Organizational and Operational Requirements for Space Debris Remediation

This presentation is intended to express the personal views of the presenter and does not reflect the official position of institutions or sponsors.

International Interdisciplinary Congress on Space Debris Remediation November 11 and 12, 2011 Faculty of Law, McGill University, Montreal, Canada

Yukihito Kitazawa (IHI Corporation, JAPAN)

From Mitigation to Remediation

Mitigation


Mitigation aims at reducing the generation of space debris through combined measures associated with the design, manufacture, operation, and disposal phases of a mission.

Remediation

Remediation aims at managing the amount of existing space debris through debris removal

Cf. Overview of debris mitigation framework in JAPAN

Cf. Comarison of recommendations/requirements in debris mitigation standards (based on Akira Kato (JAXA,2011)

		Measures	UN Guidelines	IADC Guidelines	ISO 24113	JAXA Standard	
Mission Related	Objects	Operational Debris	Addressed in Rec-1	Addressed in 5.1	Required	Required	
		Slag from solid motor			Required	Required	
		Pyrotechnics			Combustion Products < 1 mm	Combustion Products < 1 mm	
		secondary ejector					
On-orbital	Break-ups	Intentional Destruction	Addressed in Rec-4	Addressed in 5.2.3	Required	Required	
		Accident during Operation	Addressed in Rec-2	Addressed in 5.2.2	Probability of BU $< 10^{-3}$	Probability of BU $< 10^{-3}$	
				(Monitoring)	Probability of BU < 10		
		Post Mission Break-up (Passivation, etc.)	Addressed in Rec-5	Addressed in 5.2.1	Required	Required	
		with Large Objects	Addressed in Rec-3			P : 1 (G111 G011)	
Col	llision		(CAM, COLA)	Addressed in 5.6		Required (CAM, COLA)	
		with Small Objects		Addressed in 5.6		Required	
	GEO	Addressed in Rec-7	Reorbit at EOL		235 km+ (1,000 · Cr · A/m)	235 km+ (1,000 · Cr · A/m)	
				235 km+ (1,000 · Cr · A/m)	e < 0.003	e < 0.003	
				e < 0.003	Success Probability > 0.9	Success Probability >0.9	
					100 years' guarantee	100 years' guarantee	
osal			GEO Lower Limit	-200 km		-200 km	
Disp			Protected Inclination	-15< latitude <15 deg.	-15< latitude <15 deg.	-15< latitude <15 deg.	
Post Mission Disposal	LEO (MEO)	Addressed in Rec-6	Reduction of Orbital Lifetime	Addressed in 5.4	EOL Lifetime < 25 years	EOL Lifetime < 25 years	
				(Recommend 25 years)	Success Probability >0.9	Success Probability >0.9	
				(Recommend 23 years)		Success Flobability >0.9	
			Transfer to Graveyard		Required	Required	
			Transier to Graveyald		100 years' guarantee		
			On-orbital Retrieval	Addressed in 5.4		Required	
		Addressed in Rec-6	Ground Casualty	Addressed in 5.4	Required	$Ec < 10^{-4}$	

Discussion issues

- 1. Who should undertake space debris remediation?
- 2. What is needed to reduce the risk of mishaps, misperceptions, and mistrust?
- 3. What are specific transparency and confidence building measures, norms of behaviour, and best practices for debris remediation?
- 4. How do you handle the economics and funding?

1. Who should undertake space debris remediation?

The best practice of organizations for debris mitigation is reaching its limit, and debris removal needs to be considered.

- ◆ As a general principle, the beneficiary (producer of the debris) should bear responsibility for disposing of it.
- ◆ However, under current circumstances, clean up of the orbital environment is a technologically challenging issue, and entails large costs.
- ◆ GPS, weather satellites, Earth observation satellites and other spacecraft already form social infrastructures, which give great benefits to the world, not only to the "space countries."

Through international cooperation, it is necessary for those participating in space development to pay their fair share

2. What is needed to reduce the risk of mishaps, misperceptions, and mistrust?

What is meant by "reduce the risk"?

For debris mitigation

(Increasing the reliability of spacecraft design and manufacture)

- Implementation of space debris mitigation guidelines/requirements (e.g. ISO 24113)

For avoiding accidental collision

- Performance of collision avoidance maneuvers

The above efforts certainly reduce risk. However, the corrosion risk mainly caused by **fragments**.

