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SUMMARY

Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a
watershed’s aquifers for urban and rural water supply. In this paper, a new method based on coupling
discrete wavelet transforms (WA) and artificial neural networks (ANN) for groundwater level forecasting
applications is proposed. The relative performance of the proposed coupled wavelet-neural network
models (WA-ANN) was compared to regular artificial neural network (ANN) models and autoregressive
integrated moving average (ARIMA) models for monthly groundwater level forecasting. The variables
used to develop and validate the models were monthly total precipitation, average temperature and aver-
age groundwater level data recorded from November 2002 to October 2009 at two sites in the Chateau-
guay watershed in Quebec, Canada. The WA-ANN models were found to provide more accurate monthly
average groundwater level forecasts compared to the ANN and ARIMA models. The results of the study
indicate the potential of WA-ANN models in forecasting groundwater levels. It is recommended that
additional studies explore this proposed method, which can be used in turn to facilitate the development
and implementation of more effective and sustainable groundwater management strategies.

Wavelet transforms

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In many watersheds, groundwater is often one of the major
sources of water supply for domestic, agricultural and industrial
users. However, groundwater supplies for agricultural, industrial,
and municipal purposes have been overexploited in many parts
of the world (Konikow and Kendy, 2005). Various consequences
of unsustainable groundwater use and management are becoming
a serious issue globally, especially in developing countries
(Konikow and Kendy, 2005). In many regions, groundwater has
been withdrawn at rates far in excess of recharge, which leads to
harmful environmental side effects such as major water-level
declines, drying up of wells, reduction of water in streams and
lakes, water-quality degradation, increased pumping costs, land
subsidence, and decreased well yields (USGS, 2010). As a result,
many watersheds are experiencing severe environmental, social
and financial problems (Tsanis et al., 2008). As water demand will
likely increase in the short and long term, there will be increasing
pressures on groundwater resources (Sethi et al., 2010). Further-
more, climate change has a significant impact on the quantity
and quality of groundwater resources. The sustainable manage-
ment of groundwater resources in conjunction with surface waters
in a watershed is very important to ensure the sustainability of a
watershed’s surface and groundwater resources (Mohanty et al.,
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2010). A critical component of planning and implementing inte-
grated management of groundwater and surface water resources
in a watershed is accurate and reliable forecasting of groundwater
levels (Mohanty et al., 2010).

Accurate assessments of groundwater levels allow water man-
agers, engineers, and stakeholders to: (i) develop better strategies
to avoid or reduce adverse effects such as loss of pumpage in res-
idential water supply wells, land surface subsidence, and aquifer
compaction (Prinos et al., 2002); (ii) develop a better understand-
ing of the dynamics and underlying factors that affect groundwater
levels; and (iii) balance the needs of urban, agricultural, industrial
and other demands and analyze the benefits and costs of water
conservation. An important component of this is accurate ground-
water level forecasts. The aim of this study is to develop a new
data-based method of highly accurate groundwater level forecast-
ing that can be used to help water managers, engineers, and stake-
holders manage groundwater in a more effective and sustainable
manner to help address some of the issues described above.

Conceptual or physically based models are often the main type
of model used to depict hydrological variables and to understand
physical processes occurring in a particular system. However, they
have a number of practical limitations, including the need for large
amounts of hydrogeological data. In the last decade, a number of
studies have investigated the advantages and disadvantages of
process based models for groundwater level forecasting and com-
pared their forecasting performance to new data-based methods
such as artificial neural network (ANN) models (e.g., Maskey
et al., 2000; Daliakopoulos, 2005; Mohammadi, 2008). For
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Nomenclature

cwT continuous wavelet transform

N number of data points used
S scale parameter

x(t) signal

Vi mean value taken over N

Vi observed peak monthly groundwater level
Vi forecasted peak monthly groundwater level
T translation parameter

* complex conjugate

Y(t) mother wavelet

example, Mohammadi, 2008 found that ANN models were more
accurate than process based models (in this case MODFLOW) for
groundwater level forecasting, and found that the main disadvan-
tage of process based models are the large number of input param-
eters as well as the computation time.

