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Abstract— Icing is a complex problem facing wind turbines 

operating in Nordic climates. It is affected by various 

instantaneously fluctuating parameters. Due to the deformation 

of blades' airfoil on account of icing, a significant drop in 

aerodynamic performance brings turbines to lose much of their 

productivity. Modelling and simulation became indispensable 

tools to estimate the effect of icing on the operation of wind 

turbines. However, the analysis of the iced airfoils via simulation 

is not practical for real-time ice prediction. This paper uses a 

combined analytical-CFD simulation approach to rapidly 

estimate the aerodynamic parameters of iced airfoils. The 

method is used to create a database of aerodynamic losses for 

several scenarios of weather conditions. The results have been 

processed by a neural network optimization algorithm to predict 

the aerodynamic losses of iced airfoils under varying scenarios of 

icing conditions. The ANN analysis results demonstrated 

consistency between the different scenarios of the database. They 

also highlighted the important influence of certain simulation 

parameters, such as the liquid water content and the angle of 

attack. Further investigation is recommended to determine 

correlations between the relevant parameters. 

Keywords— wind turbine icing; modelling of ice accretion; icing 

simulation; CFD; aerodynamic performance 

I. INTRODUCTION 

Wind turbines are important alternative sources of energy 

to combat climate change. Very high wind potential is 

available in northern regions, especially in winter. The most 

challenging problem of wind turbine exploitation in very cold 

environments is icing. 

The ice accretion phenomenon is treated in this paper in 

terms of its main impact on wind turbines, i.e., the estimation 

of production loss due to the geometric deformation of the 

blades’ airfoils. The problem of icing is addressed in this study 

being a complex phenomenon whose resolution calls on 

several areas of knowledge [1]. At the same time, the 

metrological and wind turbines' operational parameters vary 

considerably according to the wind farm site. Hence, the need 

to optimize icing protection methods to adapt wind turbines to 

local icing conditions. 

The literature review showed that modelling and simulation 

are essential tools to estimate the production loss in order to 

optimize wind turbines' operation under specific icing 

conditions. These tools depend on Computational Fluid 

Dynamics (CFD) to estimate the aerodynamic coefficients for 

the iced airfoils [2]. Then, these coefficients can be 

extrapolated to generate the power curves for both clean and 

iced wind turbines in order to estimate the production loss. 

The overall process has been discussed in a review of studies 

on the CFD-BEM approach for estimating power losses of 

iced-up wind turbines [2]. The modelling approaches and the 

simulation techniques adopted for wind turbine icing are also 

discussed and synthesized in another review article [3]. These 

approaches and techniques have been adopted in this research 

study, having been reviewed and recommended in the 

literature.  

Estimating the aerodynamic losses due to icing via 

simulation becomes unfeasible when it comes to modelling 

several scenarios of icing conditions or for the real-time 

prediction of icing. Alternatively, a combined analytic-CFD 

proposed in this paper can help rapidly estimate the 

aerodynamic losses of iced airfoils under multiple icing 

conditions. 

The objective of this research study consists in its finality 

to achieve an intelligent system with reduced parameters, 

which makes it possible to identify, in real-time, the 

meteorological conditions favourable to the occurrence of 

icing events, as well as to predict the form, type and severity 

of ice accretion and its impact on wind turbines in order to 

optimize wind turbine operation scenarios in icing conditions. 

In this vision, the availability of a method for estimating 

aerodynamic losses for a combination of geometric design, 

meteorological and operational parameters of the wind turbine 

is crucial to achieving this final objective. This work brings 

together several research studies to recommend a strategy to 

quickly create a database of aerodynamic losses in several 

scenarios of metrological conditions without the need to 

analyze icing airfoils using costly simulations.  

The proposed method depends on an analytical model 

referenced in the ISO 12494 standard for ice accretion on a 

cylinder [4]. In a previous study submitted for publication, this 

model was used with the CFD simulations to generate a 

conversion factor between the mass of ice collected on a 

cylinder and an airfoil. The selected airfoil is the NACA 64-

618, located at a section of 97% of the blade span of the NREL 

5MW wind turbine [5]. This blade’s section has the smallest 

chord and thickness to chord ratio and the highest speed of the 

blade airfoils; Therefore, more ice accumulation is found in 

this section [6, 7]. The averaged conversion factor has been 

used in this paper to create a database of aerodynamic losses 

under several icing conditions. 

The scenarios created in the database using the proposed 

method have been analyzed by an artificial neural network 

(ANN) with the aim of developing correlations between icing 

conditions and production losses. The ANN analysis of the 

databases showed the importance of specific parameters in 

estimating aerodynamic losses via simulation. 