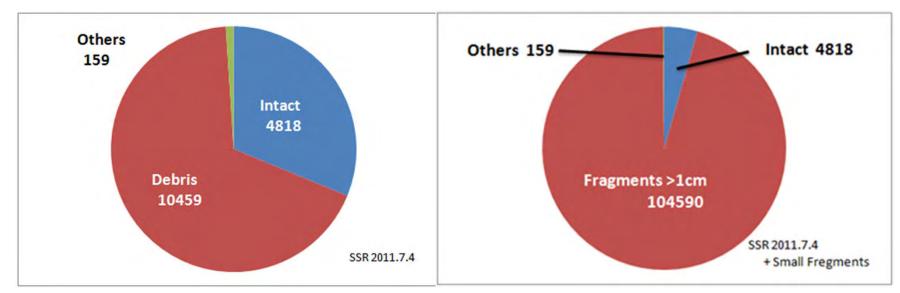


Fig. 1-a Orbital Objects (2011. 07.04) Fig. 1-b Objects larger than 1 cm (Yasaka,2011)

The hazards to the environment caused by spacecraft (includes rocket bodies) should be quantitatively evaluated. (eq. Spacecraft /Rocket bodies are the potential source of fragments)

International Interdisciplinary Congress on Space Debris Remediation, Nov 11 and 12, 2011, McGill University,

Proposal of evaluation index of hazardousness of object

We should observe objects capable of colliding with and damaging other objects

However, the debris creation capability (i.e. collision hazardousness) of orbiting objects is not quantitatively evaluated.

--- E.g. Which is more hazardous, many small satellites or one large one?

A quantitative indicator of an orbiting object's influence on the orbital environment is required

This indicator is important for evaluating "Remediation."

Proposal of evaluation index of hazardousness of object

An example of hazardousness index of object "Debris Index " by Yasaka (2009, 2011)

$$I_{DEB} = \alpha M \cdot A \cdot F(h) \cdot T_{orb},$$

$$(A \cdot F(h) \cdot T_{orb} \leq 1)$$

Where,

 αM : Number of fragments created by mass M of object (ex. spacecraft, rocket body, etc.)

A: Cross sectional area of the object

F(h): M&D flux at altitude h

 T_{orb} : Orbital life of the object

Numerical example of debris index (Yasaka, 2009, 2011)

If one Collision Avoidance (CA) maneuver is performed.

$$I_{DEB} = \alpha M \cdot A \cdot F(h) \cdot \varepsilon_{AVOI} \cdot T_{orb}$$

If multiple CA maneuvers are performed.

$$I_{DEB} = \alpha M \cdot A \sum_{i} F(hi) \cdot \varepsilon_{AVOI,i} \cdot T_{orb,i}$$

Satellite Type	α	Altitude	Flux	Orbital Life	Mass	Area	Debris Index	
Satellite Type	1/kg	km	1/year/m ²	year	kg	m²	w/o CA	CA
Typical SSO Sat	30	800	10-4	25	800	4	269	27
Typical GEO Sat	3	36000	10 ⁻⁶	10	2000	10	0.6	0.1
Object in SSO	30	800	10-4	100	2000	10	6000	N/A
Small Sat	30	800	10-4	25	50	0.25	0.9	N/A
Cube Sat	30	800	10-4	25	1	0.01	0.001	N/A

Fragments/Flux considered >1cm

W/O CA: No CA maneuvers

CA:10 CA maneuvers

Tentative assumptions

 $\alpha = 30(LEO), 3(GOE)$ $\varepsilon_{AVOI} = 0.1$

 $F(800) = 10^{-4} (1 \text{year/m}^2)$

 $F(36000) = 10^{-6}(1\text{year/m}^2)$

An example of another proposal for quantitative index of hazardousness of object

By Hanada (2011)

- ➤Time when the cumulative probability of collision and
- ➤ Expected number of fragments during the time exceeds 0.001

Many uncertainties still remain regarding evaluation of the indicator

- Fragmentation model of object
- Reliability of collision avoidance
- Debris flux