In watersheds where data is limited and obtaining accurate
forecasts is more important than understanding underlying mech-
anisms, data based models are a suitable alternative. These meth-
ods are able to make generalizations of the process being studied.
In data-based forecasting, statistical models have traditionally
been used. Multiple linear regression (MLR) and autoregressive
moving average (ARMA) models are probably the most common
methods for hydrological forecasting (Raman and Sunilkumar,
1995; Young, 1999; Adamowski, 2007). In the area of groundwater
level forecasting, Hodgson (1978) simulated groundwater levels
through linear regression. Bierkens (1998) simulated water-table
fluctuations with a stochastic differential equation. Bidwell
(2005) developed an ARMA equation to forecast groundwater lev-
els in New Zealand. Chenini and Khemiri (2009) evaluated ground-
water quality using multiple linear regression and structural
equation modeling in Tunisia. Lee et al. (2009) developed an ARMA
model to forecast groundwater level data in Changwon, Korea. Jas-
min et al. (2010) conducted a multiple linear correlation analysis to
study the influence of rainfall, antecedent rainfall and antecedent
groundwater table depth on groundwater depth in the upper Swar-
namukhi River basin.

In recent years, artificial neural networks (ANN) have been used
for groundwater level prediction (e.g., Daliakopoulos et al., 2005;
Nayak et al., 2006; Uddameri, 2007; Krishna et al., 2008; Tsanis
et al., 2008; Banerjee et al., 2009; Sreekanth et al., 2009; Sethi
et al., 2010), aquifer parameter determination (Samani et al.,
2007; Karahan and Ayvaz, 2008), and groundwater quality moni-
toring (Milot et al., 2002). ANN models are ‘black box’ models that
are well suited to dynamic nonlinear system modeling. An impor-
tant feature of ANN models is their ability to detect patterns in a
complex system.

However, ANNs, ARIMA and other linear and non-linear meth-
ods frequently have limitations with non-stationary data (Cannas
et al,, 2006). ANN and ARIMA methods cannot handle non-station-
ary data without input data pre-processing (Tiwari and Chatterjee,
2010). The methods for dealing with non-stationary data are not as
advanced as those for stationary data and additional research is
needed to investigate methods that are better able to handle
non-stationary data effectively. An example of such a method is
wavelet analysis, which has received very little attention to date
in the groundwater literature.

Wavelets are mathematical functions that give a time-scale rep-
resentation of a time series and their relationships to analyze time
series that contain non-stationarities. Preliminary studies have
indicated that wavelet analysis appears to be a more effective tool
than the Fourier Transform in analyzing non-stationary time series
(Partal and Kisi, 2007; Adamowski, 2007). Wavelet analysis can be
used to decompose an observed time series (such as groundwater
levels) into various components so that the new time series can be
used as inputs for an ANN model.

Wavelet analysis is a very new method in the areas of hydrology
and water resources research. However, over the course of the last
5-6 years, it has begun to be investigated in a variety of hydrolog-
ical applications. Cannas et al. (2006) developed a hybrid model for
monthly rainfall-runoff forecasting in Italy. Adamowski (2007,
2008a,b) developed a completely new method of wavelet and cross
wavelet based forecasting of floods. Kisi (2008) and Partal (2009)
developed a hybrid model for monthly flow forecasting in Turkey.
Kisi (2009) explored the use of WA-ANN models for daily flow
forecasting of intermittent rivers. Wang et al. (2009) developed a
wavelet neural network model to forecast the inflow at the Three
Gorges Dam in Yangtze River. Adamowski and Sun (2010) devel-
oped WA-ANN models for flow forecasting at lead times of one
and three days for three different rivers in Cyprus. These studies
all found that the WA-ANN models outperformed the other mod-
els (such as multiple linear regression and regular artificial neural
networks) that were studied for hydrological forecasting
applications.

To date, no research has been published that explores coupling
wavelet analysis with artificial neural networks for groundwater
level forecasting with multiple hydrological input parameters.
The objective of this research was to explore the use of the coupled
WA-ANN method for monthly groundwater level forecasting and
to compare it with two commonly used groundwater level fore-
casting methods. In this research, WA-ANN models were devel-
oped and compared with ANN models and ARIMA models for 1-
month-ahead forecasting of groundwater levels at two sites in
the Chateauguay watershed in Quebec, Canada.

