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Abstract: The gravity-driven free surface flow problems for which both the solid and free surface boundaries are highly
curved are very difficult to solve. A computational scheme using a variable domain and a fixed domain natural element
method (NEM) is developed in the present study for the computation of the free surface profile, velocity and pressure distri-
butions, and the flow rate of a 2D gravity fluid flow through a conduit and under a radial gate. The problem involves two
highly curved unknown free surfaces and arbitrary curved-shaped boundaries. These features make the problem more com-
plicated than flow under a sluice gate or over a weir. The fluid is assumed to be inviscid and incompressible and the results
obtained are confirmed by conducting a hydraulic model test. The results are in agreement with other flow solutions for free
surface profiles and pressure distributions.
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Résumé : Les problèmes d’écoulement gravitaire en surface libre où les limites imposées par les parois solides et la surface
libre sont très courbes sont très difficiles à résoudre. Un modèle informatique utilisant une méthode d’éléments naturels à
domaine variable et à domaine fixe est développée dans la présente étude afin de calculer le profil de la surface libre, les
distributions de vitesse et de pression ainsi que le débit d’un écoulement gravitaire bidimensionnel d’un fluide dans un
conduit et sous une vanne à segment. Le problème implique deux surfaces libres inconnues très courbées et des limites
courbes arbitraires. Ces caractéristiques rendent le problème plus compliqué que celui de l’écoulement sous une vanne regis-
tre ou par-dessus un déversoir. Il est présumé que le fluide est incompressible et non visqueux; les résultats obtenus sont
confirmés par un essai utilisant un modèle hydraulique. Les résultats concordent avec les autres solutions d’écoulement pour
les profiles à surface libre et les distributions de pression.

Mots‐clés : écoulement en surface libre, interpolation du voisin naturel, méthodes numériques, écluses hydrauliques.

[Traduit par la Rédaction]

Introduction

Various types of hydraulic structures are commonly used
in rivers and channels as control structures. Examples of
these control structures include spillways, weirs, and various
types of gates. The fluid loads on such structures and the free
surface profiles of the flow have to be determined for design
purposes. This is a difficult task because the determination of
the free surface location as a part of the solution involves the
solution of an intrinsically nonlinear problem. Neither the lo-
cation of the free surface nor the magnitude of the flow dis-
charge is known a priori and to date, no exact solutions have
been proposed. Using analytical methods such as conformal
mapping for solving the problem are limited in number due
to the necessity to establish certain mapping relations and
the difficulty in satisfying the nonlinear boundary condition
of constant pressure along the free surface. Moreover, the

nonlinear nature of the problem dictates a numerical solution
procedure at the end of such analysis (Larock 1970; Petrila
2002).
Among the many numerical methods, the finite element

method (FEM) (Ikegawa and Washizu 1973; Chan et al.
1973; Bettess and Bettess 1983; Abdel-Malek et al. 1989;
Sankaranarayanan and Rao 1996; Daneshmand et al. 2000)
and the boundary-element method (Cheng et al. 1981) have
gained popularity. Most of these methods have been success-
fully applied to the cases of flows over spillways or under
sluice gates with only one free surface and a simple geome-
try. Regarding the difficulty associated with remeshing in
FEM, the past decade has seen a tremendous surge in the de-
velopment of a family of Galerkin and collocation based nu-
merical methods known as meshless methods (Belytschko et
al. 1994; Liu et al. 1995; Daneshmand and Niroomandi
2007). The natural element method (NEM) is a Galerkin
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based method that is built upon Voronoi diagrams and Delau-
nay tessellations (Sukumar et al. 2001). This interpolation
scheme has several very useful properties, such as its strictly
interpolating character, its ability to exactly interpolate piece-
wise linear boundary conditions, and a well-defined and ro-
bust approximation with no user-defined parameter on non-
uniform grids. Yvonnet et al. (2004) provided a detailed re-
view on natural neighbour interpolation and its drawbacks in
non-convex domains. González et al. (2007) presented a nat-
ural neighbour Galerkin method in conjunction with a-shapes
for the numerical simulation of free-surface dynamics of
flows within an updated Lagrangian treatment. Recently, Da-
neshmand et al. (2010) presented a numerical procedure
based on natural element discretization that treats the fluid
flow through a sluice gate with a free surface.
Despite some progress in solving gravity driven free sur-

