The Case for Air and Space Traffic Management: The Critical Case of the Protozone

By Joseph N. Pelton, Ph.D.

Manfred Lachs Conference Montreal, Canada May 2014

Comparing Airplanes, Jets, Sub-Orbital Space Planes and Rockets to Orbit

SIGNIFICANT DIFFERENCES IN AIRBORNE VEHICLES

Comparativ e Factor	Airplane	Jet	Spaceplane	Rocket to Low Earth Orbit	Dark Sky Station & HAPS
Velocity (meters/sec)	250	500	1600	7800	0 to 5
Height (km)	Up to 10	Up to 15	Up to 120	200+	50
Specific Energy (Joules/kg)	0.13	0.7	14.5	324	Not applicable

Diversity of Technical Design Demonstrated in Commercial Space Transportation Concepts to Date

Launch Concept	Organizations			
	(Some of Which Are Now Defunct or Merged)			
Lighter than Air Ascender-	JP Aerospace and several telecommunications organizations			
Ion Engine lift from Dark Sky				
Station and High Altitude				
Platform Systems (HAPS)				
Vertical Takeoff / Vertical	Armadillo Aerospace, Blue Origin, JAXA, Masten Aerospace,			
landing (VTVL)	Lockheed Martin/EADS			
Vertical Takeoff / Horizontal	Aera Space Tours, Air Boss, Bristol Space Planes, C & Space,			
Landing (VTHL) at Spaceport	Energia, Lorrey Aerospace, Phoenix & Pre-X by EADS, Space Dev,			
	Space Transportation Corp, Space X, Sub Orbital Corp,			
	Myasishchev Corp. Design Bureau, t/Space, Vela Technologies,			
	Wickman Space and Propulsion			
Horizontal Takeoff /	Andrews, Scaled Composites, The Spaceship Corporation, Virgin			
Horizontal Landing(HTHL)	Galactic, XCOR, Project Enterprise by TALIS Institute, DLR, Swiss			
	Propulsion Lab			
Tow Launch and Horizontal	Kelly Space Technology			
Landing				
Vertical Launch to LEO from	Alliant, Inter Orbital Systems Technology, Rocketplane/Kistler,			
Space Port	Space HAB, UP Aerospace			
Launch to LEO from Jet Plane	Triton, Stratolauncher, Launcher One (by Virgin Galactic)			
or Carrier Vehicle Drop				

Relative Market Size

Emerging Air & Space Service and their Estimated Market Size-2035

Supersonic/Hypersonic Flights into the Extreme Stratosphere	\$10-100 Bil/yr
Commercial launches to low earth orbit	\$10 Bil/yr Upward
Space Tourism/ Space Adventures	\$ 2 Bil/yr Upward
High Altitude Platform Systems-Commercial UAVs	\$ 2Bil/yr Upward
Private Space Stations/Habitats	\$1-2 Bil/yr Upward
Proto-Space Transport	\$1 Bil/yr Upward
Dark Sky Station/Ion engine lift orbit & HAPS	\$1-2 Bil/yr

Subsystems for Possible Standardization and Certification for Commercial Space Transportation

- Real Revironmental control and life support systems
- **Main propulsion system and fuels**
- **Guidance**
- **R** Navigation and control systems
- **Avionics and software**
- **Main structural systems**
- **CR** Thermal protection systems
- **CR** Thermal control systems
- **R** Health monitoring systems
- **R** Electrical power system
- **Mechanical systems**
- **GR** Flight safety system and black boxes
- **Crew systems**

