads the data
to be stationary prior to input to the second SOM. This pre-process-
ing can help the second SOM to be trained quickly. On the other
hand, the result of the first step (2D SOM) could be used to deter-
mine the number of clusters (neurons) in the second SOM without
any need to the trial–error process in the second step. Therefore,
the results of steps could reconfirm the outcome.

This clustering technique, which identified the homogeneous
zones of each satellite dataset, can be considered as an input
screening procedure that encompasses some advantages. The
examination of 511 input combinations for FFNN was decreased
to seven cases for the CMORPH dataset, and to three cases for
the 3B42RT satellite dataset. From the spatial pre-processing point
of view, the selection of dominant zones led to suitable coverage of
precipitation patterns over the watershed. Furthermore, the SOM
process has the potential to increase the accuracy of the rainfall–
runoff model, as only dominant or important inputs are used in
the FFNN.
7.2. Results of the SOM–FFNN models

The results of the SOM–FFNN forecasting models indicated that
almost all of the models produced acceptable outcomes, and con-
firmed the appropriate identification of the representative rainfall
zones and the precipitation patterns over the watershed. The
SOM–FFNNs with CMORPH rainfall data from zones 2, 5 and 8
and 3B42RT data from zones 5 and 8 with outlet runoff values
(highlighted in Tables 2 and 3) yielded better performances in
terms of DC and RMSE.

Among the SOM–FFNN models, the important structures were
derived from the combinations of dominant precipitation zones
(Tables 2 and 3). For the CMORPH satellite dataset the effective
combination of precipitation data is from three zones, whereas
for the 3B42RT satellite data it is from two zones. Although the in-
puts for the two data sources differ, the SOM–FFNN models per-
form almost equally in terms of the efficiency criteria (Tables 2
and 3). The presence of one redundant precipitation zone when
using the CMORPH dataset leads to the model results being rela-
tively similar to those from the 3B42RT dataset for which only
two precipitation zones were used.

In comparing the suitability of two satellite datasets for the
SOM–FFNN model, it is sensible to choose the dataset that per-
forms equally well but requires fewer input neurons. Therefore,
in this study the 1-day-ahead FFNN model using 3B42RT satellite
data is preferable to the model that uses the CMORPH data. It is
anticipated that future hydrological forecasting in the Gilgel Abay
watershed using 3B42RT satellite data will provide effective, infor-
mative, and rapid forecasts with minimum time and cost.

Precipitation zones for the SOM–FFNN inputs were spatially se-
lected in an attempt to produce a more efficient rainfall–runoff
model. There are physical concepts that explain the selection of
the zones in the center of the watershed (zones 2, 5 and 8) by
the SOM approach, in addition to the non-linear patterns that re-
late rainfall to runoff. These zones cover a large area of the wa-
tershed and a wide altitudinal range, and therefore use of their
precipitation data leads to the rainfall–runoff process being appro-
priately modeled (Fig. 3).
The Markovian property of the runoff was more perceptible by
determination of current day along with one and two days lag of
runoff data (Q(t), Q(t � 1), Q(t � 2)) to predict the 1 day ahead dis-
charge (Q(t + 1)). Hence, the combination of runoff antecedents and
rainfall data produced an appropriate rainfall–runoff pattern.
Moreover, transforming rainfall into runoff using 1 and 2-day lags
for the discharge values as inputs is appropriate for the size of the
watershed.

The results of the FFNNs that use individual precipitation zones
in the input layer (Tables 2 and 3) indicated that including rainfall
data from downstream zones 2 and 5 led to more efficient models
than including data from upstream zone 8. This may be because
zone 5 covers a large area of the watershed and because zone 2
is adjacent to its outlet. Thus, the amount of precipitation over
such areas has the greatest influence on runoff generation.

Forecasting accuracy decreased when the forecasting lead time
was increased (up to 4 days ahead) for the SOM–FFNN model (Ta-
ble 4). Comparison of the results of single-step-ahead forecasting
(Tables 2 and 3) with the results of multi-step-ahead models (Table
4) reveals that the SOM–FFNN model is capable of making one-
step-ahead forecasts with reasonable accuracy, but that multi-
step-ahead predictions are not as accurate. This may be related
to the small size of the catchment, resulting in a lag-time that is
less than a day. As a result of this, multi-step-ahead predictions
with a lead time of longer than a day yield poor results by increas-
ing the steps of forecasting for this watershed.

