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Abstract Forecasting urban water demand can be of use in the management of water
utilities. For example, activities such as water-budgeting, operation and maintenance
of pumps, wells, reservoirs, and mains require quantitative estimations of water
resources at specified future dates. In this study, we tackle the problem of forecasting
urban water demand by means of back-propagation artificial neural networks (ANNs)
coupled with wavelet-denoising. In addition, non-coupled ANN and Linear Multiple
Regression were used as comparison models. We considered the case of the munic-
ipality of Syracuse, Italy; for this purpose, we used a 7 year-long time series of water
demand without additional predictors. Six forecasting horizons were considered, from
1 to 6 months ahead. The main objective was to implement a forecasting model that
may be readily used for municipal water budgeting. An additional objective was to
explore the impact of wavelet-denoising on ANN generalization. For this purpose, we
measured the impact of five different wavelet filter-banks (namely, Haar and
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Daubechies of type db2, db3, db4, and db5) on a single neural network. Empirical
results show that neural networks coupled with Haar and Daubechies’ filter-banks of
type db2 and db3 outperformed all of the following: non-coupled ANN, Multiple
Linear Regression and ANN models coupled with Daubechies filters of type db4 and
db5. The results of this study suggest that reduced variance in the training-set (by
means of denoising) may improve forecasting accuracy; on the other hand, an
oversimplification of the input-matrix may deteriorate forecasting accuracy and induce
network instability.

Keywords Artificial neural networks . Wavelets . Denoising . Forecasting . Water demand

1 Introduction

Short-term urban water forecasting can be of use for the efficient operation and maintenance
of pumps, wells, reservoirs and mains, whereas medium and long term forecasting may be
required for infrastructure investments and regional policy making (Herrera et al. 2010). In
this context, modeling and scenario-building becomes critical, especially when conditions
experienced in the past are not expected to repeat themselves in the future. This may be the
case with fast demographic growth, climate changes and over-pumping from aquifers, which
are likely to impact not only the amount but also the quality and the patterns of future water
supply and demand (Issar and Zohar 2009; Oron et al. 1999).

According to Jain and Ormsbee (2002), perhaps the most frequently used forecasting
models for water demand are based on linear regression and time series analysis. In the
1980s, Maidment and Miaou (1986) used Box and Jenkins models to forecast daily
municipal water use as a function of rainfall and air temperature in nine US cities, and
Smith (1988) included day-of-week effects among the predictors and randomly varying
means as a regression method. An et al. (1996) revisited rough set methodologies describing
the relationships between water factors and water consumption. On the other hand, in the
field of deterministic prediction, important research has been conducted in developing
models of water budgeting according to different foundations such as classical hydrology
(Grubbs 1994) and environmental isotopes (Adar et al. 1988).

Since the introduction of the back propagation algorithm by Rumelhart et al.
(1986), Artificial Neural Networks (ANNs) have been used in a large variety of
forecasting applications. This method has been frequently used because it can tackle
problems where the underlying relationships in the time series are complex or
unknown, but there is enough data (i.e. observations) to train a network (Zhang et
al. 1998). A number of ANN configurations have been used for hydrological fore-
casting with good results. In this respect, Jain and Ormsbee (2002), Bougadis et al.
(2005), Adamowski (2008), Adamowski and Karapataki (2010), Güldal and Tongal
(2010) and Shirsath and Singh (2010) used ANNs to forecast various aspects of water
resources demand. In all these instances, it was concluded that ANN-based methods
provide better results than conventional autoregressive methods. Zhang et al. (1998),
in a state-of-the-art survey, observed that although some contradicting reports exist in
the literature, ANN is a useful method for non-linear modeling while autoregressive
approaches may be more suitable for linear relationships in the data.

When comparing ANNs to newer methods mixed results were found. Msiza et al.
(2007) compared ANNs to support vector machines (SVM) for urban water demand,
concluding that ANNs were more precise; on the other hand, Herrera et al. (2010)
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used ANN, SVM, projection pursuit regression and multivariate adaptive regression
splines, and found that SVMs were more precise for urban water demand forecasting.

With regards to spectral analysis of time series, the discovery of wavelet functions has
shed new light onto the analysis of non-stationary and/or noisy phenomena (Rioul and
Vetterli 1991). In geophysics it is not uncommon to find time series that include a trend in
the mean, non-constant variance, and discontinuities as well as background noise (Jowitt and
Xu 1992). Foufoula-Georgiou and Kumar (1994) described the basic properties that make
wavelet analysis a powerful tool for geophysical applications. It was noted that the multi-
resolution approach may be useful for the analysis of multi-scale features, detection of
singularities, analysis of transient phenomena, non-stationary series, and fractal processes.