2. Methods
2.1. ARIMA

The autoregressive integrated moving average (ARIMA) method
has the ability to identify complex patterns in data and generate
forecasts (Box and Jenkins, 1976). ARIMA models can be used to
analyze and forecast univariate time series data. The ARIMA model
function is represented by (p, d, q), with p representing the number
of autoregressive terms, d the number of non seasonal differences,
and g the number of lagged forecast errors in the prediction equa-
tion. The three steps to develop ARIMA models are identification,
estimation and forecasting. ARIMA models are defined as follows
(Box and Jenkins, 1976):

MZi=DP1Zi g+ 4+ DPpZ p+ 0y — 0101 — -+ - — 040¢_g, (1)

where A4, z; is a differenced series (i.e., z; — z; — 1), z; is the set of
possible observations on the time-sequenced random variable, a,
is the random shock term at time t, @1 ... @p are the autoregressive
parameters of order p and 0, ... 04 are the moving average parame-
ters of order q. As an example, a model described as (0, 1, 3) signifies
that it contains O autoregressive (p) parameters and 3 moving aver-
age (q) parameters which were computed for the series after it was
differenced once (d).
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2.2. Artificial neural networks

Artificial neural networks are inspired by the learning processes
that take place in biological systems. An artificial neural network is
composed of many artificial neurons that are linked together
according to a specific network architecture. A neural network
can be used to predict future values of possibly noisy multivariate
time-series based on past histories, and it can be described as a
network of simple processing nodes or neurons, interconnected
to each other in a specific order, performing simple numerical
manipulations. The objective of the neural network is to transform
the inputs into meaningful outputs.

Hydrological variable forecasting in watershed systems is of-
ten a difficult task due to the complexity of the physical processes
involved, as well as the variability of rainfall and temperature in
space and time. ANNs have become popular in the last decade for
hydrological forecasting such as rainfall runoff forecasting,
groundwater and precipitation forecasting, and investigating
water quality issues (e.g., Kisi, 2004, 2007; Adamowski, 2007,
2008a; Banerjee et al, 2009; Pramanik and Panda, 2009;
Sreekanth et al., 2009; Adamowski and Sun, 2010; Sethi et al.,
2010).

The most widely used neural network for hydrological model-
ing is the multilayer perceptron (MLP), which is also capable of
nonlinear pattern recognition and memory association (Nayak
et al.,, 2006). In the MLP, neurons are organized in layers, and each
neuron is connected only with neurons in contiguous layers. A
typical three-layer feedforward ANN is shown in Fig. 1. The input
signal is transmitted through the network in a forward direction,
layer by layer. The connections between neurons in different layers
are supplied by adjusted weighting values. Each neuron is con-
nected only with neurons in subsequent layers, and each neuron
sums its inputs and later produces its output using an activation
function.

The goal of an ANN model is to generalize a relationship of the
form (Nayak et al., 2006):

Y™ =f(X"), (2)
input hidden
layer layer
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where X" is an n-dimensional input vector consisting of variables
X1 ...Xp ..., Xy While Y™ is an m-dimensional output vector consist-
ing of the resulting variables of interest y; ...y; ..., ¥m. In ground-
water level forecasting, x; may represent precipitation, temperature,
and groundwater level values at different antecedent time lags and
the value of y; is generally the groundwater level for a subsequent
period at a specific well (Nayak et al., 2006).

The Levenberg-Marquardt (LM) algorithm was used to train the
ANN models in this study because it is fast, accurate, and reliable
(Adamowski and Karapataki, 2010; Adamowski and Sun, 2010).
In addition, previous studies have indicated that the LM is a very
good algorithm to develop an ANN model for hydrological forecast-
ing in terms of statistical significance as well as processing flexibil-
ity (Daliakopoulos et al, 2005; Sreekanth et al., 2009). The
Levenberg-Marquardt algorithm is a modification of the classic
Newton algorithm for finding an optimum solution to a minimiza-
tion problem (Daliakopoulos et al., 2005). The LM algorithm is de-
signed to approach second-order training speed and accuracy
without having to compute the Hessian matrix. Second-order non-
linear optimization techniques are usually faster and more reliable.

2.3. Wavelet analysis

Wavelet transforms have recently begun to be explored as a
tool for the analysis, de-noising and compression of signals and
images. Wavelets are mathematical functions that give a time-
scale representation of the time series and their relationships to
analyze time series that contain non-stationarities. The data series
is broken down by the transformation into its ‘wavelets’, a scaled
and shifted version of the mother wavelet (Grossman and Morlet,
1984). Wavelet transform analysis, developed during the last two
decades in the mathematics community, appears to be a more
effective tool than the Fourier Transform (FT) in studying non-
stationary time series (Partal and Kisi, 2007). The main advantage
of wavelet transforms are their ability to simultaneously obtain
information on the time, location and frequency of a signal, while
the FT will only provide the frequency information of a signal.

