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We provide the closed form solution to the Dasgupta-Heal-Solow-Stiglitz (DHSS) model. The

DHSS model is based on the seminal articles Dasgupta and Heal (Rev. Econ. Stud.,1974), Solow

(Rev. Econ. Stud.,1974) and Stiglitz (Rev. Econ. Stud.,1974) and describes an economy with two
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optimal consumption path. In particular, we show that the initial consumption under a utilitarian
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1 Introduction

We provide a closed form solution to the Dasgupta-Heal-Solow-Stiglitz (from here on DHSS) model. The

DHSS model is based on seminal articles by Dasgupta and Heal (1974), Solow (1974) and Stiglitz (1974).

It describes an economy with two assets, man-made capital and a nonrenewable resource stock. Together

with man-made capital the raw material from the resource is used as an input in the production of

a commodity that can be used for consumption and for net investments in man-made capital. In this

framework some important questions have been addressed. For instance, in the case where the objective is

to maximize the minimum rate of consumption throughout the time horizon, a central question is whether,

despite the resource constraint, there exists a sustainable constant positive rate of consumption (Solow,

1974). Another stream of the literature adopts a utilitarian objective and studies the optimal consumption

and investment paths that maximize a discounted sum of utility from consumption (Stiglitz, 1974). In

the present paper we give the optimal paths for the DHSS economy under a utilitarian objective. In the

literature attention has mainly been given to the case where the production function is Cobb-Douglas

and instantaneous utility is logarithmic. Even for these speci�cations no closed form solutions of the

optimum have been found so far. There has been some progress regarding the characterization of the

optimal solution to the DHSS problem, in particular it has been shown without explicitly �nding the

solution that consumption can be single peaked1 (see Pezzey and Withagen, 1998, and Hartwick et al.,

2003). However, in the absence of a closed-form solution it is not possible to address other relevant issues

such as understanding the relationship between the instant of time where the peak takes place and the

initial stocks of capital and the resource and how this phenomenon depends on the model parameters.

Moreover, to actually calculate the optimal path more information is needed on the co-state variables

associated with the stocks, which amounts to having a complete solution of the model2 .

The closed form solution to the DHSS problem uses the exponential integral function. The exponential

integral belongs to a family of �special functions�which are extensively used in mathematical physics

and probability theory. They are particularly helpful to determine solutions to di¤erential equations

encountered in physics (see e.g., Temme, 1996, Ch. 5 and Ch. 7). The use of special functions in

economic theory is relatively recent. Boucekkine et al. (2008a and 2008b) show that the solution to

a two-sector Lucas-Uzawa model of endogenous growth can be expressed in terms of a speci�c type of

1For high rates of pure time preference consumption always decreases over time and for low rates of time preference

consumption monotonically increases during an initial interval of time, reaches a maximum, and eventually decreases.
2To make progress on the analytical solution, Pezzey and Withagen, 1998, and Hartwick et al., 2003, have considered

the special case where the elasticity of marginal utility is equal to the output elasticity of capital. This is clearly a very

narrow class of economies since there no relationship between this two distinct parameters, i.e. the set of economies for

which this relationship holds is of measure zero.
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�special functions�: the hypergeometric functions3 . In our problem of �nding the solution to the canonical

model of an economy with resource constraints, it is another type of special function, the exponential

integral4 , that turned out to be instrumental in expressing the solution in a closed form. Thus, along

with Boucekkine et al. (2008a and 2008b), this paper is a proof that special functions can play a key role

in analyzing dynamic economic problems and characterizing the transition dynamics of all the variables

in a dynamic problem and from all possible initial values of the state variables5 .