With specific attention to hydrology, Labat (2005) noted that the application of wavelets
may lead to several improvements in the analysis of global hydrological fluctuations and
their mutual time varying relationships. It was also suggested that wavelets should be used
more systematically, notably in hydrology as a preferable alternative to classical Fourier
analysis. For example, Chou (2011) used wavelet-denoising instead of Fourier thresholding
in order to eliminate the effect of high-tide low-tide variations at gauge level from the
relation between rainfall and run-off. Adamowski et al. (2009) developed a wavelet-aided
technique for trend detection in monthly streamflow and water resource forecasting and
Labat (2008) used wavelets for multi-scale analysis of the world’s largest river discharges.

In recent years, several authors noted that coupling wavelet transforms with ANNs
could provide highly accurate hydrological forecasts. Partal and Cigizoglu (2008) used
wavelets in conjunction with ANNs for the forecasting of evapotranspiration; Zhou et
al. (2007) and Kisi (2008, 2009) used wavelet-decomposition in order to improve
ANN forecasting of river stream-flow; Wang et al. (2009) analyzed time series by
means of wavelet-transforms in order to forecast “xunly” mean discharge of the Three
Gorges Dam (where “xun” is the Chinese term indicating a 10-day period);
Adamowski and Sun (2010) used coupled wavelet-neural network models in flow
forecasting; Adamowski and Chan (2011) used wavelets and ANN for the forecasting
of ground-water levels; and Adamowski et al. (2012) used wavelets and neural net-
works to forecast urban water demand for the city of Montreal, Canada. These studies
found that coupled wavelet-neural network models generally provided more accurate
forecasts than other models (such as ARIMA, ANN, MLR, etc.). With specific regard
to denoising methods based on wavelets, Nourani et al. (2009) and Cannas et al.
(2006) both explored the multi-scaling property of wavelets for maximization of ANN
forecasting accuracy (in the context of flow forecasting). Empirical results show that
networks trained with pre-processed data performed better than networks trained on
un-decomposed, noisy raw signals.

In this study, we tackle the problem of forecasting urban water demand by means of
back-propagation artificial neural networks coupled with wavelet-denoising. In addition,
non-coupled ANN and Linear Multiple Regression methods were used as comparison
models. We considered the case of the municipality of Syracuse, Italy. For this purpose,
we used a 7 year-long time series of monthly urban water demand; no additional
predictors such as demographic, economic or environmental variables were used.
ANN tuning is fully described in a step by step procedure. Six forecasting horizons,
from 1 to 6 months ahead, were considered. The main objective of the study was to
calibrate a forecasting model for operational applications (i.e. monthly water budgeting
for the municipality of Syracuse, Italy). Moreover, we measured the impact of different
filter-banks (namely, Haar and Daubechies of type db2, db3, db4, and db5) on a single
back-propagation multi layered neural network for the prediction of monthly water
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demand. Thus, an additional objective was to explore the impact of different wavelets
on ANN generalization.

2 Data

The dataset is a time series consisting of 84 measurements (from January 2002 to December
2008) of monthly water consumption of the municipality of Syracuse, Italy (Fig. 1a). It
cumulates monthly water flow measured at the outlet of several urban water tanks. Syracuse
is located in the South-East coast of Sicily at 37°5’0” North and 15°17’0” East, according to
the World Geodetic System 84. The Mediterranean climate is characterized by mild, wet
winters and warm to hot, dry summers (Koppen climate classification: Csa). The time series
in Fig. 1a shows seasonal oscillation around the mean; it reaches a local maximum
approximately every 12 months during the summer and a local minimum during the winter.
The mean of the year-maximum values is 1.92 million m3/month, the mean of the year-
minimum is 1.60 million m3/month. The mean monthly water consumption is 1.78 million
m3/month with a standard deviation of 0.086 million m3/month. Mean and standard devia-
tion are not constant; a decreasing trend is also detectable. The samples come from an
underlying sinusoidal model and they have a high degree of autocorrelation at 6 and 12
lagged observations (Fig. 1c). The Lilliefors test (Conover 1980) rejects the null hypothesis
at the 5 % significance level that the sample in our time series comes from a distribution in
the normal family (against the alternative that it does not come from a normal distribution).
Thus, the distribution is not likely to be normally distributed (Fig. 1b).

Fig. 1 Monthly water demand of the municipality of Syracuse, Italy. In (a) 84 measurements in blue; the
central dotted line (in green) represents the overall mean; the external dotted lines (in violet) represent the
control limits, one standard deviation above and below the mean; the continuous line (red) represents the trend
line. In (b) the histogram of water demand versus the normal fit; in (c) the autocorrelation coefficients are
included
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3 Methodology

3.1 Multiple Linear Regression

Multiple linear regression (MLR) models are capable of making predictions based on
multiple inputs. The analytical expression (Holder 1985) is defined by:

yt ¼ a0 þ a1x1ðtÞ þ . . .þ anxnðtÞ þ "ðtÞ ð1Þ
where yt is the output, a0 is a constant, a1…an are regression coefficients computed via the
least squares method, x1(t)…xn(t) are the inputs into the model, and ε(t) is a random variable
with zero mean and constant variance.