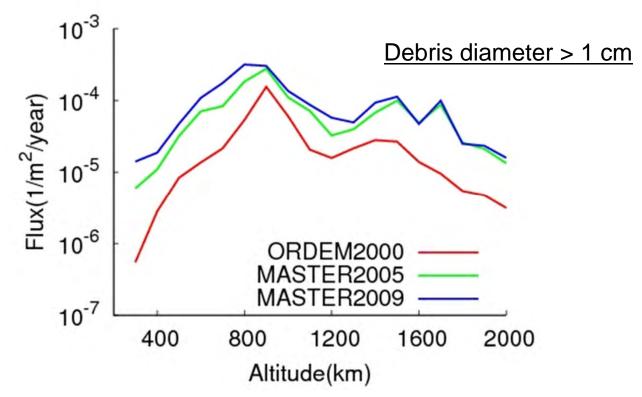
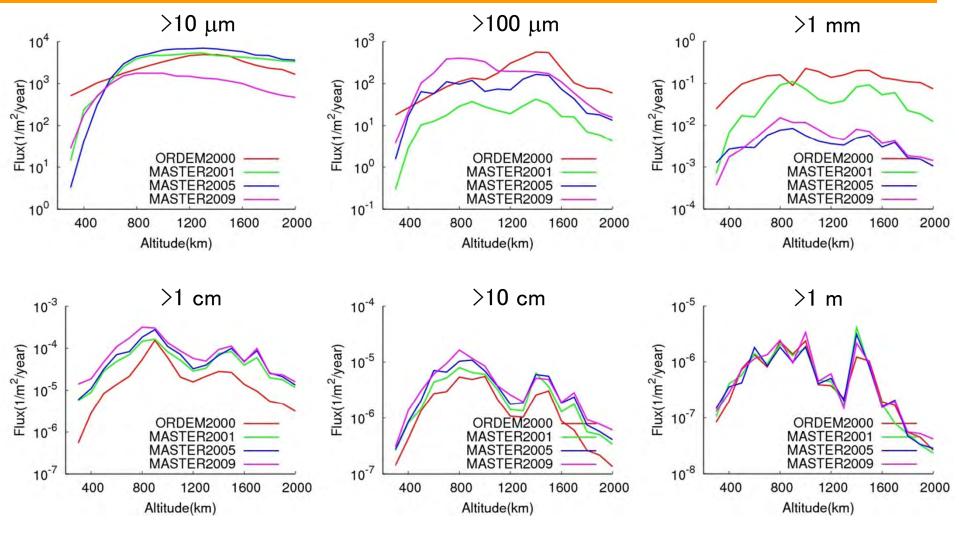



Fig. Flux against altitude at inclination 100 degrees

Example of uncertainty of debris flux model (Inclination 100 degrees)

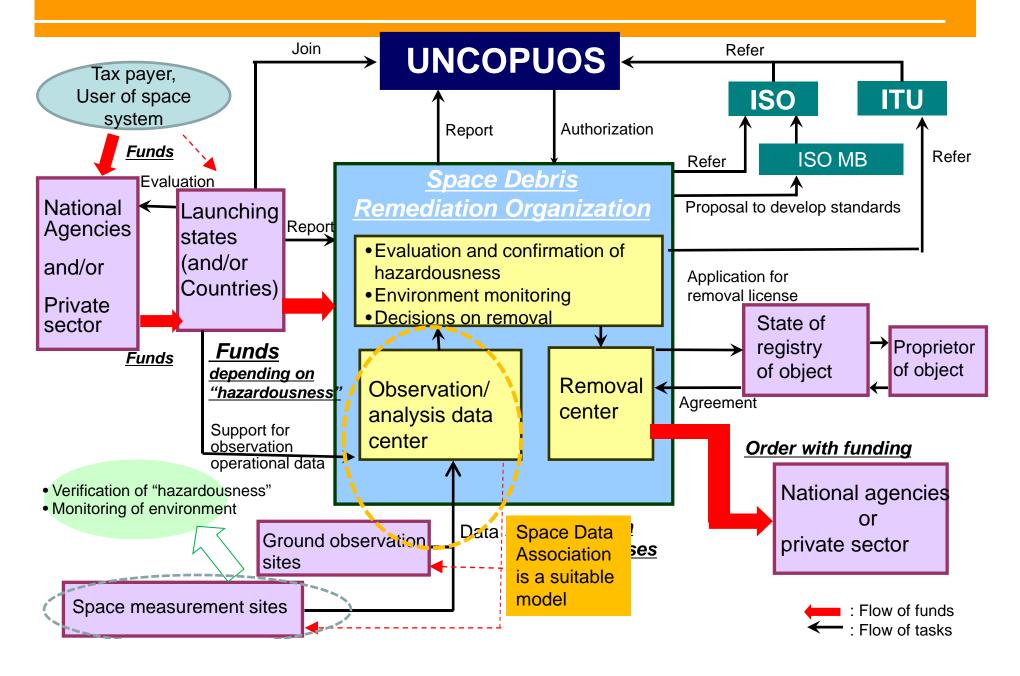
(Kanemitsu et al. ,2011)