face flows with various numerical methods, solving the prob-
lem with two highly curved free surfaces via the use of NEM
has not been investigated. Fluid flows that are driven by
gravity and in which the solid and free surface boundaries
are highly curved are considerably more complicated. Such
situations occur, for instance, in the case of flow under a ra-
dial gate placed at the end of a conduit. In this case, a large
extent of the free water jet downstream of the gate has to be
considered in determining the pressure distribution along the
gate. In addition to these characteristics, the free jet flow has
two unknown free surfaces to be determined and is therefore
more difficult to manage. Our aim is to present a numerical
procedure based on natural element discretization that treats
the fluid flow through a gate with two highly curved free sur-
faces and arbitrary shaped boundaries. The novel features of
the present study are that (1) it involves two free surfaces and
(2) the free surfaces are relatively long and have a more
curved shape than the flow under a sluice gate or over a
spillway. In the present study, lower and upper free surface
profiles, velocity and pressure distributions, and flow rate
per unit width Q are calculated for a known Bernoulli con-
stant, B, using the natural element method. Results for pres-
sure distribution are compared with measured values
obtained by conducting a hydraulic model test.

Problem formulation and discretization

Flows under radial gates can be considered as rapidly con-
verging flows in which the influence of fluid viscosity is quite
small in comparison with interial effects, and consequently, in
almost all studies of problems of this type, we can assume
that the flow is irrotational. A typical two-dimensional steady
flow from a reservoir, through an arbitrary shaped conduit
and under a radial gate in the pattern of a free jet is shown in
Fig. 1. Geometry of the conduit walls S2 and S7 are given and
the far upstream and downstream boundaries of the flow do-
main, denoted by S1 and S4 are assumed to be normal and
perpendicular to the flow direction, respectively. The boun-
dary S6 is the surface of the radial gate and can be considered
as a fixed solid boundary. The lower and upper free surface
profiles S3 and S5 are not known a priori. Either, the flow dis-
charge per unit width of conduit is given and the stagnation
level and flow field are sought, or the stagnation level is
given and the corresponding rate of flow per unit width of
channel is to be determined. In the present study, the flow
rate Q is assumed to be unknown and the stagnation level is
given as HE, which is the stagnant fluid level above point A.
For convenience, the origin of the coordinate system is lo-
cated as shown in Fig. 1. The horizontal and vertical coordi-
nates are denoted by x and y, respectively.
For the two-dimensional potential flow, the flow velocities

vx and vy is defined in terms of a stream function (j)

½1� vx ¼ j;y vy ¼ �j;x

and the flow is governed by the Laplace equation,

½2� j;xx þ j;yy ¼ 0 onU

where j is the stream function, U is the flow domain
bounded by the aforementioned boundaries, and comma de-
notes differentiation. The numerical solution of partial differ-
ential eq. [2] requires some form of spatial discretization.
Basically, there are two different types of specification for
the flow field, Lagrangian and Eulerian. We can think of the
Lagrangian mesh as being drawn on the body. The mesh de-

Fig. 1. Fluid flow through a conduit and under the radial gate.
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forms with the body and both the nodes and the material
points change position as the body deforms. However, the
position of the material points relative to the nodes remains
fixed. On the other hand, the Eulerian mesh is a background
mesh. The body flows through the mesh as it deforms. The
nodes remain fixed and the material points move through the
mesh. The position of a material point relative to the nodes
varies with the motion. The natural element method which is
based on the Lagrangian approach is used in the present
study. As the first step in the numerical solution, the problem
domain is divided into elements with a suitable interpolation
model assumed for j(e) as

½3� jðeÞðx; yÞ ¼
Xm
i¼1

4iðx; yÞjðeÞ
i

where 4i(x, y) is the natural element interpolation function as
given in the next section and m is the number of neighbor-
hoods of point (x, y).
The boundary conditions of the problem are

½4� j ¼ 0 on S2 and S3

½5� j ¼ Q on S5; S6 and S7

½6� j;n ¼ �
ffiffiffiffiffiffiffi
2gz

p
on S3 and S5

½7� j;n ¼ 0 on S1 and S4

It should be noted that for the purposes of the numerical
solution, outflow streams are cut at right angles to the pri-
mary velocity. Boundary condition eq. [7] is applied on this
part, which means that there is no velocity normal to the
main flow. Here, n is the outward normal to the boundary, z
is the distance of the free surface from the datum line of the

stagnation level, and g is the gravitational acceleration. The
problem is to find the corresponding upper and lower free
surface profile, together with the velocity field, in particular
the pressure distribution on the gate by solving eq. [2] sub-
ject to the boundary conditions eqs. [4]–[7], given either the
total head HE or the flow rate Q. In the present study, HE is
given and Q is found as part of the solution.

