Food Insecurity is Linked to Dietary Intake but not Growth of Children in the Caribbean

WA Mumena¹, I Francis-Granderson², LE Phillip³, L Johnson-Down¹, K Gray-Donald¹

Affiliations:

¹ School of Dietetics and Human Nutrition, McGill University 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9.

² Faculty of Food and Agriculture, University of the West Indies, St. Augustine Campus, Trinidad and Tobago.

³ Department of Animal Science, McGill University 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9.

Correspondence:

Dr. K Gray-Donald School of Dietetics and Human Nutrition, McGill University 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9. E-mail: <u>katherine.gray-donald@mcgill.ca</u>

Short title: Food Insecurity and Children's Nutritional Health in the Caribbean

Synopsis: In this cross-sectional study among 390 Caribbean children, 24% of children lived in

food insecure households. Household food insecurity was associated with lower intake of protein

and zinc, and anemia among children but not growth.

1 Abstract

2 **Objective:** To examine food insecurity and its relationship with children's nutritional health. 3 Methods: Data for 390 children aged 7-12 years and their caregivers, recruited from eight schools in Trinidad and seven schools in St. Kitts in 2013-14 from a study dealing with food and 4 5 nutrition security. Food insecurity, assessed using the USDA's Household Food Security Survey 6 Module, and 24-hour dietary recall of children were assessed in home interviews. Height and 7 weight were measured and a capillary blood sample was collected at school. 8 **Results**: Overall, 41.5% of caregivers reported household food insecurity, with 15% of the 9 children living in households with very low food security. Daily intakes of protein and zinc were higher among children from "food secure" vs. "food insecure" households (protein, 59.6 ± 31.5 g 10 11 vs. 50.9 ± 24.4 g, p=0.003; zinc, 7.33 ± 5.02 mg vs. 6.20 ± 3.47 mg, p=0.004, respectively). 12 There were no other differences in dietary intake. Children's BMI z-score, weight status, and 13 height-for-age z-score were not associated with food insecurity, and there was no evidence of 14 stunting in either group. Anemia, however, was prevalent (30%) and higher among children from food insecure households (39% vs. 23%; p=0.002). 15 16 Conclusion: Household food insecurity was reflected in some lower intakes of some nutrients 17 and anemia rates were higher among children living in food insecure households but food 18 insecurity was not related to indicators of growth or weight status. 19 20 **Keywords:** food security, nutritional health, children, Caribbean 21 22 23

24 Introduction

Despite efforts to improve global food security, there remain important challenges in addressing
this problem. Substantial strides have been made in reducing child underweight, but this has been
globally disproportionate and few indicators of food insecurity and undernourishment have been
tracked at the household level (1).

29 The association between food insecurity and dietary intake in developing countries is less widely studied. In North America, food insecurity among children and youth has been linked to 30 31 low intakes of fruits and vegetables (2), inadequate intakes of calcium (3) and protein (4), and 32 lower intakes of vitamin D (5). Also, the relationship between food insecurity and children's 33 nutritional status is not clear. In a number of developing countries where stunting, wasting and 34 underweight are prevalent, such as Colombia, Pakistan and Tanzania, food insecurity has been associated with stunting and underweight among children (6-9). Studies conducted in North 35 America reveal no such associations (10). A relationship between food insecurity and weight gain 36 37 as well as obesity has been found in some studies (11), but stronger evidence suggests no link 38 between these variables (10, 12, 13). A relationship between food insecurity and anemia among 39 young children and adolescents has been documented in both developed (14) and developing settings (15). 40

Among Caribbean children, underweight has declined and obesity has become
increasingly prevalent (16-19). While food availability data indicate an overabundance of energy,
sugars and fats (20, 21), there is a dearth of information on food insecurity and nutritional
indicators. Our aim in this study was to examine the association between food insecurity and
dietary intake, linear growth, weight status and anemia of children in two upper-income
developing countries in the Caribbean.