output
layer

¥
S
Output Variable

Fig. 1. ANN architecture with one hidden layer (Adamowski, 2007).
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The continuous wavelet transform (CWT) of a signal x(t) is de-
fined as follows (Partal, 2009):

+oo
W(t,s) =s1/2 /

—00

xow (457 e 3)

where s is the wavelet scale, t is the time, 7 is the translation param-
eter and ‘+’ denotes the conjugate complex function. The translation
parameter 7 is the time step in which the window function is iter-
ated. W (7, s) presents a two-dimensional picture of wavelet power
under a different scale. Scaling either dilates (expands) or com-
presses a signal. The mother wavelet i/ is the transforming function.
Large scales (low frequencies) dilate the signal and provide detailed
information hidden in the signal, while small scales (high frequen-
cies) compress the signal and provide global information about the
signal (Cannas et al., 2006).

The discrete wavelet transform (DWT) was used to decompose
the time series data (i.e., groundwater level, temperature, and pre-
cipitation time series) for the WA-ANN models developed in this
study. The classical continuous wavelet transform (CWT) requires
a significant amount of computation time and data (Partal, 2009;
Adamowski, 2007). In contrast, the DWT requires less computation
time and is simpler to develop compared to the classical CWT
(Christopoulou et al., 2002). The DWT scales and positions are usu-
ally based on powers of two (dyadic scales and positions) (Christo-
poulou et al., 2002). This is achieved by modifying the wavelet
representation to (Grossman and Morlet, 1984):

m
ma(®) =557 (). @
0

where s is the wavelet scale, t is the time, 7 is the translation param-
eter, while m and n are integers that control, respectively, the scale
and time; sg is a specified fixed dilation step greater than 1; and ty is
the location parameter that must be greater than zero. The mother
wavelet  is the transforming function.

In the DWT, a time-scale signal is obtained using digital filtering
techniques. The original time series is passed through high-pass
and low-pass filters, and detailed coefficients and approximation
series are obtained with the wavelet algorithm (Zhang and Li,
2001). The filtering step is repeated every time some portion of
the signal corresponding to some frequencies is eliminated, obtain-
ing the approximation and one or more details.

2.4. Coupled wavelet and artificial neural networks (WA-ANN)

WA-ANN models are ANN models that use, as inputs, sub-series
components (DWs), which are derived from the DWTs of the origi-
nal time series data. As was already mentioned, the DWT was used
in this study because it requires less computational effort than the
CWT. One of the advantages of the WA-ANN method compared to
the ANN method is its ability to identify data components in a time
series such as irregular components with multi-level wavelet
decomposition (Adamowski and Sun, 2010).

2.5. Model performance comparison

The performance of different forecasting models can be as-
sessed in terms of goodness of fit once each of the model structures
is calibrated using the training/validation data set and testing data
set. The coefficient of determination (R?), Nash-Sutcliffe model
efficiency coefficient (E), and root-mean-squared error (RMSE)
were used in this research.

R? measures the degree of correlation among the observed and
predicted values. It measures the strength of the model by devel-
oping a relationship among input and output variables. R* values
range from O to 1, with 1 indicating a perfect fit between the data

and the line drawn through them, and 0 representing no statistical
correlation between the data and a line. R? is given by (Sreekanth
et al., 2009):

N © N2
R2 =1-— Zr:l(yz MN) ; (5)
i=1

SV () - 2t

where y; is the mean value taken over N, N is the number of data
points used, y; is the observed monthly groundwater level (in this
study), and y; is the forecasted groundwater level from the model.

The Nash-Sutcliffe model efficiency coefficient is used to assess
the predictive power of hydrological models (Pulido-Calvo and
Gutierrez-Estrada, 2009):

Eoq_ Zm0i—3)’ ©)
Y -3

An efficiency of one corresponds to a perfect match of fore-
casted data to the observed data. An efficiency of zero indicates
that the model predictions are as accurate as the mean of the ob-
served data, whereas an efficiency of less than zero (E < 0) occurs
when the observed mean is a better predictor than the model
(Pulido-Calvo and Gutierrez-Estrada, 2009).

The root mean square error (RMSE) evaluates the variance of er-
rors independently of the sample size, and is given by (Sreekanth
et al., 2009):

[SEE
RMSE = N (7)

where SEE is the sum of squared errors, and N is the number of data
points used. SEE is given by:

N
SEE=") (y; ~ )’ (8)
i=1

with the variables having already been defined. RMSE indicates the
discrepancy between the observed and forecasted values. A perfect
fit between observed and forecasted values would have an RMSE of
0.