7.3. Results of SOM–WT–FFNN models

Determination of dominant sub-signals increases forecasting
capability by employing the synchronic effects of non-linear corre-
lation between the detailed sub-signals and the main time series.
Hence, it is important to select the input components, such as
wavelet sub-signals, for the FFNN model by taking account of the
hydrologic characteristics of the process. Models with inputs
including detail signals at level 3 obtained via decomposition using
the db4 mother wavelet performed well in terms of the efficiency
criteria (i.e. DC and RMSE) (Tables 5 and 6). In both modeling pro-
cedures relevant to the CMORPH and 3B42RT datasets, the appro-
priate structures of the SOM–WT–FFNNs were selected following
the results of DC and RMSE in the calibration and verification
phases. When the decomposition level was increased from three
levels, the accuracy of the models decreased. This is because high
decomposition levels introduce a large number of parameters with
complex nonlinear relationships into the FFNN. The errors for each
parameter magnify the total error of the network, and thus the
FFNN efficiency diminishes. Although this effect is not perceptible
when moving from levels 3 to 4 in the calibration phase, it is
apparent in the results of the verification phase and the examina-
tion of higher levels in the sensitivity analysis. Level 4 was identi-
fied as the level at which accuracy starts to decrease (Tables 5 and
6). The selection of the decomposition level is directly related to
the data length in which the periodicity and seasonal cycle of the
hydrologic time series are apparent (Fig. 8a–c). According to Tables
5 and 6, for 1-day-ahead SOM–WT–FFNN, the best model in the
validation phase had a DC of 0.93 and 0.91 for CMORPH and
3B42RT satellite data, respectively.

The db4 mother wavelet provided comparatively better out-
comes than Haar wavelet in terms of efficiency criteria (Tables 5
and 6). The better performance of the db4 wavelet may be due to
its form (Fig. 8d), which is similar to the runoff signal fluctuations.
The sudden onset and cessation of rainfall over the watershed pro-
duced several spikes in the runoff time series. As the db4 wavelet
has similar signal properties, it was likely able to capture the runoff
signal features well, particularly the peak values, and therefore
performed better (Fig. 8). In future studies, it is strongly recom-



Table 5
Results of single-step-ahead SOM–WT–FFNN model for CMORPH satellite data.

Decomposition level Mother wavelet Epoch Network structurea DC RMSE

Calibration Verification Calibration Verification

2 Haar 180 6-10-1 0.96 0.89 0.036 0.048
3 Haar 170 7-15-1 0.97 0.82 0.028 0.058
4 Haar 80 8-15-1 0.97 0.78 0.028 0.065
2 db4 130 6-10-1 0.96 0.88 0.036 0.047
3 db4 120 7-15-1 0.98 0.93 0.023 0.035
4 db4 160 8-15-1 0.98 0.80 0.023 0.061

Note: Input variables are I(t) of zones 2, 5, 8 and Qa(t), Qdi(t); Q(t + 1) is output.
a The result has been presented for the best structure.

Table 6
Results of single-step-ahead SOM–WT–FFNN model for 3B42RT satellite data.

Decomposition level Mother wavelet Epoch Network structurea DC RMSE
Calibration Verification Calibration Verification

2 Haar 140 5-10-1 0.94 0.89 0.039 0.045
3 Haar 110 6-13-1 0.96 0.88 0.033 0.046
4 Haar 200 7-17-1 0.98 0.80 0.027 0.060
2 db4 150 5-7-1 0.95 0.90 0.038 0.042
3 db4 80 6-15-1 0.97 0.91 0.030 0.041
4 db4 170 7-16-1 0.98 0.88 0.027 0.047

Note: Input variables are I(t) of zones 5, 8 and Qa(t), Qdi(t); Q(t + 1) is output.
a The result has been presented for the best structure.

Table 7
Results of multi-step-ahead SOM–WT–FFNN model.

Data set Input variablesa Output variables Epoch Network structureb DC RMSE

Calibration Verification Calibration Verification

CMORPH I(t), Qi(t) Q(t + 2) 180 7-10-1 0.94 0.81 0.042 0.060
I(t), Qi(t) Q(t + 3) 190 7-9-1 0.93 0.86 0.045 0.050
I(t), Qi(t) Q(t + 4) 170 7-9-1 0.91 0.79 0.055 0.059

3B42RT I(t), Qi(t) Q(t + 2) 140 6-11-1 0.94 0.86 0.043 0.051
I(t), Qi(t) Q(t + 3) 200 6-8-1 0.92 0.88 0.049 0.046
I(t), Qi(t) Q(t + 4) 100 6-12-1 0.91 0.79 0.058 0.061

a I(t), refers to zones 2, 5, 8 in CMORPH data set, and zones 5, 8 in 3B42RT data set. Qi(t) refers to decomposed runoff at level 3: Qa(t), Qd1(t), Qd2(t), Qd3(t).
b The result has been presented for the best structure.