47

48 Subjects and Methods

The study was part of a broader multidisciplinary project dealing with food and nutrition security,
with a focus on interventions with local farmers and school feeding programs to improve
nutritional outcomes of children in the Caribbean Community (CARICOM) (22). Ethical
approvals were obtained from the McGill Ethics Review Board and Ministries of Education and
the Ministries of Health in Trinidad and Tobago and St. Kitts and Nevis.
Data for this study were collected between September 2013 and April 2014. Children

aged 7-12 years and their caregivers were recruited from eight schools in Trinidad and Tobago
and seven schools in St. Kitts and Nevis. In Trinidad, schools selected were those with a high
proportion of children consuming the school lunch meals, which are offered to families in need.
Schools in St. Kitts, where all children are offered a free lunch, were selected from rural areas
near the capital of Basseterre. One child per family providing signed consent was enrolled.

A baseline and a follow-up survey were conducted but only the follow-up survey data
were used in this study, as a comprehensive measure of food security was used only at this time.
Half of the children were in schools where the project intervention was conducted to increase
fruit and vegetable consumption (22).

64 Measurements

Children's height was measured using a stadiometer and body weight was measured with a
digital floor scale. A CardioChek (PTS Diagnostics, Indianapolis, Indiana USA) was used to
measure hemoglobin based on a finger prick capillary blood sample.

During a home visit, caregivers and their children were asked by trained interviewers to
recall the types and amounts of foods consumed by the child on the previous day in order to
complete a single 24-hour dietary recall. Portion models (Santé Quebec, Montreal, Canada) were

4

used to estimate amounts consumed. Dietary data were compiled using CANDAT Nutrient
Analysis Software (Godin London Incorporated, London, ON), based on the Canadian Nutrient
File (2010 version) (23) and Canada's Food Guide (CFG) to define portions (24). Local food
labels or recipes were added to the database where needed. Foods were grouped based on the Six
Caribbean Food Groups (25) and further division of these food groups was undertaken to
measure milk and milk products as well as "ground provisions". Vitamin and mineral
supplements taken on the day of the recall were included in the nutrient intake values.

An interviewer administered questionnaire was conducted with the child's caregiver to obtain demographic data and measure food security using the 18-item U.S. Household Food Security Survey Module of the United States Department of Agriculture (USDA) to classify household food security status (26). This measure was previously validated for use in the Caribbean (27).

The Household Food Security Survey Module of the USDA was validated for this sample by the Rasch model using WINSTEP software (28). Based on the main assumptions in the Rasch model, the 18-item U.S. Household Food Security Survey Module of the USDA was found to be valid (see **Supplementary Table 1**). Household food security status was categorized according to USDA procedures (26).

WHO cut-off points for BMI (29) were used to define weight status of children and their
caregivers. The WHO cut-off points for hemoglobin were used to identify anemia among
children aged 5-11 years are <11.5 g/dL and <12.0 g/dL for children aged 12 years (30);
however, race-specific adjustment for the WHO cut-offs was applied in this study to diagnose
anemia among individuals of African descent, as recommended by the WHO/UNICEF/UNU
(31).

94 *Statistical analyses*

T-tests and analysis of variance (ANOVA) were used to compare the means of the various groups and Chi-square tests were used to compare proportions. Statistical tests were 2-tailed, and a significance level of p < 0.05 was adopted; Tukey's pairwise comparisons were undertaken to test associations of food insecurity and dietary intake. All statistical analyses were performed using SAS[®] software version 9.4 (2013, SAS Institute Inc., Carv. NC, USA).

100 Results

101 A total of 390 children and their caregivers (232 from Trinidad and 158 from St. Kitts) were

102 included in this study, after excluding 7.0% (n=26) of children with very high energy intake (>

103 4000 kcal), 1.2% (n=5) with very low energy intakes (< 700 kcal), and 3.2% (n=13) and 5.6%

104 (n=23) of children, respectively, for whom data on food security and dietary intake were missing.