Voronoi diagrams and Delaunay tessellations

Classical definitions for Voronoi diagrams and Delaunay
tessellations as used in NEM can be found in Yvonnet et al.
(2004) and González et al. (2007). The first-order Voronoi
diagram of the set N = {n1, n2, …, nM} is a sub-division of
the space into regions TI, such that any point in TI is closer to
nI than to any other node of the set. The region TI is the Vor-
onoi cell of nI and is defined as

½8� TI ¼ fx 2 R2 : dðx; xIÞ < dðx; xJÞ 8J 6¼ Ig
where d(xI, xJ) is the Euclidean distance between xI and xJ.
The Delaunay tessellation is constructed by connecting nodes
whose Voronoi cells have common boundaries (Fig. 2a). An
important property of Delaunay triangles is that the circumcir-
cle of any Delaunay triangle of the nodal set N contains no
other nodes of N. Introduction of a point X into the problem
domain U, the Voronoi cells for the point X and its natural
neighbours are shown in Fig. 2b (Cueto et al. 2003). In this
section, Sibson and non-Sibsonian (Laplace) interpolation
schemes (Sukumar et al. 1998; Sukumar and Moran 1999;
Cueto et al. 2003) are reviewed, although only Sibson inter-
polation will be used in the examples included in this paper.
For the Sibson shape functions the natural neighbour coor-

dinates of x are defined as the ratio of the area of overlap of
their Voronoi cells to the total area of the Voronoi cell of x
(Fig. 2a),

Fig. 2. Definition of the natural neighbour coordinates in NEM: (a) original Voronoi diagram and (b) first-order and second-order Voronoi
cells about x (modified from Cueto et al. 2003).
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½9� FIðxÞ ¼ AIðxÞ
AðxÞ

The first derivatives of the shape functions are

½10� FI;jðxÞ ¼ AI;jðxÞ �FIðxÞA;jðxÞ
AðxÞ ðj ¼ 1; 2Þ

In two dimensions, the non-Sibsonian shape function FI(x)
takes the form

½11� FIðxÞ ¼ aIðxÞXn
J¼1

aJðxÞ
aJðxÞ ¼ sJðxÞ

hJðxÞ

where sI(x) is the length of the Voronoi edge associated with
node I and hI(x) is the perpendicular distance between the
Voronoi edge of node I to x (Fig. 3). The derivative of the
non-Sibsonian shape function is obtained by differentiating
eq. [11] as

½12� FI;jðxÞ ¼ aI;jðxÞ �FIðxÞa;jðxÞX
J

aJðxÞ
ðj ¼ 1; 2Þ

Multiplying the governing eq. [2] by 4i selected according
to the Galerkin approach, we get

½13�
ZZ
UðeÞ

4i

�
jðeÞ
;xx þ jðeÞ

;yy

�
dU ¼

ZZ
UðeÞ

4i

�
4i;xj

ðeÞ
;x þ 4i;yj

ðeÞ
;y

�
dU�

Z
G ðeÞ

4i

�
jðeÞ
;x nx þ jðeÞ

;y ny

�
dG ¼ 0

where U(e) and G(e) denote the domain and boundary of ele-
ment (e), respectively. Using the integration by-parts and
boundary conditions given in eqs. [4] to [7] and the proce-
dure given in Daneshmand et al. (2010), the discretized
form of eq. [13] leads to the following system of equations
in matrix form:

½14� Kj ¼ P

where K is the total system matrix for the problem, j is the
vector including the unknown nodal values of the stream
function, and P is the total load vector. It should be noted
that the system matrices K and P are obtained by assembling
the following element matrices:

½15� KðeÞ ¼
ZZ
A

BTBdA B ¼
41;x 42;x ::: 4m;x

41;y 42;y ::: 4m;y

" #

½16� PðeÞ ¼ �
Z
G

V0N
TdG NT ¼ 41 42 . . . 4m

h i

where A and G are the area and boundary of an element,
respectively.