3.2 Artificial Neural Networks

An artificial neural network (ANN) is an interconnected group of simple processing units
mimicking the function of biological neurons first discovered in physiology. According to
the prevalent terminology, we call neurons or nodes the processing units of an artificial
neural network. Neurons are arranged in layers; neurons between layers are connected by
links called weights. Error-back propagation includes an additional set of feed-back con-
nections from the output to the input layer (Rumelhart et al. 1986). Back propagation
networks are a generalization of the Widrow-Hoff learning rule (Widrow and Lehr 1990),
in which the network weights are adapted along the negative gradient of the performance
function (Rumelhart et al. 1986). Back-propagation multi-layered fully connected neural
networks are among the most popular and proven (Hagan et al. 1996). Complete derivation
of the model and the learning algorithm can be found in Rumelhart et al. (1986) and Haykin
(1994). A single-output multilayer feed forward back propagation network performs the
following mapping from the input to the output data (Zhang et al. 2001):

byt ¼ f yt�1; yt�2; . . . ; yt�nð Þ ð2Þ
where byt is the output at time t, n is the dimension of the input vector or the number of past
observations used to predict future observations, and f is a nonlinear function determined
both by the network and the data at hand. From Eq. 2 the feed-forward function can be
viewed as a general nonlinear, autoregressive model (Zhang et al. 2001). In a trained
network, the relation between outputs and inputs has the following expression (Zhang 2003):

yt ¼ a0 þ
Xq
j¼1

ajg b0j þ
Xp
i¼1

bijyt�i

 !
þ "t ð3Þ

where αj for (j00,1,2,…q) and βij for (i00,1,2,…p; j00,1,2,…q) are the model parameters,
also referred to as weights in the connectionist literature; p is the number of input nodes and
q is the number of hidden nodes; the function g is a logistic function, in our case we used a
log-sigmoid function:

gðxÞ ¼ 1

1þ e �xð Þ ð4Þ

Neural networks operate on the basis of learning rules which define exactly how the
network weights should be adjusted (updated) between successive training cycles (epochs).
Thus, training is the process of featuring the function f in Eq. 2 which eventually is uniquely
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determined by the linking weights of the network. We used a supervised learning method. In
practice the network learned the mapping from the input data space to the output, by means
of a set of correct solutions used for supervising the training process. We used a Levenberg-
Marquardt (LM) training algorithm. LM is often the fastest back propagation algorithm, and
is highly recommended as a first-choice for supervised learning (Hagan et al. 1996). The
mean squared error (MSE) was used as a performance function. We used a log-sigmoid
activation function (Eq. 4) for all the hidden layers, and a linear activation for the output
layer. Training was terminated when any of the following conditions occurred: a) the
maximum number of epochs (repetitions) was reached, in this case maximum(epoch) 0
100; b) the maximum amount of time had been exceeded, in this case maximum(time) 0
infinite; c) performance had been minimized to the goal, in this case no goal was pre-
determined, goal 0 null; d) the performance gradient fell below a threshold, minimum
(gradient) 0 1e−10; e) “mu” exceeded maximum(mu) 0 1e10; f) validation performance
increased more than 5 times since the last time it decreased (over the validation dataset).

At each ANN iteration, the training set was randomly partitioned into three subsets:
training, validation, and testing. The training-subset was used to update the weights of the
network. The validation-subset was used to set a rule to interrupt training (as described
above). The test-subsets were used to measure ANN performances on a portion of data that
had not been used for training, also referred to as off-set data. There are several heuristics for
partitioning: we used 60 % of the dataset for training, 20 % for validation and 20 % for
testing (Haykin 1994). In practice, at each ANN iteration, we forecasted only 14 months out
of 72 dates comprising the forecasting domain (from January 2003 to December 2008). By
means of several hundred repetitions we managed to cover the entire forecasting domain
with at least 30 off-set forecasts for each single month.

The next steps of ANN configuration consisted of choosing: a) the dimension of the input
vectors; b) the number of layers; c) the number of neurons per layer. Regarding the optimal
length of the input vectors, the objective was to determine the optimal number of lagged
observations, which is n in Eq. 2. This is among the tasks with the largest impact on
convergence (Haykin 1994). There is no theoretical support that can be used to guide the
selection of n (Zhang et al. 2001).We tested 3, 6 and 12-dimensional input-vectors on a number
of networks having hidden layers ranging from 1 to 8 and neurons per layer ranging from 1 to 8,
for a total of 8×8064 network configurations. We evaluated the performance of each config-
uration over 100 numerical experiments, for a total of 3×64×100019,200 numerical experi-
ments. Figure 2 shows three correlation surfaces corresponding to our 64 configurations trained
respectively by 3, 6, and 12-dimensional input vectors. In all cases, other than two exceptions, a
12-dimensinal input vector showed higher correlations than any other ANN trained with 6d and
3d input vectors. Hence, we selected a 12d input vector (n012).