105 Hemoglobin data were available for only 331 children.

106 Overall, 41.5% of households reported being food insecure with higher prevalence in 107 Trinidad than St. Kitts (46% vs. 35%, p=0.044). Demographic variables by household food 108 security status are shown in **Table 1**. Caregivers in food insecure households were younger (p109 =0.036) and more likely to be unmarried (p=0.023) than those in food secure households. There 110 were no other differences in demographic characteristics between food secure and food insecure 111 households.

Dietary intakes of children living in food secure vs food insecure households are shown in **Table 2**. In general, mean daily intakes (by portions) of milk and milk products, fruits and vegetables were low as compared to recommendations of the CFG (32) and the WHO/FAO (33). Mean protein intake for children from food insecure households was 1.46 g/kg body weight vs. 1.69 g/kg body weight for children from food secure households. Dietary intakes of protein and zinc were lower among children from food insecure households as compared to food secure households. There were no other differences in macro or micronutrient intakes between the two groups. Intakes of staples, ground provisions, milk, meat, legumes, fruits and vegetables weresimilar among food secure and food insecure groups.

Anthropometric measurements of children living in food secure vs. insecure households are presented in **Table 3.** There were no differences in Height-for-Age (HFA) z-scores of children across these two groups and both groups had mean HFA above the mean of the WHO reference values of HFA. Stunting was rare among children and there was no difference among children from food secure and food insecure households in thinness, overweight or obesity among children.

127 Thirty percent of children included in this study were anemic. More anemic children were
128 living in food insecure households and means levels of hemoglobin levels were also lower among
129 children in food insecure households (Table 4).

130 Discussion

131 Despite the high prevalence of food insecurity at the household level, no association was found 132 between household food insecurity and children's growth or weight status; only lower intake of 133 protein and zinc was found to be linked to household food insecurity. In this study, children are 134 growing well, as the mean height for both groups were well above the mean of the WHO growth 135 reference (mean HFA has a z-score of 0). The lack of association between food insecurity and 136 children's growth is consistent with findings of a study from Brazil (34), where stunting was not 137 prevalent (1.3%). However, our results contrasts with reports from Columbia (8, 9) and Tanzania 138 (6), countries with high prevalence of stunting and/or underweight. The prevalence of obesity 139 was also unrelated to food insecurity, this finding contrasts with a number of studies conducted in 140 the U.S (10, 35). Although a substantial proportion of families are food insecure, our study 141 reveals that food insecurity status was not related to linear growth or weight status.

142	While dietary intakes were found to be similar between children from food secure and
143	food insecure households, intakes of protein and zinc were lower among children from food
144	insecure households. These findings may reflect lower meat consumption among this group, but
145	we could not identify this relationship using a single day's intake as this does not provide a true
146	representation of an individual usual dietary intake. Lower meat intakes among children and
147	lower meat supplies in food insecure households are reported in the U.S. (36) and Ecuador (37).
148	Protein intakes of children in our study are unlikely to be a serious nutritional concern, since the
149	mean intake of protein double the Estimated Average Requirement (EAR) (protein 0.76 g/kg/d
150	for children aged 4-13) for even those in the food insecure group (38, 39).
151	Despite the clear indication that anemia was more prevalent among children from food
152	insecure households, mean dietary iron intake did not differ by food security status. The
153	relationship between food insecurity and anemia found in this study is in keeping with findings
154	among young children in Indonesia (15), as well as among American adolescents (14).
155	In developed countries, such as the U.S. and Canada, studies have reported lower intakes
156	of fruits and vegetables, as well as milk among children from food insecure households (2, 5, 40).
157	In our study, there was no such association between food insecurity and fruit and vegetable
158	intakes. This lack of association might be due to the very low intakes of fruit and vegetable
159	among the entire population.
160	This study is the first study to investigate the problem of food insecurity in relation to
161	dietary intake, growth, weight status and anemia among children the Caribbean but we would
162	caution against extrapolating the rates of food insecurity and nutritional status to national

164 high proportion of children receiving the free lunch, which is offered on the basis of household

populations. For example, in the sample from Trinidad, the schools selected were those with a

163

8

economic status. The links made between food insecurity and lower protein and zinc intake aswell as anemia, however, can be clearly made within this high-risk group.