The results examined with the artificial neural network 

demonstrated consistency between the different scenarios. 

They also demonstrated the important influence of specific 
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parameters. The proposed method could help find correlations 

between the meteorological conditions and the aerodynamic 

losses of the iced airfoils. The remainder of the paper is 

organized in the following sections:  

• Section II presents the combined analytical-CFD 

simulation approach used to calculate the averaged 

conversion factor. This approach can rapidly estimate 

the aerodynamic losses of iced airfoils for several 

scenarios of weather conditions. 

• Section III presents the proposed method for the 

analytical estimation of aerodynamic losses. An extract 

from the database created for iced airfoils is also 

presented. 

• Section IV presents the use of a neural network 

optimization algorithm to predict the aerodynamic 

losses of wind turbine blade airfoil under varying 

scenarios of icing conditions. 

• Section V discussed the results of the ANN analysis on 

the database. 

• Section VI presents the conclusion and 

recommendations to enhance the prediction and make 

use of it. 

II. COMBINED ANALYTICAL-CFD SIMULATION 

APPROACH 

A method validated and incorporated in another paper 

submitted for publication has been used in this study to rapidly 

estimate the aerodynamic characteristics of the NACA 64-618 

iced airfoil. The method depends on a combined analytical-

CFD approach used to create a conversion factor between the 

ice accreted on the airfoil and that accreted on a reference 

collector calculated analytically. This factor has been 

calculated considering the same icing conditions applied for 

both the cylinder and the airfoil. The factor has been averaged 

and validated using CFD simulations for several scenarios of 

icing conditions.  

Based on the review study of modelling and simulation 

approaches by Martini, et al. [2], the CFD simulation has been 

carried out using the “Multi-Shot” simulation scheme 

available in ANSYS FENSAP-ICE software [8]. The study 

focused on the dry regime of accretion. The temperature zone 

in which the database was elaborated is shown in Figure 1. 

The simulation scenarios have been chosen for the dry zone of 

ice accretion, for temperatures between -10℃ and -5℃ 

corresponding to 10 m/s wind speed. As described in 

ISO12494. [4], the hard rime is generally granular, white, or 

translucent with a density of 600–900 kg/m3, while soft rime 

is white or opaque of density: 100–600 kg/m3 [9] 

Figure 1. Empirical relationship between ice type, wind speed and 

temperature as described in ISO 12494 standard [4] 

The Makkonen model [10] forms the theoretical basis for 

ice accretion calculations, ultimately determining the ice 

accretion rate on a structure [11]. It is based on three ratios: 

collision efficiency, collection efficiency and accretion 

efficiency. This model has recently been updated to include a 

more detailed treatment of wet snow growth. This flexibility 

allows the model to be used for a wide range of icing problems 

[12]. As simplified accretion models can be run quickly, these 

models have often been coupled with Numerical Weather 

Prediction (NWP) models to estimate risk under different 

weather conditions [12]. A VTT study [13] used a conversion 

factor between ice accretion on a cylinder and ice accretion on 

a rotating wind turbine blade to estimate the effects of icing 

on energy production under typical meteorological conditions 

of the Finnish climate. The method for calculating the 

averaged k-factor with the considered icing conditions is 

described in Figure 2. In this part of the study, the Makkonen 

model was used to create a database of aerodynamic losses 

under several scenarios of weather conditions. A standard 

cylinder of 30 mm in diameter was chosen for the modelling 

based on the standard of ISO12494 [14]. The slowly rotating 

cylinder encountering the same conditions that lead to ice 

accretion on a wind turbine blade is used as a reference 

collector [15]. The details of the theoretical basis of the 

modelling are presented in the ISO12494. [4] and in 

Makkonen and Poots [10]. 

 

Figure 2. A relation between ice accretion on a cylinder and an airfoil 

is determined (k-factor) 

III. ANALYTICAL ESTIMATION OF AERODYNAMIC 

LOSSES  

The above-mentioned analytical-CFD study has been used 

to rapidly estimate the aerodynamic characteristics of the 

NACA 64-618 iced airfoil for several scenarios of icing 

conditions. The proposed method and the formulas developed, 

the steps and the calculations necessary to carry out this 

method are illustrated in Figure 3. The steps of the 

methodology adopted to create the database of the 

aerodynamic losses as a function of icing conditions are 

described in the following steps: The first step is to calculate 

the averaged k-factor in several scenarios of icing conditions. 