In the remaining sections we will refer to a number of variables defined as follows: (Yt) is
the forecasted value for the month t; [Yr] is the output vector consisting of the scalars (Yt),
where r01, 2, .. z is the ordinal number of the experiment; and [Ym] is the vector of final
forecasts of the model m, defined as the average of the set {Yr}. The model performances are
measured by a number of indexes based on the benchmarking of [Ym] against targets [T],
where [T] is the vector of measured monthly water demand.

Regarding the optimal number of layers and neurons, in most function approximation
tasks, one layer (with several neurons) is sufficient to approximate continuous functions;
generally, two hidden layers may be necessary for learning functions with discontinuities
(Hagan et al. 1996). Nevertheless, these general considerations may not necessarily be
optimal for the data set at hand. Several approaches are suggested to define neural architec-
ture (Widrow and Lehr 1990). Guidelines may be either heuristic or derived from empirical
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experiments. The methodological “freedom” in the choice of layers and neurons has been
mentioned by Zhang et al. (1998) as one of the reasons for inconsistent reports about ANN
performances in the scientific literature. Having fixed the length of the input vector equal to
12, we systematically evaluated all the configurations comprising a number of layers ranging
from 1 to 14 consisting respectively of a number of neurons ranging from 1 to 14 per layer,
for a total of 14×140196 configurations. We tested each configuration 100 times, for a total
of 196×100019,600 numerical experiments. Results are presented in a matrix pictorial form
(Fig. 3). Each pixel corresponds to a combination of layers and neurons, the color-bar in
Fig. 3a represents the mean squared error (MSE) between outputs [Ym] and targets [T], and
the color bar in Fig. 3b represents the correlation coefficients (R) between outputs [Ym] and
targets [T]. It was found that for the dataset at hand, the network configuration that
minimized the MSE and maximized the correlation coefficient (R) was the one having 2
layers. More precisely: 12 input nodes in the input layer (q012 in Eq. 3) and 12 hidden
nodes in a single hidden layer (p 012 in Eq. 3), for a total of 24 nodes distributed in 2 layers.

Fig. 2 Correlation surface of dif-
ferent ANNs. On the horizontal
grid the combination of neurons
and layers are presented; on the
vertical axis the correlation coef-
ficient corresponding to each
combination is presented. Each
stratum of the figure corresponds
to 3, 6, and 12 dimensional input
vectors, respectively

Fig. 3 Performances of 196 different ANNs. Each pixel represents a different ANN-setting resulting from the
combinations of a varying number of layers-per-network (ranging from 1 to 14) and neurons-per-layer
(ranging from 1 to 14). The color bars represent the magnitude of the Mean Square Errors (a) and the
Correlation Coefficients (b). In all instances ANNs were trained with 12 dimensional input vectors
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An additional test was performed in order to establish how stable this configuration was.
For this purpose, we measured the magnitude of the standard deviations of the outputs as a
function of number of layers; the larger the standard deviation the less stable the network.
Experimental results (Table 1) show that output standard deviation increased with the
number of layers. Thus, although in the two layer configuration one can find the best
forecasting accuracy, the one layer configuration was more stable without a significant
decrease in network performance. Therefore, a one-layer network was chosen to be the
optimal configuration.

Finally, within a one layer configuration, we focused on the optimal number of neurons. It
was found that 12 neurons consistently returned above average results both in terms of
correlation coefficient and mean squared error of outputs versus target. Therefore, this was
adopted as the definitive configuration for this study.

To summarize, by means of a step-wise screening where at each step a single parameter was
analyzed, we concluded that the network to be used in the remaining part of the study was the
one having the following major features: feed-forward back-propagation network with 12
neurons in one hidden layer, fully connected by tan-sigmoid threshold functions to an output
layer provided by a linear threshold, trained with a Levenberg-Marquardt algorithm.

3.3 Wavelet-Denoising

Wavelets are orthogonal bases of finite length that can be used to represent a time series into
a time-scale domain at different resolutions. In this study, wavelet transforms were used for
their denoising capabilities in order to improve ANN forecasting accuracy. Wavelets are
described by Compo and Torrence (1998) as a “tool to analyze variation of power within a
time series”. Because of the compact support in which wavelets are defined, wavelet filter-
banks are also well suited to decompose, manipulate and represent non-stationary time
series. A practical guide to wavelet-analysis is provided by Compo and Torrence (1998),
fundamental manuals are provided by Blatter (1998), Daubechies (1992), Meyer (1992),
Strang and Nguyen (1996), Holschneider (1995), and Mallat (1999).