Iteration for the free surfaces

The constant pressure condition on the upper and lower
free surfaces requires

½17� 1

2g

@j

@n

� �2

þ y ¼ B

where y is the free surface elevation, g is the gravity accelera-
tion, and B is the Bernoulli constant. When the Bernoulli
constant, B, is known, the problem is first solved by assum-
ing the location of the free surfaces and applying the bound-
ary conditions, eqs. [4]–[7]. The solution yields different
values of the stream function at each of the free surface
nodes. If the stream function is constant for all points on the
free surfaces, the problem is solved; otherwise, an iteration
scheme must be used to adjust the free surface elevation.
The calculated value of the stream function jk at the start
point of the free surface is considered as a good estimation
for Qk+1 to perform the free surface adjustment in the next
iteration. The x and y-components of the velocity for free sur-
face nodes are calculated by using equation eq. [1]. By satis-
fying the zero normal velocity condition on the free surfaces,
the free surface correction can be achieved by using the fol-
lowing relations (Fig. 4) (Daneshmand et al. 2000):

Fig. 3. Construction of non-Sibsonian interpolants (modified from
Sukumar et al. 2001).

Fig. 4. Node adjustment.
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½18�
Dy� ¼ bDx

6
ða1 þ a2 þ a3Þ whenDy > 0

Dy� ¼ Dx

6b
ða1 þ a2 þ a3Þ whenDy < 0

8>><
>>:

where b is the correction factor for the free surface and a1,
a2, and a3 are the slopes of the velocities at three successive
nodes on the free surface and can easily be obtained by using
their x and y-velocity components.
Although it is theoretically possible to assume the location

of both the lower and the upper free surfaces, test calcula-
tions of this kind have proven to be time consuming with
convergence problems. Instead, an alternating iterative proce-
dure is used in this study. The lower and upper free surfaces
are approximated in the first iteration. Then the lower free
surface location is kept fixed while the upper free surface is
allowed to vary. The same procedure is repeated until both
the lower and the upper free surfaces converge with a speci-
fied accuracy. According to this procedure, the computer im-
plementation of the present numerical procedure includes the
following steps:
Step 1. As shown in Fig. 5, the initial problem domain is

divided into fixed and variable domains. In the fixed domain,
all nodes are active whereas node activation depends on the
node positions in the variable domain.
Step 2. The initial trial upper and lower free surface pro-

files are assumed.
Step 3. The lower free surface profile is assumed to be

fixed. Dirichlet and Neumann boundary conditions are ap-
plied to the nodes on the lower and upper free surface pro-
files, respectively. Moreover, the number of neighborhoods
for any point of a triangular element in FEM is three whereas
the number of neighborhoods in NEM can be greater than
three. For three typical points of a triangular element as
a(x1, y1), b(x2 ,y2), and c(x3, y3), matrix B is evaluated by us-
ing eq. [15] as

½19� B ¼ 1

2AðeÞ
y2 � y3 y3 � y1 y1 � y2

x3 � x2 x1 � x3 x2 � x1

" #

where A(e) is the element area. It is necessary to use a suita-
ble algorithm for finding the shape functions and their deri-
vatives for evaluating matrix B.
Step 4. The problem is solved using the proposed method

and the values of the stream function (j) for all nodes are
calculated as a function of the assumed upper free surface
profile. The flow rate Qkþ1

upper can then be calculated and the
upper free surface is corrected by eq. [18]. The iteration
process is continued until the maximum value of the conver-
gence criterion defined as jQkþ1 � jk

i j=Qkþ1 is less than a
prescribed accuracy 3 (for upper free surface).
Step 5. The upper free surface profile is assumed to be

fixed and Dirichlet and Neumann boundary conditions are
applied to the nodes on the upper and lower free surfaces, re-
spectively.
Step 6. The problem is solved and the value of discharge

(j) is calculated for all nodes as a function of the assumed
lower free surface profile. The flow rate Qkþ1

lower can be calcu-
lated and the lower surface is corrected according to eq. [18].
The iteration process is continued until the maximum value
of the convergence criterion defined as jQkþ1 � jk

i j=Qkþ1 is
less than a prescribed accuracy 3 (for lower free surface).
Step 7. The above steps (3 to 6) are repeated until a pre-

Fig. 5. Active and inactive nodes in fixed and variable domain.

Table 1. Karun-III dam specifications (example 1).