International Interdisciplinary Congress on Space Debris Remediation, Nov 11 and 12, 2011, McGill University, Canada

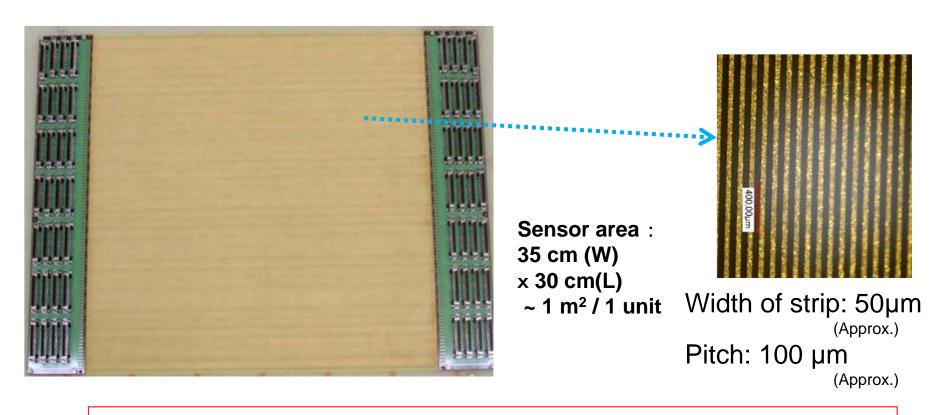
3. What are the specific transparency and confidence building measures, norms of behaviour, and best practices for debris remediation?

Basic requirements for best practices

- ➤ International standardization (consensus) of a quantitative indicator of "hazardousness"
- ➤ Confirmation of implementation of ISO 24113 (Space Debris Mitigation Requirement) and other related standards
- ➤ Information sharing/evaluation of debris environment
- ➤ Decision making on orbital debris removal (cf. Conjunction analysis; Collision probability x Mass of object)
- ➤ Negotiation with state of registry of object (proprietor of object)


For transparency, confidence building measures, and norms of behaviour

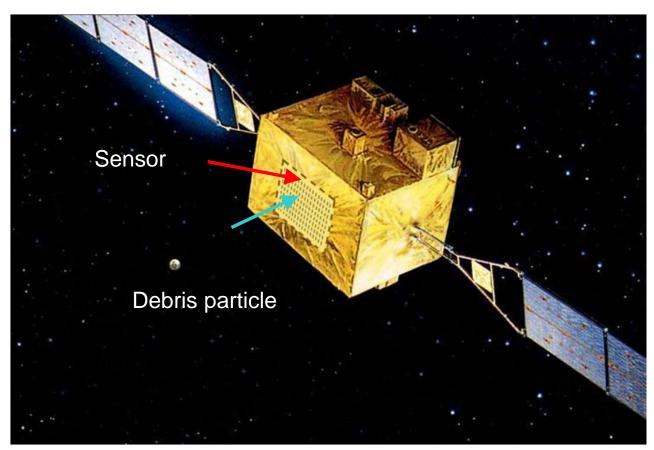
- ➤ Need to be assessed by independent international organization(s)
- ➤ The organization must have the ability to verify practices


4. How do you handle the economics and funding?

- Evaluate hazardousness index (debris index) and degree of implementation of ISO24113 on each launch.
- Based on evaluation results, launching states (or countries) supply funding to the international organization (Flexible charge rate dependent on evaluation results)
- Launching states can judge internal charges.
- "Emission trading" is also acceptable, similar to CO₂ problem
- Since the charge is based on the hazardousness index and ISO, it does not prevent small satellite missions by developing countries.
- If a national agency or private company gets a contract for orbital debris removal from the organization, funds can be recovered.