Wavelet analysis consists of decomposition, and wavelet synthesis consists of recon-
struction of a given signal. In the continuous domain, the analysis starts from choosing a
mother wavelet (y). The continuous wavelet transform (CWT) is then defined by the
integration over all time of the signal multiplied by scaled and shifted versions of the mother
wavelet (Mallat 1999):

CWTy
x t; sð Þ ¼ 1ffiffiffiffiffi

sj jp Zþ1

�1
xðtÞy* t � t

s

� �
ð5Þ

Table 1 Network stability as a function of number of layers per network

Number of layers per network

1a 2 3 4 5 6 7 8 9 10 11 12 13 14

Standard deviation
of R

0.03 0.06 0.04 0.06 0.07 0.09 0.09 0.11 0.13 0.13 0.16 0.15 0.17 0.17

Standard deviation
of MSE

0.24 0.78 0.44 0.55 0.55 0.65 0.67 0.78 0.88 0.88 1.13 1.02 1.05 1.06

a optimal combination
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where s is the scale parameter, C is the translation and ‘*’ stands for the complex conjugate.
The CWT produces a continuum of all scales as the output. In the discreet domain, let s 0 sj0
and C 0 C0. The discrete wavelet given by (Mallat 1999) is then defined as follows:

yt;sðtÞ ¼
1ffiffiffiffiffiffiffi
sj0
�� ��q y* t � kt0s

j
0

sj0

 !
ð6Þ

where j and k are integers and s0 > 1 is a fix dilation step. The most practical choice for the
parameters s0 is 2 and C0 is 1. It results in a power of two logarithmic scaling, also referred to
as a dyadic grid arrangement of the mother wavelet. The dyadic wavelet can be written in
more compact notation as:

y j;kðtÞ ¼ 2�j=2y 2�jt � k
� � ð7Þ

such that y j;k

n o
j;kð Þ2Z2 forms an orthonormal basis for L2(ℜ), the vector space of measurable,

square integrable one-dimensional functions. One of the inherent challenges of using
the discrete wavelet transform (DWT) for forecasting applications is that it is not shift
invariant (i.e. if we shift the beginning of our time series, all of the wavelet
coefficients will change). To overcome this problem, a redundant algorithm, known
as the “à trous” algorithm was used in this study. Finally, the wavelet can be used as
a low-pass filter to prevent any future information from being used during the
decomposition. For more information on the issue of shift invariance and causal-
filtering, readers are directed to Renaud et al. (2005).

The transform can be presented according to Mallat (1999):

ciþ1ðkÞ ¼
Xþ1

�1
hðtÞxi k þ 2it

� � ð8Þ

where h are the coefficients of the filters of choice, xi(t) is the original time series and
ci+1 are the coefficients of the wavelet analysis. In practice, in the discrete domain,
we implemented a two-channel sub-band coding using quadrature mirror filters
(QMFs). This consisted in the analysis of the signal by different filter banks (Low-
pass and High-pass filters). In the two band decomposition scheme, starting from x(t),
the first step produces two sets of coefficients: approximation coefficients (cA1), and
detail coefficients (cD1). These vectors are obtained by convolving x(t) with the low-
pass filter Lo_D, and with the high-pass filter Hi_D, followed by dyadic decimation.
A dyadic decimation must be applied at each step (i.e. downsampling). In practice the
decomposition can continue iteratively on the low-pass transform cA1. Several levels
of wavelet decomposition were tested; the first level was chosen as the most adequate
for our denoising purposes. The inverse transform (IDWT) started from cA1, thus the
signal was reconstructed backwards and up-sampled. The algorithm guaranties perfect
reconstruction unless the coefficients are somehow manipulated. In our case we sup-
pressed the coefficients of the high-pass transform (i.e. the details at level 1). In this
study we used a number of compactly supported discrete wavelet-functions of the
type: Haar, db2, db3, db4, and db5 named respectively after Alfred Haar and Ingrid
Daubechies (Daubechies 1992). The Haar wavelet family is the simplest; it redefines
the original signal in terms of averages and differences:

yðxÞ ¼ 1 if x 2 0; 0:5½ Þ ð9Þ
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yðxÞ ¼ �1 if x 2 0:5; 1½ Þ ð10Þ

yðxÞ ¼ 0 if x=2 0; 1½ Þ ð11Þ

fðxÞ ¼ 1 if x 2 0; 1½ Þ ð12Þ

fðxÞ ¼ 0 if x=2 0; 1½ � ð13Þ
Daubechies wavelets (dbN) have no explicit expression except for db1, which actually is

the above mentioned Haar wavelet. They are ranked in terms of their vanishing moments
which are equal to 2N-1; we used N ranging from 2 to 5, thus wavelet types db2, db3, db4,
db5 (Fig. 4). When non-normalized, dbN are Finite Impulse Response (FIR), low pass-
filters, of length 2N, of sum 1, of norm 1/√2.

From Haar and dbN we defined four FIR filters, of length 2N and of norm 1. Once five
filter-banks were constructed the decomposition started from the original signal (84 data
points of monthly water supply). Usually, the DWT is defined for sequences with length of
some power of 2. In order to get a perfect reconstruction we used a symmetrization method
for extending our signal on the boundaries to the next power of 2 of the time-series length.
Symmetrization assumes that signals can be recovered outside their original support by
symmetric boundary value replication. Details on the rationale of these schemes are given in
Strang and Nguyen (1996).