Table 8
Results of ARIMAX model with lead-time of 1-day.

Rainfall
data
source

ARIMAX
structure

DC RMSE

Calibration Verification Calibration Verification

CMORPH satellite (1, 0, 1) 0.85 0.47
0.0061 0.0085
3B42RT satellite (1, 2, 1) 0.83 0.77
0.0060 0.0056
Gundi

gauge
(2, 1, 2) 0.85 0.63 0.0061 0.0012
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mended that the mother wavelet be selected by taking into ac-
count the nature and formation of the hydrologic signal, as was
done in this study.

As was the case for the multi-step-ahead predictions in the
SOM–FFNN, the accuracy of the SOM–WT–FFNN model also de-
creased compared to the single-step-ahead model, but the accu-
racy did not decrease as the number of prediction steps
increased (Table 7). The 2-day-ahead model produced the best re-
sults compared to the 1- and 3-day-ahead forecasts (using wavelet
decomposition level three). This might be because the effect of the
decomposed levels up to three levels (23-day mode) coincides with
the 2-day sliding window at the 2-day lead-time forecast.

Although the results of the multi-step-ahead forecasts for the
SOM–WT–FFNN model were weak in comparison to single-step-
ahead forecasts, the evaluation criteria for the multi-step-ahead
SOM–WT–FFNN model were better than the multi-step-ahead
SOM–FFNN model. Overall, the 1-day-ahead forecasts of both the
SOM–FFNN and SOM–WT–FFNN rainfall–runoff models provided
reasonably accurate forecasting results.
7.4. Results of ARIMAX model

Among the various single-step-ahead ARIMAX forecasting mod-
els that were developed using datasets of satellites and rain
gauges, the models with the best forecasting performance are
shown in Table 8. The lower accuracy of the conventional ARIMAX
forecasting model compared to the FFNN-based models can be
attributed to the linearity of ARIMAX and its shortcomings in mod-
eling nonlinear rainfall–runoff process. For example, the results for
the CMORPH satellite data during the verification stage revealed
that there is an approximately 50% decrease in the DC for the ARI-
MAX model in comparison with the best single-step-ahead FFNN-
based model.
8. Discussion

In order to provide a comprehensive comparison of the various
rainfall–runoff models in the watershed, the results of the single-



Table 9
Results and structures of daily SOM–FFNN model using rain gauge data.

Rain gauge Input variablesa Epoch Network structure DC RMSE

Calibration Verification Calibration Verification

Dang I(t), Q(t), Q(t � 1), Q(t � 2) 150 3-9-1 0.88 0.74 0.061 0.069
Gundi I(t), Q(t), Q(t � 1), Q(t � 2) 150 3-10-1 0.89 0.82 0.058 0.059
Kidmij I(t), Q(t), Q(t � 1), Q(t � 2) 120 3-10-1 0.88 0.78 0.061 0.064
Wete I(t), Q(t), Q(t � 1), Q(t � 2) 140 3-10-1 0.87 0.82 0.062 0.058
Gundi-Wete I(t), Q(t), Q(t � 1), Q(t � 2) 60 4-10-1 0.89 0.71 0.059 0.074
Dang-Wete I(t), Q(t), Q(t � 1), Q(t � 2) 140 4-9-1 0.88 0.75 0.059 0.069
All stations I(t), Q(t), Q(t � 1), Q(t � 2) 140 6-10-1 0.90 0.79 0.055 0.062
Average I(t), Q(t), Q(t � 1), Q(t � 2) 70 3-9-1 0.88 0.82 0.061 0.058

Note: I(t) at gauge(s) Q(t + 1) is output.
a The result has been presented for the best structure.

Table 10
Comparison of the results for models with the lead-time of 1-day.