167 Conclusion

168 This study reveals that there is no evidence to suggest that children's growth and weight status

are affected by food insecurity. However, the diet quality of children is affected by food

170 insecurity and may be linked to anemia and less apparent differences in nutritional status. Further

171 research is needed to determine the prevalence of anemia, using a better measure such as a

venous blood sample, in order to better understand and address the issue of anemia in school-

aged children in the Caribbean.

174 Acknowledgements

175 This work was carried out with the aid of a grant from the International Development Research

176 Centre (IDRC), Ottawa, Canada, and with the financial support of the Government of Canada

177 provided through Global Affairs Canada.

Thanks are due to Dr. Theresa Thompson Colon for designing the survey used in this research and Dr. Sonia Laszlo for her helpful discussion and suggestions. We wish to acknowledge the collaboration and support from the St. Kitts and Nevis Ministry of Education and Information, and Ministry of Health and Social Services, and the dedication of the local staff attached to the project, who collectively made the data collection process possible.

183 Author Contributions

184 W Mumena analyzed data, wrote the paper and had primary responsibility for final content.

185 I Francis-Granderson designed the research, oversaw data collection, revised manuscript and

approved final version. L Phillip designed the research, oversaw data collection, revised the

187 manuscript and approved final version. L Johnson-Down oversaw data entry, contributed to the

- 188 statistical analysis and approved final version. K Gray-Donald designed the research, oversaw
- 189 data collection and critically revised the manuscript and approved final version. The authors
- 190 declare that they have no conflicts of interest.

References

- 1. FAO. The state of food insecurity in the world 2015. [Internet] 2015 [cited 2015 Nov 21].
- 2. Kendall A, Olson CM, Frongillo EA. Relationship of hunger and food insecurity to food availability and consumption. J Am Diet Assoc. 1996.
- 3. Kirkpatrick SI, Dodd KW, Parsons R, Ng C, Garriguet D, Tarasuk V. Household food insecurity is a stronger marker of adequacy of nutrient intakes among Canadian compared to American youth and adults. J Nutr. 2015;145.
- 4. Kirkpatrick SI, Tarasuk V. Food insecurity is associated with nutrient inadequacies among Canadian adults and adolescents. J Nutr. 2008;138:9.
- 5. Mark S, Lambert M, O'Loughlin J, Gray-Donald K. Household income, food insecurity and nutrition in Canadian youth. Can J Public Health. 2012;103:94-9.
- 6. Cordeiro LS, Wilde PE, Semu H, Levinson FJ. Household food security is inversely associated with undernutrition among adolescents from Kilosa, Tanzania. J Nutr. 2012;142:1741-7.
- 7. Cesare MD, Bhatti Z, Soofi SB, Fortunato L, Ezzati M, Bhutta ZA. Geographical and socioeconomic inequalities in women and children's nutritional status in Pakistan in 2011: an analysis of data from a nationally representative survey. Lancet Glob Health. 2015;3:e229-39.
- 8. Isanaka S, Mora-Plazas M, Lopez-Arana S, Baylin A, Villamor E. Food insecurity is highly prevalent and predicts underweight but not overweight in adults and school children from Bogotá, Colombia. J Nutr. 2007;137:2747-55.
- 9. Hackett M, Melgar-Quinonez H, Alvarez MC. Household food insecurity associated with stunting and underweight among preschool children in Antioquia, Colombia. Rev Panam Salud Publica. 2009;25:506-10.
- 10. Bhattacharya J, Currie J, Haider S. Poverty, food insecurity, and nutritional outcomes in children and adults. J Health Econ. 2004;23:839-62.
- 11. Jyoti DF, Frongillo EA, Jones SJ. Food insecurity affects school children's academic performance, weight gain, and social skills. J Nutr. 2005;135:2831-9.
- 12. Bhargava A, Jolliffe D, Howard LL. Socio-Economic, behavioural and environmental factors predicted body weights and household food insecurity scores in the early childhood longitudinal study-kindergarten. Br J Nutr. 2008;100:438-44.
- 13. Eisenmann JC, Gundersen C, Lohman BJ, Garasky S, Stewart SD. Is food insecurity related to overweight and obesity in children and adolescents? A summary of studies,1995–2009. Obes Rev. 2011;12:e73-e83.