3.4 One Step and Multi-Step Ahead Forecasting

Three groups of models were constructed: WANNdbN, ANNRaw, and MLR. The WANNdbN

implies the alternative use of five different filter-banks: Haar, db2, db3, db4, db5. The
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ANNRaw is the non-denoised Artificial Neural Network that is used as a comparison model,
as is the Multiple Linear Regression (MLR) model. Having considered that ANNs are
embedded with a slight randomness in the initial attribution of weights that ultimately affect
predictions, each model was reiterated 200 times with the aim of approaching statistically
significant results.

Model simulations begin from the original time series which is used both for
building input matrices, as well as target vectors for model benchmarking (Fig. 5).
In the WANN models, input matrices were filtered by Low-pass and High-pass filter-
banks. High-pass decompositions were suppressed; Low-pass reconstructions were fed
into the WANN models. The outputs of 200 reiterations per model were averaged,
thereafter benchmarked against targets (i.e. “Compare” in Fig. 5) and ultimately saved
as model results. It must be noted that given that only off-set output were used to
infer model performances, and considering that off-set outputs can cover only 20 % of
the forecasting domain at each model reiteration, the combined result of 200 reiter-
ations per model provided about 30 different off-set forecasting per month for all the
months of the forecasting domain.

4 Model Comparison

We used several indices to obtain our estimates of model performances. Indices were
selected to meet two objectives: (i) measuring the overall performance of the model
over several reiterations; and (ii) comparing results among different models. The

Fig. 5 Flow chart including data source, data pre-processing, forecasting, model comparison against targets
and final results
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following indices were used: Fractional Standard Error (FSE), the coefficient of
determination (R2), the correlation coefficient (R), the Nash-Sutcliffe model efficiency
(E), and indication of the overall model performance was assessed using bias and the
bias indicator (B). In particular:

(i) Fractional Standard Error (FSE) is the RMSE divided by the corresponding mean of the
targets (observed values). It is a scalable measure of model precision, expressed as:

FSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

Ti � Yið Þ2

T

vuuut ð14Þ

where Ti, Yi, and T are the observed, forecasted, and mean of the observed monthly
water consumption, respectively. The model becomes more precise as the FSE reaches
zero.
(ii) The correlation coefficient (R), expressed as:

R ¼
Pn
i¼1

Ti � T
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Ti � T
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Yi � Y
� �2s ð15Þ

The coeffcient R shows how much variability in the data set is accounted for by the model
and provides a measure of how likely future outcomes will be forecasted. Values for R range
from −1 to 1, with 1 referring to maximal correlation.
(iii) The Nash-Sutcliffe model efficiency (E), expressed as:

E ¼ 1�
Pn
i¼1

Ti � Yið Þ2

Pn
i¼1

Ti � T
� �2 ð16Þ

E is used widely in hydrology because it measures the ability of the model to forecast
values different from the mean. Values of E range from −∞ to 1, with 1 showing perfect
model performance.
(iv) Bias (B), expressed as:

B ¼
Pn
i¼1

YiPn
i¼1

Ti

ð17Þ

The index B provides a good measure of whether the model is overestimating (B >1) or
underestimating (B<1) compared to observed values. B01 indicates non-biased model
performance.
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5 Results

5.1 Denoising

The original time-series of monthly water demand was denoised by means of six wavelet
filter-banks, namely, Haar, db2, db3, db4, and db5. The denoised versions are reconstruc-
tions of the original signal after the high-pass transforms were suppressed at the first level of
decomposition (Fig. 6). Several levels of decomposition were tested but the first level was
sufficient for suppressing the highest frequencies of the parent time-series. Higher levels of
decomposition would be suitable for multi scale analysis. In this case wavelets were used as
a denoising tool only; representing the parent series into different scales was not one of the
objectives of the study.

Different filter-banks had different impacts on the original parent signal (Table 2). It was
noted that: i) the parent mean is preserved by all filter-banks; ii) the variance of the
reconstructions decreased when the number of vanishing moments in the filter-banks
increased; iii) in all instances the data range of the reconstructed signals was smaller than
the data range of the parent signal; iv) the norm of the difference between the parent and
denoised versions increased with the number of vanishing moments in the filter-bank; and;
v) the correlation coefficients (R) decreased when the number of vanishing moments in the
filter-banks increased.

Fig. 6 Signal denoising. In (a) the original signal is presented, in the remaining plots the denoised time-series
according to different filter-banks are presented
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5.2 Forecasting

We first present results for 1 month-ahead forecasting, thereafter multi-months ahead
forecasting. The non-coupled ANNRaw and MLR models had correlation coefficients R0
0.84 and 0.77 respectively, and fractional standard error FSE 0 2.6 % and 3.3 %, respec-
tively. On the other hand the best coupled model, WANNHaar, had correlation coefficient R0
0.91 and FSE 0 2 %. Models WANNdb2 and WANNdb3, although slightly less accurate than
the WANNHaar, outperformed ANNRaw. ANNs coupled with db4 and db5 filter-banks did not
outperform the non-coupled ANN (Table 3).