3. Study areas and data
3.1. Study watershed

The Chateauguay watershed is located on the Canadian-US bor-
der, where New York State and the Province of Quebec meet
(Fig. 2). The watershed is home to around 100,000 people, of which
around 73,000 live in Canada (SCABRIC-2, 2005). In the Canadian
section of the watershed, there are 1057 farms that occupy a sur-
face area of 98,633 ha, and a cultivation area of 73,235 ha. The live-
stock population is around 37,500 animals (SCABRIC-2, 2005). The
Chateauguay watershed is under the influence of a moderated and
subhumid climate. The annual mean temperature is around 6.3 °C
and varies between —9.9 °C in January and 20.7 °C in July. The
mean annual precipitations vary between 877 and 1039 mm)/year
depending on the location, while the total annual volume of pre-
cipitation is 2.25 billion m3/year (Coté et al., 2006).

The source of the Chateauguay River is the Upper Chateauguay
Lake in New York State. The 127 km river flows north into the Prov-
ince of Quebec and drains into the St. Lawrence River (SCABRIC,
2005). The main tributaries of the Chateauguay River are the
English River, the Trout River and the Outardes River, whose
subwatersheds respectively drain 28%, 16% and 9% of the total area
of the watershed. The watershed drains a territory of 2543 km? in
which 62% (1444 km?) is located in the Québec Region and 38%
(1099 km?) is in the United States (Fig. 2). The landscape of the wa-
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Fig. 2. Chateauguay watershed with national boundaries (Coté et al., 2006).

tershed is mainly composed of forested and cultivated land
(Table 1), with forests dominating the southern parts of the
watershed.

In the Chateauguay watershed in Quebec, Canada, groundwater
has become a dependable source of water and it is used for many
purposes and by many users (Coté et al., 2006). Only large users of
groundwater are metered, and as such, the exact quantity of water
withdrawn from the aquifer in the watershed is unknown, as is the
case in most watersheds in Quebec. Nonetheless, the amount of
groundwater extracted was estimated to be over 30 Mm?>/year
(Table 2), which represents 48% of the total volume of water used
with the remaining 52% coming from surface water. The local
municipalities in the Chateauguay watershed have the highest le-
vel of groundwater extraction (38%), followed by the agricultural
sector (27%), the industrial and commercial sector (24%), and
finally private users (11%). In the agricultural sector, 75% of the

Table 1
Land use in the Chateauguay watershed (Coté et al.,
2006).
Land use Area (%)
Forest 38
Agriculture 34
Urban 9
Water 9
Cut, regeneration 7
Wetlands and peatlands 2
Not classified 2

Table 2
Estimated groundwater extraction in the Chateauguay watershed (Coté et al., 2006).

User Total volume (Mm?/year) Proportion (%)
Municipalities 11.83 38
Private user 3.51 11
Agriculture 8.18 27
Commercial and industrial 7.51 24

water that is used is groundwater and 25% is surface water, indi-
cating that agriculture depends heavily on groundwater in the Cha-
teauguay watershed (Coté et al., 2006).

Over the course of the last decade, groundwater level depletion
and contamination have become an increasing concern in the Cha-
teauguay watershed. Many abandoned wastes, including dangerous
wastes, disposal facilities, and transit sites in the watershed are lo-
cated in areas where they might enter the watershed’s aquifer (Coté
etal., 2006). These sites could leak and contaminate the groundwater
in the future if they are not properly maintained and monitored. In
addition, there is currently no uniform legislation to restrict land
use at the watershed level (C6té et al., 2006). For example, a gravel
quarry for storing industrial liquid waste was found at Mercier, a city
in the Chateauguay watershed (that is also the location of one of the
wells used in this study). Since the soils are extremely permeable at
this site, liquid waste leaks very rapidly into the aquifer.

The problem is getting more acute as cities and populations in the
watershed grow, and the demand for water increases in agriculture,
industry and households. Poor management of groundwater re-
sources leads to depletion of the aquifer storage, quality deteriora-
tion and declining groundwater levels (Banerjee et al., 2009). The
accurate forecasting of groundwater levels is an important compo-
nent of the sustainable management of groundwater resources.
For example, accurate and reliable groundwater level forecasting
in a watershed can help determine sustainable groundwater extrac-
tion policies, as well as facilitate environmental protection and the
development of water price policies (Tsanis et al., 2008).