- 14. Eicher-Miller HA, Mason AC, Weaver CM, McCabe GP, Boushey CJ. Food insecurity is associated with iron deficiency anemia in US adolescents. Am J Clin Nutr. 2009;90:1358-71.
- 15. Campbell AA, Akhter N, Sun K, De Pee S, Kraemer K, Moench-Pfanner R et al. Relationship of household food insecurity to anaemia in children aged 6-59 months among families in rural Indonesia. Ann Trop Paediatr. 2011;31:321-30.
- 16. PAHO. Health conditions in the Caribbean Washington, D.C; 1997.
- 17. Popkin B, Adair L, Ng S. Global nutriiton transition and the pandemic of obesity in developing countries. Nutrition Reviews 2012;70:3-21.
- 18. Xuereb G, Johnson P, Morris A, Bocage C, Trotter P, Henry F. Obesity in Caribbean children: its magnitude and current control efforts. 2001;34:6.
- 19. Schwiebbe L, van Rest J, Verhagen E, Visser RW, Holthe JK, Hirasing RA. Childhood obesity in the Caribbean. West Indian Med J. 2011;60:442-5.
- 20. Ballayram., Henry F. Food and nutrition security in CARIFORUM countries. CAJANUS. 2008;4.
- 21. CFNI. Vulnerability and food and nutrition security in the Caribbean [Internet] 2007 [cited 2015 Nov 15].
- 22. Phillip LE, Francis-Granderson I. Improving the nutrition and health of CARICOM populations: final technical report (March 2011 August 2014): IDRC; 2014.
- 23. Health Canada. Food and nutrition, the Canadian nutrient file [Internet] 2007[cited 2015 Oct 6].
- 24. Health Canada. Food and nutrition, what is a food guide serving? [Internet] 2007 [cited 2015 Sep 15].
- 25. Zephirin, Manuelita P. Manual of Nutrition and Dietetic Practice for the Caribbean: CFNI, PAHO, WHO; 1990.
- 26. USDA. U.S. household food security survey module: three-stage design, with screeners, Economic Research Service [Internet] 2012 [cited 2015 Oct 15].
- 27. Gulliford MC, Nunes C, Rocke B. The 18 household food security survey items provide valid food security classifications for adults and children in the Caribbean. BMC Public Health. 2006;6.
- 28. Nord M. Introduction to item response theory applied to food security measurement: basic concepts, parameters and statistic [Internet] 2014 [cited 2016 April 13].
- 29. WHO. BMI-for-age (5-19 years). Growth reference 5-19 years [Internet] 2013 [cited 2016 May 20].