Type of dam Arch concrete dam
Height (from the river bed) 205 m
Length 462 m
Base width 29.5 m
Spillway capacity 15 000 m3/s
Reservoir capacity 2 970 000 000 m3

Surface area 48 km2

Daneshmand et al. 647
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scribed error criterion is satisfied on the differences in coor-
dinates of all free surface nodes between successive itera-
tions; that is

½20� jyri � yr�1
i j � d for i ¼ 1; . . . ;Ns

where yri and yr�1
i are y-coordinates of node i on the free sur-

face at iterations r and r–1, respectively; Ns is the number of
free surface nodes; and d is the prescribed accuracy for nodes
positions.

Results
The numerical procedure described above was applied to

flow under radial gates in two different cases. For both exam-
ples, the results of the present study were compared with
those obtained from a hydraulic model test.

Example 1 — Karun-III dam
The Karun-III dam is a hydroelectric dam on the Karun

River in the province of Khuzestan, Iran. It was built to help
meet energy demands as well as to provide flood control.
The Karun has the highest discharge of Iran's rivers. The
dam is a concrete double arch type dam, 205 m above the
foundation and 185 m above the river bed. Its foundation
width is 29.5 m (Table 1). The geometry and specifications
of the orifice radial gate of Karun-III dam are also given in
Fig. 6 and Table 2. To ensure the validity of the results ob-
tained for this example, a hydraulic model test based on the
Froude law of similarity was also constructed (Sadid-Tadbir
Company 1997). The hydraulic pressures were measured by
pressure transducers with a rate of 200 samples per second.
A simple weir, located at the conduit downstream from the
liner, was used to measure the amount of water discharged.

A combination of a fixed and variable domain natural ele-
ment method as proposed in this study was used in this ex-
ample. The matrix corresponding to the elements in the
fixed domain was calculated only once whereas the stiffness
matrix related to the elements in the variable region (free sur-
face region) should be calculated in successive iterations
while an adjustment of the free surface is made. The pre-
scribed accuracy is defined by 3. To solve the problem by
the natural element method, 591 nodes and 952 elements are
used in the first iteration. In this example, the convergence
was obtained after three iterations with 6–15 nested iterations
on each free surface for 3 = 0.005. The computed discharge
is Q = 0.502 m3·s–1·m–1, which is in agreement with the
value obtained from the experiment Q = 0.485 m3·s–1·m–1.
The pressure distribution in the liner, obtained from the natu-
ral element procedure is shown in Fig. 7 and is compared
with those obtained from the hydraulic model test. Figure 8
gives the pressure distribution on the radial gate obtained
from the numerical and experimental analysis. The shapes of
upper and lower free surfaces are also plotted in Fig. 9.

Example 2 — Shahryar Dam
The construction of the Shahryar Dam and the power-

house plant will be carried out with a 700 million m3 ca-
pacity reservoir and the ability to regulate 1100 million m3

of water by itself and 3218 million m3 of water along with
the Sefidrood Dam (located 34 km from the town of Mianeh
and across the Qhzlozan River in the eastern Azerbaijan
province of Iran). The Shahryar Dam is a double curvature
concrete arch dam with a height of 135 m. The dam specifi-
cations are given in Table 3.
The bottom outlet of the dam is equipped with a mainte-

nance intake gate, an emergency gate, and a radial service

Table 2. Technical specifications of Karun-III (example 1).

R1 = 1.680 m R2 = 2.000 m R3 = 0.800 m Rg = 0.480 m
L1 = 0.640 m L2 = 0.977 m Lt = 1.8084 m HE = 3.480 m
41 = 25° 42 = 38.5° 43 = 18.066° a = 16
D1 = 0.640 m D2 = 0.320 m b = 4

Fig. 6. Geometry of the orifice radial gate of Karun-III.
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gate (Table 4). The maintenance gate is used for maintenance
work of downstream equipment and is operated under the bal-
anced pressure condition attained by means of a by-pass valve
in the gate leaf. The service gate of the outlet is a radial gate.
The definition sketch and technical specifications of the radial
service gate are given in Fig. 10 and Table 5, respectively.
The value of head loss was calculated using the procedure

given in Roberson and Clayton (1997) for the entrance loss
(loss coefficient = 0.03) and Brno Technical University
(1994) for the outlet loss due to sudden contraction, respec-
tively. To ensure the validity of the results obtained in this ex-

ample, a hydraulic model test (scale 1:15) based on Froude’s
law of similarity was also constructed (Shiraz University
2007). The hydraulic model test included the entire passage of
water both upstream and downstream of the gate. The hy-

Table 3. Shahryar Dam specifications (example 2).