R High Altitude Platforms and Stratospheric Drones

Issue or	Regulatory/Legal	Technical	Int'l	Additional	Comment
Facility	Need	Research	Agency	Concerns	
Involved		Need			
Airports	Certification and	Advanced	ICAO	Coordi-	Safety of
servicing	periodic	radar &		nation of	surrounding
HTHL	recertification	possibly		regular	area.
spaceplanes		LIDAR		aviation and	Liability
		systems		space flights	insurance
Spaceports	Certification and	Advanced	ICAO	Air & Space	Safety of
supporting	periodic	radar &		Traffic	surrounding
HTHL, VTHL,	recertification.	possibly		Management	area.
VTVL systems	Range Safety	LIDAR		& Control	Liability
	Control	systems			insurance
Launch Sites	Certification and	Advanced radar	ICAO	Space Traffic	Safety of
supporting	periodic	& possibly		Management &	surrounding
conventional and	recertification.	LIDAR systems		Control	area. Liability
commercial	Range Safety				insurance
rockets	Control				
Rocket Launch	Range Safety	Advanced radar	ICAO	Air & Space	Safety of
from Balloon or	Control and High	& possibly		Traffic	surrounding
Parachute	Altitude Range	LIDAR systems		Management &	area. Liability
	Control			Control	insurance

Issue or Facility Involved	Regulatory/ Legal Need	Technical Research Need	Int'l Agencies	Additional Concerns	Comment
Rocket Launch from carrier aircraft	Range Safety Control and High Altitude Range Control	Advanced radar & possibly LIDAR systems	ICAO	Space Traffic Manage- ment & Control	Safety of surrounding area. Liability insurance
Rocket Launch from ocean	Range Safety Control and High Altitude Range Control	Advanced radar & possibly LIDAR systems	ICAO	Space Traffic Manage- ment & Control	Safety of surrounding area. Liability insurance
Ion Engine Craft launched from Dark Sky Station	Range Safety Control and High Altitude Range Control	Stratospheric collisions avoidance systems, Radiation shielding,. Warning Beacons,	ICAO	Space Traffic Manage- ment & Control	Liability insurance
Dark Sky Station and Lighter than Air Craft and HAPS	New types of certification & recertification plus ATC into Stratosphere. Collision avoidance.	Warning Beacons, Advanced radar & LIDAR	ITU and perhaps WMO and UNEP	Space Traffic Manage- ment & Control	Liability insurance

Issue or	Regulatory/	Technical Research	Int'l	Additiona	Comment
Facility	Legal	Need	Agencies	1	
Involved	Need			Concerns	
Super Sonic & Hypersonic Transport	Air Traffic Control into Stratosphere	Sonic Beam mitigation standards, Emission standards, Thermal Protection Systems	WMO, UNEP and ITU	Space Traffic Manage- ment & Control	Liability provisions, flight path coordination, solar CMEs
Radiation Exposure levels/Health Standards	Radiation Protection Standards, Flight Path Approvals	Ozone hole and Ozone layer investigations	World Health Org., WMO, UNDP	Genetic mutation	Liability provisions, flight path coordination, solar CMEs
Rocket Pollutant Emissions (N0x, Cox, Water Vapor	Standards for rocket emissions	Stratospheric emission studies. Improved propellants	WMO. UNDP	Climate Change, Strato- spheric pollution	Incentives for improved propellants.
Orbital Debris (Controlled /uncontrolled reentry)	Air Traffic Control and Space Traffic Management	Black boxes for all spacecraft. Warning beacons	UN COPUOS, IADC, SDA	Greater risk of Kessler Syndrome	Fund for debris mitigation. Fines for violations

Issue or Facility Involved	Regulatory/ Legal	Technical Research Need	Int'l Agencies	Additional Concerns	Comment
Super Sonic & Hypersonic Transport	Air Traffic Control into Stratosphere	Sonic Beam mitigation standards, Emission standards, Thermal Protection Sys.	WMO, UNEP and ITU	Space Traffic Manage-ment & Control	Liability provisions, flight path coordination, solar flares/CMEs
Radiation Exposure levels/Health Standards	Radiation Protection Standards, Flight Path Approvals	Ozone hole and Ozone layer investigations	World Health Organization, WMO, UNDP	Genetic mutation	Liability provisions, flight path coordination, solar flares/CMEs
Rocket Pollutant Emissions (N0x, COx, Water Vapor	Standards for rocket emissions	Stratospheric emission studies. Improved propellants	WMO. UNDP	Climate Change, Stratospheric pollution	Incentives for improved propellants.
Orbital Debris (Controlled and uncontrolled reentry)	Air Traffic Control and Space Traffic Management & Control	Black boxes for all spacecraft. Warning beacons	UN COPUOS, IADC, SDA	Heightened risk with Kessler Syndrome	Fund for debris mitigation. Fines for violations