- 30. WHO, CDC. Worldwide prevelence of anaemia 1993-2005: WHO global database on anaemia [Internet] 2008 [cited 15 Sep 13].
- 31. Gibson RS. Principles of Nutritional Assessment. 2nd ed. New York: Oxford University Press; 2005.
- 32. Health Canada. Food and nutrition, Canada's food guide [Internet] 2007 [cited 2015 Oct 16].
- 33. WHO, FAO. Diet, nutrition and the prevention of chronic diseases, report of a joint WHO/FAO expert consultation. Geneva [Internet] 2002 [cited 2015 Oct 15].
- 34. Cordeiro MM, Monego ET, Martins KA. Overweight in Goiás'quilombola students and food insecurity in their families. SciELO. 2014;27:405-12.
- 35. Gundersen C, Lohman BJ, Eisenmann JC, Garasky S, Stewart SD. Child-specific food insecurity and overweight are not associated in a sample of 10- to 15-year-old low-income youth. J Nutr. 2008;138:371-8.
- 36. Matheson DM, Varady J, Varady A, Killen JD. Household food security and nutritional status of Hispanic children in the fifth grade. Am J Clin Nutr. 2002;76:210-7.
- 37. Hackett M, Zubieta AC, Hernandez K, Melgar-Quiñonez H. Food insecurity and household food supplies in rural Ecuador. Arch Latinoam Nutr. 2007;57:10-7.
- 38. Institute of Medicine Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C.: The National Academies Press; 2005.
- 37. Hackett M, Zubieta AC, Hernandez K, Melgar-Quiñonez H. Food insecurity and household food supplies in rural Ecuador. Arch Latinoam Nutr. 2007;57:10-7.
- 39. Institute of Medicine (US). Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc : a report of the panel on micronutrients. Washington, D.C.: National Academies Press (US); 2001.
- 40. Dave JM, Evans AE, Saunders RP, Watkins KW, Pfeiffer KA. Associations among food insecurity, acculturation, demographic factors, and fruit and vegetable intake at home in Hispanic children. Journal of the American Dietetic Association. 2009;109:697-701.

	Food Secure (n=228)	Food Insecure (n=162)	р
Child			
Age, y ^a	9.2 ± 0.97	9.3 ± 0.99	0.210
Girls ^b	49.8	47.5	0.662
Caregiver			
Age, y ^a *	36.1 ± 9.06	34.0 ± 8.32	0.036
BMI kg/m ² ^a	40.4 ± 8.85	39.9 ± 9.50	0.628
Overweight/Obese ^b	97.7	96.1	0.422
Female ^b	93.5	94.7	0.662
Unmarried female ^b *	57.9	71.2	0.023
Household size ^a	4.9 ± 1.74	5.3 ± 1.77	0.067
Education, less than secondary ^b	40.0	51.0	0.095

Table 1. Demographic characteristics by household food security status in children and their caregivers from Trinidad and Tobago and St. Kitts and Nevis (n=390)

 $b^{a} mean \pm SD$

* Indicate significance at the 0.05 level

	Food Secure (n=228)	Food Insecure (n=162)	р
Stanlag portions	5.0 ± 2.8	4 77 + 2 24	0.224
Staples, portions	3.0 ± 2.8	4.77 ± 3.24	0.224
Ground provisions, portions	0.36 ± 0.95	0.35 ± 0.64	0.220
Meat, portions	1.7 ± 1.4	1.4 ± 1.2	0.127
Legumes and nuts, portions	0.22 ± 0.50	0.24 ± 0.48	0.200
Milk, portions	0.66 ± 1.08	0.54 ± 0.76	0.606
Fruits, portions	1.0 ± 1.5	1.1 ± 1.6	0.972
Vegetables, portions	0.56 ± 0.86	0.53 ± 0.89	0.790
Energy, kcal	1728 ± 620	1635 ± 634	0.105
Carbohydrate, g	248 ± 99.0	243 ± 100	0.704
Protein, g *	59.6 ± 31.5	50.9 ± 24.4	0.003
Fat, g	56.5 ± 30.3	52.5 ± 28.6	0.170
Fiber, g	11.0 ± 6.79	11.3 ± 6.2	0.554
Calcium, mg	535 ± 384	491 ± 294	0.296
Iron, mg	12.2 ± 8.9	11.3 ± 8.4	0.076
Potassium, mg	1540 ± 762	1447 ± 661	0.225
Vitamin A, µg	627 ± 864	552 ± 841	0.190
Vitamin C, mg	175 ± 149	186 ± 185	0.358
Zinc, mg *	7.3 ± 5.0	6.2 ± 3.5	0.004
Total sugar, g	104 ± 56.8	103 ± 55.0	0.794