Parameter Value (description)
Type Double-arch concrete dam
Height (from the river bed) 135 m
Crest elevation 1045 m.a.s.l.
Bottom outlet sill elevation 1004 m.a.s.l.
Total storage (at normal water level) 700 MCM
Normal water level 1035 m.a.s.l.
Maximum water level 1041 m.a.s.l.

Note: m.a.s.l. is metres above sea level.

Table 4. Specifications of the bottom outlet gates (example 2).

Radial gate
Type Radial gate
Discharge at normal water level 250 m3/s
Radius 5.2 m
Width 3.8 m
Opening 3 × 4 m (w × h)
Maneuvering speed 0.3 m/min
Sealing type Rubber seal

Maintenance gate
Type Fixed wheel gate
Dimensions 3.85 × 6.2 m (w × h)
Corrosion 2 mm
Bed elevation 1005.75 m

Emergency gate
Type Roller gate
Discharge at normal water level 250 m3/s
Dimensions (gate/opening) 3.0 × 4.2 m (w × h)
Maneuvering speed 0.3 m/min
Sealing type double stem rubber seal

Fig. 8. Pressure distribution on the radial gate (example 1).

Fig. 7. Pressure distribution on conduit walls (example 1).

Table 5. Technical specification for radial gate (example 2).

Parameter Value Parameter Value
a 1.15 i 0.167
b 0.08 h 2.5
c 0.44 R1 1
d 0.71 R2 1.33
e 0.55 Rg 0.347
f 1.5 q 10°
g 2.4 b 163°

Table 6. Dependence of the algorithm to the initialization
step (example 2).

Lower free surface profile (Fig. 13) Number of iterations
1 105
2 93
3 81
4 70
5 53
6 46
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Fig. 10. Bottom-outlet radial service gate of Shahryar Dam (example 2).

Fig. 9. The shapes of the upper and lower free surfaces (example 2).

Fig. 11. Test stand for hydraulic model test (example 2).
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Fig. 12. Locations of pressure measuring points (example 2).

Fig. 13. Free surface profile for radial gate opening 30% (example 2).

Table 7. Comparison between numerical and experimental results (example 2).

Mano. No. x (m) y (m) p (mH2O) model test p (mH2O) NEM Error (%) j (m3/s) NEM v (m/s) NEM
1 1.4481 0.2643 2.2033 2.1658 1.7 0.2123 0.8461
2 1.4400 0.5250 1.9060 1.8835 1.2 0.4492 1.0678
3 1.0280 0.4332 2.0033 1.9665 1.9 0.4473 1.1462
4 0.7870 0.0364 2.3660 2.3506 0.7 0.0017 1.2500
5 0.7875 0.2107 2.2080 2.1778 1.4 0.2179 1.2388
6 0.4875 0.1752 2.2147 2.2016 0.6 0.2144 1.3282
7 0.4875 0.3401 2.0593 2.0404 0.9 0.4286 1.3008
8 0.1675 0.0697 2.2513 2.1930 2.7 0.1447 1.9986
9 0.1675 0.1397 2.1620 2.1805 0.8 0.2648 1.6905

10 0.1675 0.2093 2.1373 2.1725 1.6 0.3548 1.2840
11 0.2146 0.0250 2.3420 2.2757 2.9 0.0447 1.8039
12 0.2159 0.1430 2.2293 2.2053 1.1 0.2397 1.5224
13 0.2146 0.2620 2.1013 2.1355 1.6 0.3899 1.1633
14 0.1675 0.0360 2.2973 2.2051 4.2 0.0762 2.0995
15 0.1675 0.1058 2.1880 2.1862 0.1 0.2094 1.8464
16 0.1675 0.1750 2.1473 2.1805 1.5 0.3130 1.4687
17 0.1211 0.1390 2.2173 2.1369 3.8 0.3046 1.9220
18 0.1211 0.2570 2.1893 2.1769 0.6 0.4236 0.7998
19 0.1125 0.2768 2.1740 2.1711 0.1 0.4385 0.5938
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draulic model was constructed using plexiglass material to se-
cure good flow visualization. For better visualization of the
free surface profile, the downstream wall of the model was
meshed by squares 5 cm × 5 cm. The test stand included three
centrifugal pumps, as well as main water storage and relevant
channels to complete the closed loop circuit (Fig. 11).
For measuring pressure, manometers were installed at dif-