WANNHaar also provided more accurate results than ANNRaw for each and every month
separately (Fig. 7). February and September were the most problematic months to be
predicted; nevertheless Haar filtering increased forecasting accuracy for those months too.
It was noted that relatively large errors are also coupled with large variance in model outputs.

Focusing on the best model only (i.e. WANNHaar), the forecasting error is normally
distributed around a zero mean and in 68.2 % of cases it is expected to be within ±0.038
(106 m3/month) from the mean. Visual observation suggested, and statistical analysis
confirmed, that not all years can be predicted with the same accuracy (Fig. 8). For instance,
the WANNHaar achieved best results in the forecasting of the year 2003, with a correlation
coefficient between predicted and measured values equal to 0.98; on the other hand, in 2007,
the same model achieved a correlation R00.88.

Table 2 Statistics of parent and denoised time-series

Filter-bank Reconstructed time-series Parent time-series

Haar db2 db3 db4 db5 None

Ra 0.87 0.84 0.83 0.83 0.81 1

Norm of differencea 0.388 0.414 0.432 0.437 0.456 0

Mean 1.78 1.78 1.78 1.78 1.78 1.78

Maximum 1.93 1.93 1.91 1.93 1.94 1.94

Minimum 1.64 1.59 1.60 1.62 1.65 1.50

Range 0.29 0.33 0.31 0.30 0.29 0.43

Variance 0.0057 0.0055 0.0053 0.0052 0.0050 0.0075

a reconstructed times-series vs. original time-series

Table 3 Model-performances for 1 month-ahead forecasting

Model Forward
forecasting
time-lag
[months]

Indices of performances and efficiency

Correlation
coefficient (R)

Root mean squared
error (RMSE)

Fractional standard
error. (FSE)

Nash Sutcliffe
index (E)

Bias (B)

MLR 1 0.768 0.0592 0.033 0.561 0.996

ANNRaw 1 0.842 0.0458 0.026 0.708 1.000

WANNHaar 1 0.910 0.0361 0.020 0.818 1.000

WANNdb2 1 0.896 0.0374 0.022 0.800 0.999

WANNdb3 1 0.897 0.0387 0.022 0.797 0.999

WANNdb4 1 0.832 0.0480 0.027 0.691 1.001

WANNdb5 1 0.741 0.0583 0.032 0.548 0.999
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For themulti-step ahead forecastingWANNHaar, as well asWANNdb2 andWANNdb3, provided
better results than non-coupled models at lag-time: 2, 3, 4 and 6 months (Fig. 9). A particular case
is the 5thmonth ahead forecasting; at this time-lag: i) all models provided the largest errors and the
lowest correlations; ii) in contrast to what had been previously observed, MLR, WANNdb4 and
WANNdb5 returned the best performances. A table of results is presented in Annex A.

When considering the variance of output generated by different iterations of the samemodel, it
was observed that reducing variance in the input data-set (by means of denoising) resulted in
increased variance in model outputs (Fig. 10). A particular case is Haar denoising; on the one

Fig. 7 Comparison of WANNHaar versus ANNRaw on a month by month basis over the entire forecasting
domain
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hand it did not affect ANN stability, while on the other hand, it drastically reduced input variance
(Fig. 10), preserving and actually increasing ANN performances (Table 3). A different case is
provided by db5 denoising that induced an oversimplification of input patterns which resulted in
both reduced ANN performances and increased ANN instability.

Results can be summarized as follows: Haar, db2, and db3 filter-banks provided similar
(and above average) performances for all lead times (with the exception of 5 months lead
time); any extension in the future of the forecasting horizon corresponded to a decrease in
forecasting accuracy; and lower variance in the input matrix resulted in higher instability of
the outputs of the ANNs (with the exception of Haar filtering that provided high accuracy
without affecting stability).

6 Discussion

ANNs do not require any a priori assumptions on the underlying process generating the data
at hand. Nevertheless, in our case, the WANNdbN models are based on a fundamental
assumption regarding the frequency domain of our dataset. In this respect, it is assumed
that the original time series is likely to be affected by some type of noise either induced by
intrinsic randomness in the studied phenomena, and/or imprecision of the water-meters.

Fig. 9 Error and correlation of model-output vs. targets at different time-lags

Fig. 10 Input–output variance of
WANN models
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Noise is usually concealed in the shortest frequencies of the time-series, while meaningful
information is likely to be carried in the longest frequencies. Wavelets, orthogonal waves of
finite duration, can be used for localized denoising of non-stationary signals. In our case,
wavelet-denoising was applied by suppressing high-pass coefficients at the first scale of
decomposition as this was found to provide the best results. It was observed that filter-banks
of type Haar, db2 and db3 improved neural performances.

The correlation coefficients between measured and forecasted values (for a lead time of
one month) of the non-denoised network was R00.84 while, the same network trained with
Haar-denoised input had a correlation of R00.91. The error over the entire testing domain
followed suit, with RMSE 0 0.045 for the ANNRaw, and 0.36 for the ANNHaar. With respect
to multi-step ahead forecasting (for 2, 3, 4 and 6 months ahead), Haar, db2 and db3
improved the performance of the model. Forecasting of the 5th month returned contradictory
results. In all instances wavelet filter-banks of type db4 and db5 did not improve the
forecasting task assigned to the ANN.