Table 2. Food and nutrient intake by household food security status among children fromTrinidad and Tobago and St. Kitts and Nevis (n=390)

Values in cells are means \pm SD

* Indicate significance at the 0.005 level

Note: Foods were grouped based on the Six Caribbean Food Groups; "milk products" group was a subcategory from "food from animals", and "ground provisions" group was a subcategory from "staples"

Serving sizes were calculated based on Canada's Food Guide

	Food Secure (n=228)	Food Insecure (n=162)	р
Height-for-age z-score *	0.46 ± 1.0	0.38 ± 1.2	0.511
Stunting	0.44	2.5	0.079
BMI z-score *	0.44 ± 1.5	0.30 ± 1.5	0.399
Wasting	4.4	7.6	0.194
Healthy weight	62.4	63.5	0. 496
Overweight	13.7	13.8	
Obese	19.5	15.1	
Overweight/obese	33.2	28.9	0.375

Table 3. Weight status of children in Trinidad and Tobago and St. Kitts and Nevis by household food security status (n=390)

Note: Values in cells are percentages unless otherwise specified * Mean \pm SD

	Food Secure (n=209)	Food Insecure (n=156)	р
Anemia, %	23.2	39.0	0.002
Hemoglobin, mean ± SD	11.9 ± 1.4	11.5 ± 1.4	0.004

Table 4. Anemia status of children from Trinidad and Tobago and St. Kitts and Nevis using race-specific cut-offs for Afro-Caribbean children by household food security status (n=331)

Supplementary Table 1: Item calibrations and item-fit statistics of items in the 18-item U.S. Household Food Security Survey Module of the USDA

Item	Item calibration*	Item infit	Item outfit
In the last 12 months, did (your child/any of the children) ever not eat for a whole day because there wasn't enough money for food?	5.93	1.20	1.70
In the last 12 months, did (you/ you or other adults in your household) ever not eat for a whole day because there wasn't enough money for food?	3.39	0.86	1.09
In the last 12 months, did you lose weight because there wasn't enough money for food?	3.11	0.89	0.28
In the last 12 months, did (child's name/any of the children) ever skip meals because there wasn't enough money for food?	2.60	0.77	0.29
In the last 12 months, (was your child/were the children) ever hungry but you just couldn't afford more food?	2.28	1.03	1.57
In the last 12 months, since (current month) of last year, did you ever cut the size of (your child/any of the children's) meals because there wasn't enough money for food?	0.84	0.77	0.42
In the last month, were you ever hungry but didn't eat because there wasn't enough money for food?	0.74	0.98	0.54
"(My/our child was/the children were) not eating enough because (I/we) just couldn't afford enough food." Was that <u>often, sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	0.19	0.84	0.40

In the last 12 months, since last (name of current month), did (you/you or other adults in your household) ever cut the size of your meals or skip meals because there wasn't enough money for food?	- 0.07	1.00	0.75
In the last 12 months, did you ever eat less than you felt you should because there wasn't enough money for food?	- 0.70	0.79	0.61
"(I/we) couldn't feed (my/our) child/the children) a balanced meal, because (I/we) couldn't afford that." Was that <u>often</u> , <u>sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	- 2.14	0.91	0.72
"(I/We) relied on only a few kinds of low-cost food to feed (my/our) child/the children) because (I was/we were) running out of money to buy food." Was that <u>often</u> , <u>sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	- 2.78	1.09	1.15
"The food that (I/we) bought just didn't last and (I/we) didn't have money to get more." Was that <u>often</u> , <u>sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	- 3.77	0.85	1.31
"(I/we) couldn't afford to eat balanced meals." Was that <u>often</u> , <u>sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	- 3.78	1.19	9.90
"(I/We) worried whether (my/our) food would run out before (I/we) got money to buy more." Was that <u>often</u> , <u>sometimes</u> , or <u>never</u> true for (you/your household) in the last 12 months?	- 5.83	1.15	2.07

*Item calibration indicates the severity of the item