3.2. Data

The ANN and WA-ANN models in this study were developed
using hydrological and meteorological variables. More specifically,
the data used in this study consisted of monthly total precipitation
(mm), monthly average temperature (°C), and monthly average
groundwater level (mm). The average temperature and total precip-
itation data from November 2002 to October 2009 were obtained
from the national climate data and information archive on the web-
site of Environment Canada. Monthly average groundwater level
data was obtained from November 2002 to October 2009 of two rep-
resentative wells located in the cities of Mercier and St-Remi, both of
which are within the Chateauguay watershed boundary. The
groundwater level data was provided by the Ministry of Sustainable
Development, Environment and Parks of Quebec.

4. Model development
4.1. ARIMA models

The ARIMA models for groundwater level forecasting for both
study sites were developed using the Statistica software program
(Statistica, 2006). Since the ARIMA method is a univariate time series
analysis method, only one variable can be used (which in this case
was the groundwater level data). The first step is to determine the
stationarity of the input data series via the autocorrelation
function (ACF). It was determined that both the Mercier and St-Remi
groundwater level data series were not stationary. The ARIMA model
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requires the input data to have a constant mean, variance, and autocor-
relation through time. Therefore, the input data series were trans-
formed into a stationary model through a differencing process. In the
models that were developed, the number of autoregressive terms (p)
varied from O to 3, and the number of lagged forecast errors in the pre-
diction equation (q) varied from 0O to 3. The number of nonseasonal dif-
ferences (d) was set to 1 to ensure the stationarity of the data. Following
this, parameter estimation in the ARIMA models was performed, and
then groundwater levels were forecasted using the ARIMA models
developed in the preceding steps. All ARIMA models were first trained
using the data in the training set (November 2002 to February 2009),
and then tested using the testing set (March 2009 to October 2009).

4.2. ANN models

The ANN models for groundwater level forecasting for both
study sites were developed using the MATLAB R2010 software pro-
gram (MATLAB, 2010). The regular ANN models with regular input
data (i.e., those not using wavelet decomposed input data) con-
sisted of an input layer, one single hidden layer, and one output
layer consisting of one node denoting the targeted monthly aver-
age groundwater level. The ANN models were trained and tested
based on different combinations of time series and numbers of
neurons in the model’s hidden layer. The input nodes consisted
of various combinations of the following physical variables: the
monthly average temperature, the monthly total precipitation,
and the monthly average groundwater. Various combinations of
these variables from the current month, from 1 month before, from
2 months before, from 3 months before, and from 4 months before
were tested.

The number of neurons in the hidden layer was optimized using
the available data through the use of a trial-and-error procedure
(Jain et al., 2001). The number of neurons in the hidden layer is
responsible for capturing the relationship among various input
and output variables considered in developing an ANN. Each ANN
model was tested on a trial-and-error basis for the optimum num-
ber of neurons in the hidden layer (found to be 2 for all models).
The models were then compared using the statistical measures of
goodness of fit described earlier.

For the ANN models, the data series were divided into a training
set (November 2002 to June 2008), validation set (July 2008 to Feb-
ruary 2009), and a testing set (March 2009 to October 2009).

4.3. WA-ANN models

The original data (monthly average groundwater level, monthly
average temperature, and monthly total precipitation) was decom-
posed into a series of details (DWs) using a modified version of the
a trous DWT (so that future data values are not used in the calcu-
lation). The DWs represented the detail frequency, time and loca-
tion information of the original series. The decomposition
process was iterated with successive approximation signals being
decomposed in turn, so that the original time series was broken
down into many lower resolution components. To select the num-
ber of decomposition levels or DWs, L = int[log(N)] was used
(Nourani et al., 2009). L is the decomposition level while N is the
number of time series data. In this study, N is 84 so L is approxi-
mately 2. As such, two wavelet decomposition levels were selected
(DW1 and DW2).

In this research DW1 and DW?2, as well as the approximate ser-
ies, were summed and used as inputs to the ANN models. For the
WA-ANN models, the ANN networks that were developed con-
sisted of an input layer, a single hidden layer, and one output layer
consisting of one node denoting the groundwater level. The input
nodes consisted of various combinations of the following variables:
the summed DW series (and the approximation series) of the aver-

age temperature, the total precipitation, and the average ground-
water level (from the current month, from the previous month,
from 2 months before, from 3 months before, and from 4 months
before). As with the regular ANNs, each model was tested on a trial
and error basis to determine the optimum number of neurons in
the hidden layer based on different combinations of variables in
the model’s input layer and the number of neurons in the model’s
hidden layer. The optimum number of neurons was found to be 2
for all models.