We suggest that removing part of the variance from the original time series simplified the
generalization process in ANNs. When considering ANNs as a pattern recognition device,
denoising reduces the heterogeneity of the patterns presented to the network, thus facilitating
classification (i.e. Haar, db2, db3). On the other hand, an oversimplification of the training-
set can create ambiguities resulting in lower forecasting performances as well as greater
network instability (e.g. db4, db5). However, variance alone cannot entirely explain the
impact of denoising on ANN performance.

The original impact of signal denoising has to be found in the shape and the length of the
filter-banks. In this respect, according to our preliminary results it cannot be excluded that
wavelet transforms provided the best denoising (reflected by improved accuracy of ANN
forecasting) when the filters had their highest coefficients as close as possible to zero. Thus,
in our case, causal filters seem to have provided the best results when they could emphasize
the most correlated components of the parent time series.

7 Conclusions

In this study we addressed the forecasting of future water consumption of the municipality of
Syracuse, Italy. The objective was to build an adaptive tool that when trained may be readily
used for operational applications such as water budgeting. We also attempted to tackle a
problematic gap in the theoretical foundations regarding the choice of wavelets to be used in
conjunction with ANNs for water resources forecasting applications.

Experimental results showed that first level decomposition by means of wavelet-filters
can improve generalization in ANNs. In particular, filter-banks of type Haar, db2 and db3
alternatively coupled with the same ANN, provided more accurate forecasting than the non-
coupled ANN, the Multiple Linear Regression and the coupled models with wavelets of type
db4 and db5 on the forecasting horizons from 1 to 4 and 6 months-ahead. Preliminary results
suggest that in our case, attenuation of variance in the input vectors may be a significant
driver of improvements in ANN forecasting. It is also observed that variance alone cannot
entirely explain the impact of denoising on ANNs. Thus, it cannot be excluded that using
filters that can emphasize the components of the parent time series with the highest
autocorrelation may be a key issue in the coupled wavelet-neural network models.
Additional work will be required for a complete understanding of these findings, and the
use of larger and more diversified datasets may help to confirm the empirical results obtained
in this study. It is suggested that future investigations should be oriented to the featuring of
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tailor-made orthogonal wavelets, for time series denoising in an attempt to generate sparse
neural-weight matrices in back propagation networks.

Acknowledgments This study was supported by the Norman Zavalkoff Foundation whose help is greatly
appreciated. This study was also partially funded by a NSERC Discovery Grant held by Jan Adamowski, and
by the IWRM-SMART project of The Federal Ministry of Education and Research, Germany, and The
Ministry of Science and Technology (MOST) of the State of Israel. The authors would also like to thank the
anonymous reviewers for their valuable comments.

ANNEX A

Table 4 Model performances in multi ahead forecasting (from 2 to 6 months ahead)

Model Forward
forecasting
time-lag
[months]

Indices of performances and efficiency

Correlation
coefficient (R)

Root mean squared
error (RMSE)

Fractional standard
error. (FSE)

Nash Sutcliffe
index (E)

Bias (B)

MLR 2 0.802 0.056 0.031 −0.512 0.994

3 0.800 0.055 0.031 −0.299 0.995

4 0.799 0.055 0.031 −0.796 0.998

5 0.803 0.054 0.030 −1.363 0.999

6 0.832 0.050 0.028 −1.283 0.999

ANNRaw 2 0.813 0.051 0.029 −0.146 0.997

3 0.799 0.051 0.029 −0.145 0.999

4 0.789 0.052 0.029 −0.607 1.000

5 0.171 0.096 0.054 −0.561 1.001

6 0.796 0.052 0.029 −1.315 1.002

WANNHaar 2 0.879 0.042 0.024 −0.122 1.000

3 0.835 0.047 0.026 −0.298 0.998

4 0.851 0.044 0.025 −0.700 1.001

5 0.303 0.092 0.052 −0.653 1.001

6 0.768 0.055 0.031 −1.343 1.000

WANNdb2 2 0.889 0.040 0.023 −0.114 1.000

3 0.846 0.045 0.025 −0.224 1.001

4 0.849 0.045 0.025 −0.715 0.999

5 0.326 0.090 0.051 −0.667 1.000

6 0.792 0.052 0.029 −1.218 1.000

WANNdb3 2 0.875 0.043 0.024 −0.058 0.999

3 0.847 0.045 0.025 −0.182 1.000

4 0.843 0.046 0.026 −0.680 0.999

5 0.254 0.094 0.053 −0.632 0.999

6 0.769 0.055 0.031 −1.245 0.999

WANNdb4 2 0.788 0.054 0.030 0.201 0.998

3 0.772 0.054 0.030 −0.107 1.000

4 0.750 0.056 0.031 −0.552 1.000

5 0.445 0.079 0.044 −0.508 1.001
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