ferent points in the channel and a skin plate was positioned
on the gate. The locations of pressure measuring points are
shown in Fig. 12. The unit of measured pressure is mH2O.
Water discharge was also measured by using the area–veloc-
ity flow meter (Greyline AVFM-II). Its ultrasonic sensor was
installed at the bottom of the downstream channel. Based on
the speed of sound in the water, the level was measured with
an accuracy of ±0.25%. Flow velocity was also measured
with an ultrasonic Doppler signal. The instrument measures
velocity with an accuracy of ±0.2%.
The radial gate is considered to be in a 30% opening posi-

tion and the natural element method with 855 nodes and 1328
elements (in the first iteration) was used to solve the problem.
The discretization was made finer in the vicinity of the gate to
take care of the higher velocity gradients in that region. In
this example, the convergence was obtained on the free sur-
face profiles with a prescribed accuracy 3 = 0.001. Two val-
ues for the correction factor for lower and upper free surfaces
are used in the calculations as bL = 1.20 and bU = 1.5, re-
spectively. The computed discharge Q is 0.421 m3·m–1·s–1,
which is in good agreement with the value obtained from the
experiment (Q = 0.399 m3·m–1·s–1). The pressure values are
given in Table 6 and compared with the pressure values meas-
ured in the hydraulic model test. The shape of the free surfa-

ces obtained from NEM is presented in Fig. 13. To study the
dependence of the proposed algorithm to the initialization
step, we re-analyzed the problem with different lower free sur-
face trials when keeping the upper free surface fixed. As
shown in Table 6 and Fig. 13, the algorithm converged for
all cases with reasonable accuracy (3 = 0.005) and the num-
ber of iterations decreased when the initial lower free surface
profile changed from 1 to 6, as expected. As can be seen from
Table 6, the pressure obtained from NEM is in agreement
with that obtained from the model test. It should also be noted
from Table 7 that the maximum error in pressure values is
2.9%. Figures 14 and 15 show the j and velocity contours,
respectively.

Conclusions
Hydraulic structures are used to regulate the flow of water

through canals and analysis of flows with free surfaces under
hydraulic gates has received a good deal of attention in the
field of hydraulic engineering. Our aim in this paper was to
present a numerical procedure based on the natural element
method to treat the fluid flow through a radial gate with two
free surfaces. We implemented the most notable aspects of
the natural element method with emphasis on the recent ad-
vances achieved by the authors in its application to hydraulic
structures. The natural neighbour interpolation scheme was
used for construction of test and trial functions whereas the
governing equations for the fluid domain of the problem
were written in terms of stream function. Two practical ex-
amples were solved and the results were compared with those
obtained from hydraulic model tests to validate the accuracy
and convergence of the proposed method. The results were in

Fig. 14. j contour for radial gate opening 30% (example 2).

Fig. 15. Velocity contour for radial gate opening 30% (example 2).
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excellent agreement with the experiment. In spite of the non-
linear nature of the present problem, a rapid rate of conver-
gence was observed even with an initial guess that differs
significantly from the actual solution. Comparing the results
of the proposed numerical method with those obtained from
the hydraulic model test confirms that the method is suffi-
ciently accurate for practical purposes and can be used with
confidence in calculating the hydraulic parameters needed in
the design of hydraulic structures.
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List of symbols

A area
b opening value (m)
B Bernoulli constant
B derivative of interpolation matrix
C1 Dirichlet boundary condition
C2 Neumann boundary condition
C(e) element boundary

d1,d2 conduit height at inbound and outbound section (m)
g acceleration due to gravity (g = 9.806 m/s2)

K(e) element system matrix
K total system matrix
m number of neighborhoods of any point
n unit normal from the free surface
p Pressure (mH2O)
P total load vector

P(e) element load vector
Q the flow rate or discharge per unit width (m3·s–1·m–1)
y the free surface elevation measured from an arbitrary

datum (m)
Dy* correction in y-direction (m)

a1,a2,a3 slopes of the velocities at three successive free surface
nodes

b correction factor for the free surface
3 prescribed accuracy
G boundary of an element
4 interpolation function
j the stream function (m3·s–1·m–1)
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