Rainfall data set Model Structure DC RAEp (%)

Calibration Verification Calibration Verification

CMORPH satellite SOM-FFNN 6-15-1 0.93 0.80 12.73 28.92
SOM–WT–FNN 7-15-1 0.98 0.93 6.46 18.33
ARIMAX (1, 0, 1) 0.85 0.47 23.04 41.74

3B42RT satellite SOM–FFNN 5-15-1 0.92 0.75 15.87 28.71
SOM–WT–FFNN 6-15-1 0.97 0.91 7.56 21.06
ARIMAX (1, 2, 1) 0.83 0.77 24.92 26.57

Gundi gauge SOM-FFNN 4-10-1 0.89 0.82 18.84 26.02
SOM–WT–FFNN 5-7-1 0.95 0.90 9.31 17.48
ARIMAX (2, 1, 2) 0.85 0.63 24.16 32.15
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step-ahead FFNN models obtained using the data of rainfall gauges
are gathered in Table 9, where the highlighted row shows the dom-
inant gauge that was selected for comparison purpose with the sa-
tellite data.

The results of the best hybrid models for single-step-ahead
forecasting (Table 10) indicate that use of SOM as a spatial pre-
processor provides some advantages, due to the selection of dom-
inant precipitation zones over the watershed, which reduces the
trial–error process. The SOM–FFNN results in terms of the effi-
ciency criteria are not as strong compared to the results of the
SOM–WT–FFNN model that uses both spatial and temporal pre-
processing methods. Therefore, the SOM–WT–FFNN model, which
makes use of both SOM and wavelet techniques to capture the
space and/or time variations involved in the process, is an appro-
priate and promising rainfall–runoff forecasting method.

In the SOM–FFNN model, which uses only spatially pre-pro-
cessed data, only the short-term autoregressive features of the pro-
cess (Q(t), Q(t � 1), Q( t � 2)) were considered, without the long
term seasonalities being taken into account. This weakness was ad-
dressed by incorporating the wavelet concept into the SOM–WT–
FFNN model. In this case, RAEp values decreased by 30–50% be-
cause the extreme values of previous seasonal periodicity were
used in the model training step (Table 10). The simultaneous appli-
cation of spatial clustering and temporal pre-processing allows
both the spatial distribution of the rainfall data and the multi-scale
seasonality signature of the runoff to be taken into account. The
comparison of results obtained by the satellite-based and gauge-
based modeling confirms that the satellite data offers appropriate
accuracy in the simulation of the rainfall–runoff process in the wa-
tershed. Thus, in watersheds where ground-based hydro-meteoro-
logical observations are sparse (such as in some developing
countries like Ethiopia), satellite data provide relatively reliable
data for rainfall–runoff modeling. For this purpose, estimated pre-
cipitation based on meteorological satellite radiances sensed by
microwave (on-board low-orbiting satellites) and infrared (on-
board geostationary satellites) sensors can be useful (Lábó, 2012).
In this study, it was found that single-step-ahead forecasts are
accurate and multi-step-ahead predictions in spite of less accuracy
than single-step-ahead approach can provide useful horizon of
forecasts. Such results suggest that a weak link may exist between
input and output data of multi-step-ahead models. However, the
comparative evaluation of single and multi-step-ahead forecasts
from the SOM–FFNN and SOM–WT–FFNN models demonstrated
that use of the wavelet transform could produce forecasts that
are more accurate. This could be because the wavelet transform ex-
tracts the periods and seasonalities that are important in rainfall–
runoff modeling. The FFNN weighs the important periods of the
signal, which may decrease the effects of redundant information
that is not important in the conversion of rainfall to runoff. This
can be interpreted as a noise reduction property of the wavelet
transform.

Finally, the two FFNN-based (SOM–FFNN and SOM–WT–FFNN)
and ARIMAX models were compared. The results indicate the supe-
riority of FFNN-based models to ARIMAX type models due to the
inherent ability of FFNNs to forecast nonlinear processes. The
SOM–FFNN model, which simulates the process only based on spa-
tial pre-processed data and uses the window input values of the
previous time steps, performs much better than the ARIMAX mod-
el. This demonstrates the existence and importance of non-linear-
ity and non-stationarity in the rainfall–runoff process.
9. Conclusion

Data pre-processing via SOM and wavelet transforms was
shown to be useful in improving FFNN based rainfall–runoff fore-
casting models, and warrant further exploration. It should be noted
that in general, and in the Gilgel Abay watershed in particular,
rainfall and runoff time series are characterized by non-linearity,
non-stationarity and seasonality. FFNN models may be unable to
cope with these features without pre-processing of the input or/
and output data.