For the WA-ANN models, the data series were divided into a
training set (November 2002 to June 2008), a validation set (July
2008 to February 2009), and a testing set (March 2009 to October
2009).

5. Results and discussion

For both study sites (Mercier and St-Remi) the best WA-ANN
models were found to provide more accurate groundwater level
forecasts than both the best ANN models and the ARIMA models
for 1 month lead time forecasting. For both study sites, the best
WA-ANN models were a function of the total precipitation from
the current month, the previous month and 2 months before; the
average temperature from the current month, the previous
month and 2 months before; and the average groundwater level
from the current month and the previous month. The best WA-
ANN models for both study sites had 2 neurons in the hidden
layer.

For both study sites, the best regular ANN model had the same
variables as the best WA-ANN model for both sites (i.e., the total
precipitation from the current month, the previous month and
2 months before; the average temperature from the current month,
the previous month and 2 months before; and the average ground-
water level from the current month and the previous month). The
best ANN models for both sites also had 2 neurons in the hidden
layer. For both study sites, the best ARIMA model was a (1, 1, 1) AR-
IMA model, and so the number of autoregressive terms (p), the
number of lagged forecast errors in the prediction equation (q),
and the number of non seasonal differences (d) were each set at
one.

The best WA-ANN models for the Mercier and St-Remi sites had a
testing RMSE of 0.049 m and 0.553 m respectively (Tables 3 and 4),
and were superior to the best ANN model and ARIMA model, which
had a testing RMSE of 0.198 m and 0.246 m for the Mercier site and
0.814 m and 4.137 m for the St-Remi site. The lower RMSE values
(with 0 being a perfect fit value) indicate that the best WA-ANN

Table 3
Comparison of the best WA-ANN model with the best ANN model and ARIMA model
for groundwater-level forecasting at Mercier station during the testing period.

Model Best ANN statistical Best WA-ANN Best ARIMA
results statistical results statistical results
R? 0.612 0.972 0.751
E 0.370 0.970 0.335
RMSE (m) 0.198 0.049 0.246
Table 4

Comparison of the best WA-ANN model with the best ANN model and ARIMA model
for groundwater-level forecasting at St-Remi station during the testing period.

Model Best ANN statistical Best WA-ANN Best ARIMA
results statistical results statistical results

R? 0.752 0.884 0.566

E 0.717 0.869 0.553

RMSE (m) 0.814 0.553 4137
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model had smaller differences and discrepancies between the fore- The best WA-ANN models for the Mercier and St-Remi sites had
casted groundwater level and the observed groundwater levels at a testing R? of 0.972 and 0.884 respectively (Tables 3 and 4), and
both sites in the Chateauguay watershed. were superior to the best ANN model and ARIMA model, which

Groundwater Level (m)
47.00

Observed vs Forecasted Groundwater Level

46.00

45.00

44.00
1 2 3 4 5 6 7 8

=—Qbserved = Forecasted Month

Fig. 3. Comparison of forecasted versus observed groundwater level at Mercier station using the best WA-ANN model for 1 month ahead forecasting during the testing
period.
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Fig. 4. Comparison of forecasted versus observed groundwater level at Mercier station using the best ANN model for 1-month ahead forecasting during the testing period.
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Fig. 5. Comparison of forecasted versus observed groundwater level at Mercier station using the best ARIMA model for 1-month ahead forecasting during the testing period.
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had a testing R? of 0.612 and 0.751 for the Mercier site and 0.752 respectively (Tables 3 and 4), and were superior to the best ANN
and 0.566 for the St-Remi site. The best WA-ANN models for the model and ARIMA model, which had a testing E of 0.370 and
Mercier and St-Remi sites had a testing E of 0.970 and 0.869 0.335 for the Mercier site and 0.717 and 0.553 for the St-Remi site.
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41.00
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Month
~———Qbserved ———Forecasted

Fig. 6. Comparison of forecasted versus observed groundwater level at St-Remi station using the best WA-ANN model for 1-month-ahead forecasting during the testing period.
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Fig. 7. Comparison of forecasted versus observed groundwater level at St-Remi station using the best ANN model for 1-month-ahead forecasting during the testing period.
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Fig. 8. Comparison of forecasted versus observed groundwater level at St-Remi station using the best ARIMA model for 1-month-ahead forecasting during the testing period.
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Fig. 9. Scatterplot comparing observed and forecasted groundwater levels using the best WA-ANN model for 1 month ahead forecasting during the testing period at Mercier station.