Issue or Facility Involved	Regulatory/ Legal Need	Technical Research Need	Int'l Agencies	Addition al Concerns	Comment
Electric Vehicles	Emission Standards and Incentives	Zero polluting aircraft	WMO. UNDP	Incentive s for low emission aircraft	Transition planning
UAVs & HAPS and robotic freighters	Air Traffic Control and Space Traffic Management & Control. RF interference	Improved avionics, Emergency override safety systems	ITU	Warning beacons, collision avoidanc e systems	Improved network managemen t tools
Radio Frequency Interference & allocations	RF Interference from Air & Space Traffic Control & Mgt	Improved Radio systems to avoid interference	ITU	Improvea lloca- tions process	Coordi- nation processes/ enforcement powers

Conclusions

There are a wide range of new systems that need to be considered in terms of air & space traffic management and control. These include commercial orbital launches, private space habitats/platforms, dark sky stations, High Altitude Platform Systems (HAPS), Proto-space or sub-space transport, carrier vehicle or jet drop launches, balloon-based rocket launches, towed launched systems, vertical and horizontal launch and landing systems, commercial sub-orbital flights, and hypersonic transportation systems. In the future we may also possibly need to deal with space elevators/funiculars, ion engine-plasma thruster spiral deployment to Geo. This is a set of issues much larger that just "space tourism". Protozone regulation is most urgent area.

International Regulation

N

□ There are many issues that the ICAO, FAA-AST, EASA and like organizations can and should take on in terms of flight safety, but there are other international organizations such as the International Telecommunication Union, the World Meteorological Organization, and the UN Environmental Programme. Also the UN Committee on the Peaceful Uses of Outer Space, the Inter-Agency orbital Debris Coordination Committee (IADC), and the Space Data Association also have a role to play as well. For instance, the Virgin Galactic engine that runs on Nitrous Oxide and Neoprene is much more of a stratospheric pollutant than liquid fueled systems by more than an order of magnitude.

Technology Development

Rey new technology development. These areas include: (a) devising and agreeing global standards in key subsystems for new aerospace systems with regard to: (i) navigation and control systems, (ii) avionics and software; (iii) range control and tracking systems (lidar, improved radar, etc.); (iv) pollution standards (including "debris" in the protozone (i.e. non-controlled balloons, etc.) (b) development of international specifications for "black boxes" (or even better improved real time data relay and performance monitoring) from spacecraft, launchers, etc. (c) cost effective and improved systems for de-orbit of small satellites and active removal of orbital debris.

Next Steps

A systematic review of the entire field needs to be undertaken. This process that might be undertaken by the ICAO, FAA, EASA and research institutes around the world might assist in identifying in a systematic way where regulatory oversight, standards or new technology development is required or useful and to identify which regulatory agency, governmental entity or private enterprise are or should be working in these areas. This could help to create a useful and globally accessible data base of key metadata.

Recognize that there are many regulatory issues and agencies involved. These include:

- Air and space traffic safety
- Health standards involving radiation & pollution
- Environmental safety standards
- National defense concerns
- Frequency coordination and standards
- Assign one UN Agency primary responsibility for coordinating regulatory actions (i.e. ICAO??), especially for the 'Protozone' and its safety. Should also create a coordinative process to cover all areas of air and space safety, health standards, environmental pollution, frequency assignments and standards, and even national defense concerns.