242 V. Nourani et al. / Journal of Hydrology 476 (2013) 228–243
In this study, the SOM, FFNN, and wavelet transform concepts
were combined for the first time to develop hybrid black box mod-
els for multivariate daily and multi-step ahead rainfall–runoff fore-
casting using two satellite rainfall datasets, as well as runoff data.
First, an un-supervised ANN technique (i.e. SOM) was used to
determine the dominant zones of each satellite data set among
all zones, which best represent the rainfall pattern over the wa-
tershed. The selection of dominant zones reduced time and labor
in modeling, as the dimensionality of the original dataset was re-
duced as well as the number of trial–error process required to opti-
mize the model. Furthermore, the positions of the selected zones
were compatible with the topological characteristics of the wa-
tershed. Following spatial pre-processing, the FFNN rainfall–runoff
model was constructed to find the non-linear relationship between
the selected precipitation data and runoff. Multi-time-step fore-
casts were carried out in addition to single-step-ahead forecasts
of runoff. The performance of the multi-step-ahead FFNN-based
models decreased for steps greater than 1 day ahead.

In order to improve model efficiency and consider seasonality
effects, the wavelet transform, which can capture the multi-scale
features of a signal, was used to decompose the runoff time series
into different sub-signals or levels. The sub-signals were then used
as inputs to the FFNN model to predict the runoff discharge. The
hybrid SOM–WT–FFNN model resulted in an improvement in
rainfall–runoff modeling compared to the model that only
incorporated spatial pre-processing (i.e. SOM–FFNN). Finally, the
SOM–FFNN, SOM–WT–FFNN and conventional ARIMAX models
were compared. Results indicate that FFNN based models are more
suitable than the linear ARIMAX model, which cannot cope with
the non-linear characteristics of the rainfall–runoff process.

Overall, the results of this study provide promising evidence for
combining spatial and temporal data pre-processing methods, and
more specifically the SOM and WT methods, to forecast runoff val-
ues using the FFNN method. In order to build on the current study,
it is recommended in the future that the proposed SOM–WT–FFNN
method is used to forecast runoff by adding other hydrological
time series and variables, such as temperature and/or evapotrans-
piration, to the input layer of the model. Moreover, due to the
uncertainty of the rainfall process and the ability of the Fuzzy con-
cept to handle uncertainties, the conjunction of the ANN and fuzzy
inference system (FIS) models as an adaptive neural-fuzzy infer-
ence system (ANFIS) model, could provide useful results. It would
also be useful to apply the proposed methodology on other heter-
ogeneous watersheds in order to investigate the overall effect of
watershed climatic conditions on the performance of SOM–WT–
FFNN model.

Acknowledgement

This study was partially funded by an NSERC Discovery Grant
held by Jan Adamowski.

References

Adamowski, J., 2008a. Development of a short-term river flood forecasting method
for snowmelt driven floods based on wavelet and cross-wavelet analysis. J.
Hydrol. 353, 247–266.

Adamowski, J., 2008b. River flow forecasting using wavelet and cross-wavelet
transform models. Hydrol. Process. 22, 4877–4891.

Adamowski, J., Chan, H.F., 2011. A wavelet neural network conjunction model for
groundwater level forecasting. J. Hydrol. 407, 28–40.

Adamowski, J., Chan, H.F., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A., 2012.
Comparison of multiple linear and nonlinear regression, autoregressive
integrated moving average, artificial neural network, and wavelet artificial
neural network methods for urban water demand forecasting in Montreal,
Canada. Water Resources Res. 48, W01528. http://dx.doi.org/10.1029/
2010WR009945.

Addison, P.S., Murrary, K.B., Watson, J.N., 2001. Wavelet transform analysis of open
channel wake flows. J. Eng. Mech. 127 (1), 58–70.
Akhtar, M.K., Corzo, G.A., Van Andel, S.J., Jonoski, A., 2009. River flow forecasting
with artificial neural networks using satellite observed precipitation pre-
processed with flow length and travel time information: case study of the
Ganges River basin. Hydrol. Earth Syst. Sci. 13, 1607–1618.

Anctil, F., Tape, G.D., 2004. An exploration of artificial neural network rainfall runoff
forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 3, 121–
128.

Antar, M.A., Elassiouti, I., Alam, M.N., 2006. Rainfall–runoff modeling using artificial
neural networks technique: a Blue Nile catchment case study. Hydrol. Process.
20 (5), 1201–1216.