Fig. 10. Scatterplot comparing observed and forecasted groundwater levels using the best ANN model for 1 month ahead forecasting during the testing period at Mercier station.
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Fig. 11. Scatterplot comparing observed and forecasted groundwater levels using the best ARIMA model for 1 month ahead forecasting during the testing period at Mercier station.
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Fig. 12. Scatterplot comparing observed and forecasted groundwater levels using the best WA-ANN model for 1 month ahead forecasting during the testing period at St-Remi station.
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Fig. 13. Scatterplot comparing observed and forecasted groundwater levels using the best ANN model for 1 month ahead forecasting during the testing period at St-Remi station.

The higher the R?> and E values (with 1 being a perfect fit value)
indicate that the WA-ANN model is more accurate.

Figs. 3-5 compare the observed groundwater level with the
forecasted groundwater level during the testing period at the
Mercier site for the best WA-ANN, ANN, and ARIMA models,
respectively. Figs. 6-8 compare the observed groundwater level
with the forecasted groundwater level during the testing period
at the St-Remi site for the best WA-ANN, ANN, and ARIMA models,
respectively. It can be seen that the best ANN model and the best
ARIMA model tend to over-forecast the groundwater level for both
stations, while the WA-ANN model provides closer estimates to
the corresponding observed groundwater level.

Figs. 9-14 are scatterplots comparing the observed and fore-
casted groundwater levels using the best WA-ANN model, the best
ANN model and the best ARIMA model for 1 month lead time fore-
casting during the testing period at the Mercier and St-Remi sites.
It can be seen that the WA-ANN model has less scattered estimates
and that the values are denser in the neighborhood of the straight
line compared to the ANN model and ARIMA model. Overall, it can
be concluded the best WA-ANN model at both study sites provided
more accurate forecasting results than the best ANN model and the
best ARIMA model for groundwater level forecasting with a lead
time of 1 month.

6. Conclusions

In this research, a new method based on coupling discrete
wavelet transforms (WA) and artificial neural networks (ANN) for

groundwater level forecasting applications was proposed to help
watershed managers plan and manage groundwater supplies in a
more effective and sustainable manner. The WA-ANN models were
compared to regular ANN models and ARIMA models for average
groundwater level forecasting with a 1 month lead time at two
sites in the Chateauguay watershed in Quebec. The coupled wave-
let-neural network models were developed by combining two
methods, namely the discrete wavelet transform and artificial neu-
ral networks. Using the discrete wavelet transform, each of the ori-
ginal data series was decomposed into component series that
carried most of the information, which were then used in forecast-
ing via artificial neural networks. The discrete wavelet transform
allowed most of the ‘noisy’ data to be removed and it facilitated
the extraction of quasi-periodic and periodic signals in the original
data time series.

This study found that the best WA-ANN model was substan-
tially more accurate than the best ANN model and the best ARIMA
model. It is hypothesized that the WA-ANN models are more accu-
rate because wavelet transforms provide useful decompositions of
the original time series, and the wavelet-transformed data im-
proves the performance of the ANN forecasting model by analyzing
useful information on various decomposition levels. The accurate
forecasting results for both the St-Remi and Mercier sites in the
Chateauguay watershed indicate that the WA-ANN method is a
potentially very useful new method for groundwater level
forecasting.

Highly accurate groundwater level forecasting models such as
the WA-ANN model that was developed in this study are a useful
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Fig. 14. Scatterplot comparing observed and forecasted groundwater levels using the best ARIMA model for 1 month ahead forecasting during the testing period at St-Remi station.

tool in sustainable groundwater extraction and optimized manage-
ment in a watershed. It is recommended that future studies should
explore the use of the WA-ANN method in groundwater level fore-
casting for: other watersheds in different geographical regions;
other lead times (such as daily, weekly, or yearly forecasting);
comparing the forecasting performance of the wavelet based noise
removal method to other filtering methods; comparing the use of
different types of continuous (Morlet and Mexican Hat) and dis-
crete (Daubechies) mother wavelets in the wavelet decomposition
phase of the wavelet neural network forecasting method; compar-
ing the wavelet neural network method with other new methods
such as support vector regression with localized multiple kernel
learning; and ensemble forecasting via the use of the bootstrap
method to develop wavelet-bootstrap-neural network models.
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