The second step considers the estimation via a CFD simulation 

of the ice accretion mass on the airfoil and the aerodynamic 

characteristics of the airfoil for a representative case. The third 
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step is to estimate the airfoil aerodynamic characteristics for 

different scenarios of icing conditions using the averaged k-

factor and analytical calculations of icing around the cylinder. 

The fourth step consists in creating a database of the 

aerodynamic losses of the iced airfoils for several scenarios of 

icing conditions. This database was quickly generated by 

applying the explained method. 

The key parameters affecting the simulation to calculate the 

aerodynamic losses are limited in this study to the liquid water 

content (LWC), the median volume diameter of water droplets 

(MVD), the wind speed (V), the air temperature (T), and the 

angle of attack (AOA). The study is limited to the NACA 64-

618 airfoil of chord length (C=1.149 m) since the estimate of 

the average k-factor depends on the airfoil geometry [16]. The 

accretion time is taken as one hour (3600 sec) for all scenarios. 

Therefore, the influence of time was not considered in this 

study in order to reduce the number of parameters to a 

minimum. However, if the accretion time changes, one must 

create a different database for each period or introduce this 

parameter as a key factor. The roughness factor is crucial to 

the accuracy of ice accretion simulations [17]. This factor was 

not among the key parameters in our database. When using the 

Shin, et al. [18] model of roughness, this parameter is 

implicitly considered, being dependent on the other key 

parameters. 

 

Figure 3. Method for rapid calculation of aerodynamic parameters of 

iced airfoils 

The database was prepared with percentage values of 

aerodynamic losses %CL and %CD according to the five input 

parameters (V, T, LWC, MVD, AOA). An extract from the 

database created for iced airfoils is presented in Figure 4.  

IV. USING THE ANN FOR THE PREDICTION OF 

AERODYNAMIC LOSSES 

This section presents a neural network optimization 

algorithm to directly predict the aerodynamic losses of wind 

turbine blade airfoil under varying scenarios of icing 

conditions. The database resulting from the analytical-CFD 

simulation method is analyzed with the Artificial Neural 

Network (ANN) to examine the consistency between the 

different scenarios and find out possible correlations between 

the affecting parameters to investigate the possibility of 

reducing the order of the model. The ANN is a powerful tool 

that can help for a real-time prediction of ice that keeps 

learning and enhancing. 

To model a neural network, one needs to present the 

independent factors at the input to get a MISO (Multiple-Input, 

Single-Output) or a MIMO style (Multiple-Input, Multiple-

Output) to give a specific or multifaceted result. Several 

independent factors and several outputs dependent on these 

factors refer to a MIMO style as “multiple-input, multiple-

output.” 

The results obtained in the database created for iced airfoils 

(see Figure 4) are presented by scenarios of four angles of 

attack for every group of icing parameters. These data were 

reorganized and presented by scenarios of five input 

parameters to be consistent with the MIMO style (Multiple-

Input, Multiple-Output), as shown in Figure 5. This 

configuration has been processed, examined, and analyzed by 

the artificial neural network (ANN). This representation of 

data gives five factors or five independent variables that will 

be presented at the network's input (V, T, LWC, MVD, AOA) 

to give a function with two dependent variables (%CL 

and %CD). We also investigated with five independent 

variables and one dependent variable for the %CL case and 

then for the %CD case in order to compare the efficiency of 

the method. The data in Figure 5 has been transformed into a 

text file to be read by the ANN program. The application 

chooses an optimal configuration of the neural network, which 

will allow, according to the five factors, to build a function 

that will make it possible to predict the values of %CL 

and %CD. 
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Figure 4. An extract from the database created for iced airfoils. 

 

 

Figure 5. The MIMO style of the database. 

The ANN application provides a network of 3 hidden layers 

[2, 1, 5] (of two neurons on layer 1, one neuron on layer 2 and 

five neurons on layer 3). The input consists of 5 linearly 

independent factors for an output of 2 dependent factors. 

Figure 6 presents the configuration of the network produced 

by the ANN application. 

 

Figure 6. The neural network configuration 

 

 

 

V. RESULTS AND DISCUSSION 

Once the configuration has been chosen, the neural network 

builds the function by supervised learning according to a 

percentage of the samples chosen randomly (the network will 

train about 33% of the valid data). The network then works on 

the validation data (about 60% of the complete database). The 

rest of the data is eliminated since it was outside the permitted 

range calculated by the application. Figure 7 gives information 

about the number of learning cycles needed to find the 

adjustment function. Note that the learning curve quickly 

reaches the expected error, which is smaller than 0.01. The 

score is 113 for data validation of 80.14% within 10%. This 

learning speed is dependent on the validation percentage 

expected when learning the database. If we want better 

precision during a real-time application, it is important to find 

a compromise that will allow us to predict the accumulation 

of ice that will form on the blades with good precision. It is 

very likely that the alert will come too late and that the 

accumulation of ice cannot be removed in time to restore the 

wind turbine to optimal operation. The learning time found in 

this example is on the scale of a second for a microcontroller 

operating at 150 MHz. 