Artan, G., Gadain, H., Smith, J.L., Asante, K., Bandaragoda, C.J., Verdin, J.P., 2007.
Adequacy of satellite derived rainfall data for stream flow modeling. Nat.
Hazards. 43, 167–185.

ASCE task committee on application of Artificial Neural Networks in hydrology,
2000. Artificial neural networks in hydrology 2: hydrologic applications. J.
Hydrol. Eng. 5 (2), 124–137.

Aussem, A., Campbell, J., Murtagh, F., 1998. Wavelet-based feature extraction and
decomposition strategies for financial forecasting. J. Comput. Intell. Finance 6
(2), 5–12.

Bitew, M.M., Gebremichael, M., 2011. Evaluation of satellite rainfall products
through hydrologic simulation in a fully distributed hydrologic model. Water
Resources Res. 47, W06526. http://dx.doi.org/10.1029/2010WR009917.

Bowden, G.J., Dandy, G.C., Maier, H.R., 2005. Input determination for neural network
models in water resources applications. Part 1 – Background and methodology.
J. Hydrol. 301, 75–92.

Box, G.E.P., Jenkins, G., 1976. Time Series Analysis: Forecasting and Control, second
ed. Holden-Day, San Francisco.

Cai, S., Toral, H., Qiu, J., Archer, J.S., 1994. Neural network based objective flow
regime identification in air–water two phase flow. Can. J. Chem. Eng. 72, 440–
445.

Chang, F.J., Chang, Y.M., Chang, L.C., 2007. Multi-step-ahead neural networks for
flood forecasting. Hydrol. Sci. J. 52 (1), 114–130.

Cleaveland, M.K., Stahle, D.W., 1989. Tree ring analysis of surplus and deficit runoff
in the White River, Arkansas. Water Resources Res. 25 (6), 1391–1401.

Dawson, C.W., Wilby, R., 1998. An artificial neural network approach to rainfall–
runoff modeling. J. Hydrol. 43, 47–66.

Foufoula-Georgiou, E., Kumar, P., 1995. Wavelet in Geophysics, first ed. Academic
Press, New York.

Furundzic, D., 1998. Application of neural networks for time series analysis:
rainfall–runoff modelling. Signal Process. 64, 383–396.

Graumlich, L.J., 1987. Precipitation variation in the Pacific Northwest (1675–1975)
as reconstructed from tree rings. Ann. Assoc. Am. Geogr. 77 (1), 19–29.

Grimes, D.I.F., Coppola, E., Verdecchia, M., Visconti, G., 2003. A neural network
approach to real-time rainfall estimation for Africa using satellite data. J.
Hydrometeorol. 4, 1119–1133.

Grossmann, A., Morlet, J., 1984. Decomposition of Hardy function into square
integrable wavelets of constant shape. J. Math. Anal. 5, 723–736.

Hagan, M.T., Menhaj, M.B., 1994. Training feed-forward networks with the
Marquardt algorithm. IEEE Trans. Neural. Netw. 5 (6), 989–993.

Hansen, J.V., Nelson, R.D., 1997. Neural networks and traditional time series
methods: a synergistic combination in state economic forecasts. IEEE Trans.
Neural. Netw. 8 (4), 863–873.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed-forward networks are
universal approximators. Neural Networks 2 (5), 359–366.

Hsu, K., Li, S., 2010. Clustering spatial–temporal precipitation data using wavelet
transform and self-organizing map neural network. Adv. Water Resources 33,
190–200.

Hsu, K., Gupta, H.V., Sorooshian, S., 1995. Artificial neural network modeling of
rainfall runoff process. Water Resources Res. 31, 2517–2530.

Hsu, K., Gupta, H.V., Gao, X., Sorooshian, S., Imam, B., 2002. Self-organizing linear
output map (SOLO): an artificial neural network suitable for hydrologic
modeling and analysis. Water Resources Res. 38 (12), 1–38.

Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y.,
Stocker, E.F., Wolff, D.B., 2007. The TRMM multi-satellite precipitation analysis
(TMPA): quasi-global, multilayer, combined-sensor, precipitation estimates at
fine scale. J. Hydrometeorol. 8, 38–55.

Jain, A., Sudheer, K.P., Srinivasulu, S., 2004. Identification of physical processes
inherent in artificial neural network rainfall–runoff models. Hydrol. Process. 18,
571–581.

Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., 2004. CMORPH: a method that produces
global precipitation estimation from passive microwave and infrared data at
high spatial and temporal resolution. J. Hydrometeorol. 5, 487–503.

Kalteh, A.M., Hjorth, P., Berndtsson, R., 2008. Review of self-organizing map (SOM)
in water resources: analysis, modeling, and application. Environ. Model. Softw.
23, 835–845.

Kohonen, T., 1997. Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg.
Kohonen, T., 1998. The self-organizing map. Neurocomputing 21, 1–6.
Labat, D., 2005. Recent advances in wavelet analyses: Part 1 – A review of concepts.

J. Hydrol. 314, 275–288.
Labat, D., Ababou, R., Mangin, A., 2000. Rainfall–runoff relation for karstic spring.

Part 2: Continuous wavelet and discrete orthogonal multi resolution analyses. J.
Hydrol. 238, 149–178.

Lábó, E., 2012. Validation studies of precipitation estimates from different satellite
sensors over Hungary – analysis of new satellite-derived rain rate products for
hydrological purposes. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol.2012.
08.031 (Published online)

http://dx.doi.org/10.1029/2010WR009945
http://dx.doi.org/10.1029/2010WR009945
http://dx.doi.org/10.1029/2010WR009917
http://dx.doi.org/10.1016/j.jhydrol.2012.08.031
http://dx.doi.org/10.1016/j.jhydrol.2012.08.031


V. Nourani et al. / Journal of Hydrology 476 (2013) 228–243 243
Lallahem, S., Maina, J., 2003. A nonlinear rainfall–runoff model using neural
network technique: example in fractured porous media. Math. Comput. Modell.
37, 1047–1061.

Legates, D.R., McCabe Jr., G.J., 1999. Evaluating the use of ‘‘goodness-of-fit’’
measures in hydrologic and hydro-climatic model validation. Water
Resources Res. 35 (1), 233–241.

Lin, G.F., Wu, M.C., 2007. A SOM-based approach to estimate design hyetographs of
un-gauged sites. J. Hydrol. 339, 216–226.

Lin, G.F., Wu, M.C., 2011. An RBF network with a two-step learning algorithm for
developing a reservoir inflow forecasting model. J. Hydrol. 405, 439–450.

Liu, Y., Weisberg, R.H., 2011. A review of self-organizing map applications in
meteorology and oceanography. In: Mwasiagi, J.I. (Ed.), Self-Organizing Map-
Applications and Novel Algorithm Design. InTech, Rijeka, Croatia.

Mallat, S.G., 1998. A Wavelet Tour of Signal Processing, second ed. Academic Press,
San Diego.

Mirbagheri, S.A., Nourani, V., Rajaee, T., Alikhani, A., 2010. Neuro-Fuzzy models
employing wavelet analysis for suspended sediment concentration prediction
in rivers. Hydrol. Sci. J. 55 (7), 1175–1189.

Nourani, V., Kalantari, O., 2010. Integrated artificial neural network for
spatiotemporal modeling of rainfall–runoff–sediment processes. Environ. Eng.
Sci. 27 (5), 411–422.

Nourani, V., Mano, A., 2007. Semi-distributed flood runoff model at the sub-
continental scale for southwestern Iran. Hydrol. Process. 21, 3173–3180.

Nourani, V., Komasi, M., Mano, A., 2009a. A multivariate ANN–wavelet approach for
rainfall–runoff modeling. Water Resources Manage. 23, 2877–2894.

Nourani, V., Alami, M.T., Aminfar, M.H., 2009b. A combined neural–wavelet model
for prediction of Lighvanchai watershed precipitation. Eng. Appl. Artif. Intell. 16,
1–12.

Nourani, V., Kisi, Ö., Komasi, M., 2011. Two hybrid artificial intelligence approaches
for modeling rainfall–runoff process. J. Hydrol. 402, 41–59.

Nourani, V., Hosseini Baghanam, A., Daneshvar, F., Alami, M.T., 2012a. Classification
of groundwater level data using SOM to develop ANN-based forecasting model.
Int. J. Soft Comput. Eng. 2 (1), 464–469.

Nourani, V., Kalantari, O., Hosseini Baghanam, A., 2012b. Two semi-distributed
ANN-based models for estimation of suspended sediment load. J. Hydrol. Eng..
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000587 (Published on-line).

Pankratz, A., 1991. Forecasting with Dynamic Regression Models. John Wiley &
Sons, Inc., New York.