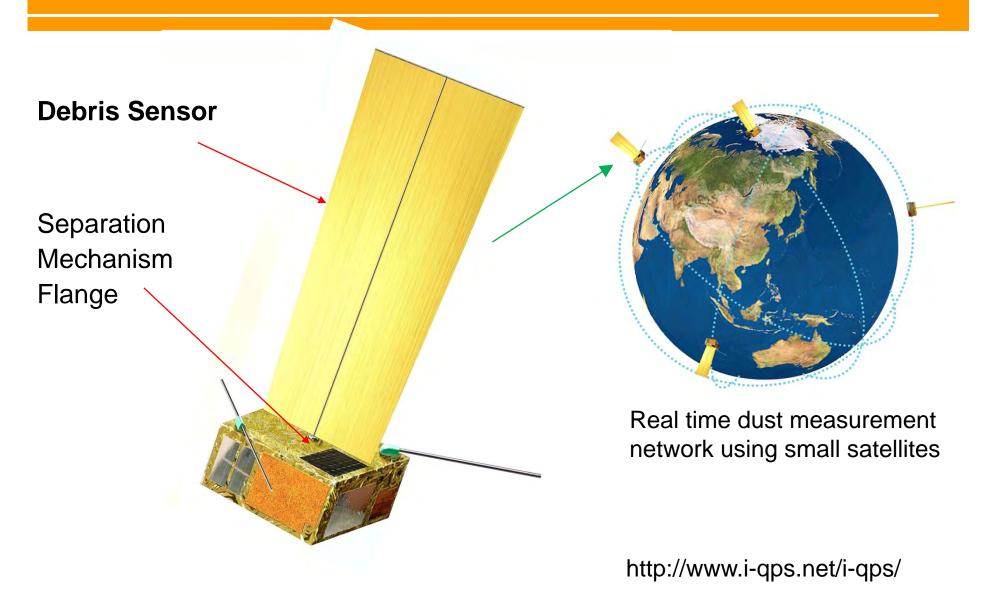
Functions of Space Debris Remediation Organization

Debris monitoring sensor BBM


One large, "flexible printed circuit board(FCP)" as a sensor and making the connections

- No mechanical connections. - Reduce the number of parts

(kitazawa eta al, 2011) 18


An example application on satellite

- 1) Environment estimation
- 2) Real time monitoring to estimate debris impact damage on a satellite.

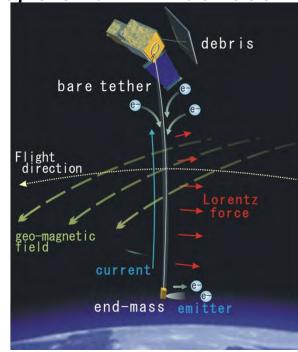
(kitazawa et al., 2011)

An example of application for a small satellite

International Interdisciplinary Congress on Space Debris Remediation, Nov 11 and 12, 2011, McGill University, Canada

Efficient Orbital Transfer: EDT (Kawaamoto et al., 2009)

 Large amount of fuel will be required for de-orbit prohibiting removal by small satellite and multiple removal by one satellite


Electrodynamic tether (EDT) is promising

No need for propellant or high electrical power

- Its thrust is so small and attaching operation will be less

challenging

	0 0				
Methods	merits	demerits			
Chemical thruster	- established technology	- low Isp - difficult to fix to debris object			
Ion thruster	- high Isp	- high electrical power			
Solid rocket motor	establishedtechnologycompact	generate numerous slag/dustdebrisdifficult to fix to debris object			
Air bag	- simple - no electrical power	huge size required for heavy debrisdebris impact risk			
EDT	high Ispeasy to attachto debris object	- debris impact risk (sustainable by net tether)			

Discussion Issues

- Cash flow estimation / cost balance
 (Quantitative evaluation costs and funds)
- Assurance of sustainable activity of the organization
- Initial investment for R&D
- How do you deal with evaluation of existing debris?
- How can all this be done with due deference to national security, intellectual property, and proprietary information?

International Interdisciplinary Congress on Space Debris Remediation, Nov 11 and 12, 2011, McGill University,

Summary

- We considered the kind of organization—and its functions—that would be suitable for debris remediation.
- Major organizational and operational requirements for the organization
- Quantitative evaluation and confirmation of hazardousness
- > Environment change monitoring
- Decision making on orbital debris removal