We also note that there are 22 lines of training data and 141 

lines of validation data out of a total of 195 lines of data. This 

results in 32 rows of data that have been eliminated from the 

validation examples because the values of one or other of the 

factors were outside the range allowed by the configuration of 

the control. The prediction will therefore be within a range of 

10%. As mentioned above, it is possible to obtain a smaller 

range for a prediction close to reality, but there will be a delay 

to be taken into consideration which may exceed the time 

taken to warn the defrosting system during the app in real-time. 

The results of the ANN analysis over the database for iced 

airfoils have demonstrated consistency between the different 

scenarios of the database. They also highlighted the important 

influence of certain parameters, such as the liquid water 

content and the angle of attack. Figure 8 is provided by the 

ANN tool to present the relative importance of the factors that 

will form the MIMO system from 5 independent factors to 2 

dependent outputs. It demonstrates the relative importance of 

the icing parameters on the resulting aerodynamic losses. The 

liquid water content (LWC) and angle of attack (AOA) were 

the most important parameters that affect the estimation of the 

aerodynamic losses due to icing. The effect of temperature T 

and wind speed V showed less importance. In fact, as our 

analysis is limited to the rime ice formation, the importance of 

the temperature has less effect when accretion stays in the dry 

zone of ice. 
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Figure 7. Training curve of the neural network 

We note that the median volume diameter (MVD) is of less 

importance in ANN analysis, explained by the fact that this 

factor is probably found in the LWC factor, or it is implicitly 

correlated with the rest of the parameters. Further 

investigation is needed to confirm this analysis and investigate 

the possibility of dropping the MVD of the input parameters 

to reduce the modelling order. Indeed, one of the main 

objectives of the reduced-order modelling in this field is to be 

able to predict the aerodynamic losses by omitting the LWC 

and MVD parameters. These two parameters are difficult to 

obtain for wind turbine farms. They are correlated with the 

meteorological conditions by complex empirical correlations 

according to the type of precipitation and the atmospheric 

conditions of icing [16]. For the moment, these two 

parameters are present in this database because we are unable 

to obtain results without these two factors. 

 

Figure 8. The relative importance of the independent factors 

In order to improve learning, enormous computing power 

is required. Deep learning would certainly allow more 

accurate results than what we get with the ANN tool. 

Moreover, the activation functions of the neurons are 

unknown to the network established by the used ANN tool. If 

we had Gaussian activation functions, we would have much 

better prediction and faster learning. Tests on five inputs and 

one output at a time, either for %CL or %CD, respectively, are 

also recommended. 

VI. CONCLUSION 

As mentioned in the introduction, the objective of this 

research study consists of its finality to realize an intelligent 

real-time icing prediction system. The system, with reduced 

parameters, should be able to identify the meteorological 

conditions favourable to the occurrence of icing events and 

predict the form, type and severity of ice accretion and its 

impact on wind turbines to optimize wind turbine operation in 

icing conditions.  

This study proposed a method for rapid estimation of the 

aerodynamic losses of wind turbine blade airfoils in different 

scenarios of meteorological conditions. The method made it 

possible to estimate production losses directly from weather 

conditions without having to analyze the iced airfoil with 

simulations. The generated database has been analyzed using 

a neural network optimization algorithm for predicting 

aerodynamic losses. The results of the ANN analysis 

demonstrated consistency between the different scenarios of 

the database. It showed that the parameters most affecting the 

estimation of aerodynamic losses by simulation are the liquid 

water content LWC and the angle of attack AOA. The median 

volumetric diameter of water droplets MVD also affects the 

simulation results. However, there is little evidence from the 

latest analysis that the neural network could dispense with this 

parameter to predict aerodynamic losses. Additional studies 

for a wide range of scenarios are recommended to confirm the 

possibility of dispensing with the MVD to predict the 

aerodynamic losses of the iced airfoils. Also, deep learning 

would certainly allow more accurate results to improve 

learning. 

The use of the ANN in a real-time prediction of ice 

depending on the weather conditions is a powerful tool that 

keeps learning and enhancing to improve the energy 

efficiency of wind turbines in Nordic countries. 
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