Partal, T., Cigizoglu, H.K., 2008. Estimation and forecasting of daily suspended
sediment data using wavelet–neural networks. J. Hydrol. 358 (3–4), 317–331.

Partal, T., Kisi, O., 2007. Wavelet and neuro-fuzzy conjunction model for
precipitation forecasting. J. Hydrol. 342, 199–212.
Petty, G.W., 1995. The status of satellite-based rainfall estimation over land. Remote
Sens. Environ. 51, 125–137.

Pulido-Calvo, I., Portela, M.M., 2007. Application of neural approaches to one-step
daily flow forecasting in Portuguese watersheds. J. Hydrol. 332, 1–15.

Sajikumara, N., Thandaveswara, B.S., 1999. A non-linear rainfall–runoff model using
an artificial neural network. J. Hydrol. 216, 32–55.

Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L., 1980. Applied Modeling of
Hydrological Time Series, first ed. Water Resources Publications, Littleton.

Sawunyama, T., Hunghes, DA., 2010. Using satellite-based rainfall data to support
the implementation of environmental water requirements in South Africa.
Water SA 136 (4), 379–385.

Senthil Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal, P.K., 2004. Rainfall–runoff
modeling using artificial neural network: comparison of networks types.
Hydrol. Process. 19 (6), 1277–1291.

Shrestha, M.S., Artan, G.A., Bajracharya, S.R., Sharma, R.R., 2008. Using satellite-
based rainfall estimates for stream flow modeling: Bagmati Basin. J. Flood Risk
Manage. 1, 89–99.

Sudheer, K.P., Gosain, A.K., Ramasastri, K.S., 2000. A data-driven algorithm for
constructing artificial neural network rainfall–runoff models. Hydrol. Process.
16 (6), 1325–1330.

Tankersley, C., Graham, W., Hatfield, K., 1993. Comparison of univariate and transfer
function models of groundwater fluctuations. Water Resources Res. 29 (10),
3517–3533.

Tokar, A.S., Johnson, P.A., 1999. Rainfall–runoff modeling using artificial neural
networks. J. Hydrol. Eng. 4, 232–239.

Toth, E., 2009. Classification of hydro-meteorological conditions and multiple
artificial neural networks for stream flow forecasting. Hydrol. Earth Syst. Sci. 13,
1555–1566.

Vos, N.J., Rientjes, T.H.M., 2005. Constraints of artificial neural networks for rainfall–
runoff modelling: trade-offs in hydrological state representation and model
evaluation. Hydrol. Earth Syst. Sci. 9, 111–126.

Wang, W., Ding, S., 2003. Wavelet network model and its application to the
predication of hydrology. Nat. Sci. 1 (1), 67–71.

Yonaba, H., Anctil, F., Fortin, V., 2010. Comparing sigmoid transfer functions for
neural network multistep ahead stream flow forecasting. J. Hydrol. Eng. 15 (4),
275–283.

Zhang, G.P., 2003. Time series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing 50, 159–175.

Zhang, Q., Wang, B.D., He, B., Peng, Y., Ren, M.L., 2011. Singular spectrum analysis
and ARIMA hybrid model for annual runoff forecasting. Water Resources
Manage. 25, 2683–2703.

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000587

	Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling
	1 Introduction
	2 Forecasting models
	2.1 Feed forward neural network (FFNN)
	2.2 Auto regressive integrated moving average with exogenous input (ARIMAX)

	3 Wavelet transform
	4 Self-organizing map (SOM)
	5 Study region and data
	5.1 Study region
	5.2 Rain gauges and runoff data
	5.3 High resolution satellite rainfall products

	6 Methodology
	6.1 Data normalization
	6.2 SOM clustering
	6.3 Proposed SOM–FFNN model
	6.3.1 One-step-ahead forecasting using SOM–FFNN
	6.3.2 Multi-step-ahead forecasting using SOM–FFNN

	6.4 Proposed SOM–WT–FFNN model
	6.4.1 One-step-ahead forecasting using SOM–WT–FFNN
	6.4.2 Multi-step-ahead forecasting using SOM-WT–FFNN

	6.5 Proposed ARIMAX model
	6.6 Evaluation of model precision

	7 Results and discussion
	7.1 Results of SOM clustering
	7.2 Results of the SOM–FFNN models
	7.3 Results of SOM–WT–FFNN models
	7.4 Results of ARIMAX model

	8 Discussion
	9 Conclusion
	Acknowledgement
	References