We exploit the explicit form of the solution to study the behavior of the optimal consumption and

investment paths as functions of the parameters of the model. We compare the solution to the DHSS

model, under a utilitarian objective, to the solution of the problem where the objective is to maximize

the minimum rate of consumption over the whole time horizon. The solution to the latter problem is

called the maximin rate of consumption. Sustainability in the DHSS context requires that the Hartwick

rule, i.e. zero genuine savings, holds: the investment rate must equal the extraction rate times the

marginal product of the resource. Asheim (1994) shows that this condition should hold at all instants

of time. Hence, if at some instant of time Hartwick�s rule holds it does not mean that the economy

is on a sustainable path. The argument used by Asheim rests on the assumption that in a utilitarian

optimum the initial rate of consumption is below the maximin rate of consumption if the pure rate of

time preference is small enough, and above the maximin rate of consumption if the pure rate of time

preference is large. By continuity there is a rate of time preference for which both initial consumption

rates coincide, and for which the utilitarian rate of consumption is increasing for an initial period of time.

Asheim (1994) refers to a graph in Dasgupta and Heal (1979) to support this assumption with respect to

the rates of time preference. However, Dasgupta and Heal do not provide a formal proof of their claim.

Also, no proof is given of continuity. In our case we are able to provide a proof to both claims and

show that the ratio of the maximin rate of consumption over the initial rate of consumption is a strictly

decreasing continuous function of the rate of discount. Moreover, we show that investments in man-made

capital may also be single-peaked. We provide the condition under which overshooting in man-made

capital occurs. In particular, this phenomenon arises in relatively natural resource rich economies. Our

treatment allows us to study the relationship between the ratio of the maximin rate of consumption over

the initial consumption rate under a utilitarian criterion and the stocks of the resource and capital. Using

the ratio of the resource stock over the capital stock as an indicator of resource abundance we show that

3See also Perez-Barahona (2010).
4The exponential integral belongs to a class of special functions called the �con�uent hypergeometric functions�which

solve the Kummer di¤erential equation, a con�uent of the Gauss hypergeometric di¤erential equation. For more details we

refer the reader to Temme, 1996, Ch. 5 and Ch. 7.
5Dynamic systems in economics, in particular those involving more than one state variable, have been so far treated

rigorously but mostly using qualitative techniques such as phase diagrams accompanied with an analytical study of the

behaviour in the neighborhood of a steady state, or using numerical techniques.
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the initial consumption under a utilitarian criterion starts below the maximin rate of consumption if

and only the resource is abundant enough and that under a utilitarian criterion, it is not necessarily the

present generation that bene�ts most from a windfall of resources.

The outline of the paper is as follows. The model is introduced in section 2. Section 3 contains the

characterization of the optimum in a series of lemmata and propositions. The mathematical appendix

contains the proofs. Section 4 covers some sensitivity analyses and section 5 concludes.

2 The model and preliminary results

Let K(t) and S(t) denote the stock of man-made capital and the nonrenewable resource at instant of

time t; respectively. The variables C(t) and R(t) are rates of consumption and resource extraction at

instant of time t and are assumed non-negative. Let � be the production elasticity of man made capital

(0 < � < 1): The rate of pure time preference is �: We assume � to be strictly positive. The case of zero

discounting is extensively treated in Dasgupta and Heal (1979) and is also discussed in Asheim et al.

(2007). For any variable x(t) we adopt the convention _x(t) = dx(t)=dt: Consider the following optimal

control problem of the DHSS economy, which we refer to as the DHSS problem:

MaxC

Z 1

0

e��tU (C (t)) dt (1)

subject to

_K(t) = K(t)�R(t)1�� � C(t) (2)

_S(t) = �R(t) (3)

K (0) = K0 > 0 and S (0) = S0 > 0. (4)

with

U (C) =

8<: C1���1
1�� for � 6= 1; � > 0

lnC for � = 1

A solution of the problem above is described by a quadruple of paths (C;K;R; S). Let � (t) and � (t) de-

note the co-state variables associated with the stock of capital and the natural resource stock, respectively.

The current value Hamiltonian is given by

H(K;R;C; �; �) = U (C (t)) + �[K�R1�� � C]� �R

The maximum principle yields

�(t) = U 0 (C (t)) = C(t)�� (5)

(1� �)K(t)�R(t)���(t) = �(t) (6)

4



_�(t) = ��(t)�HK = ��(t)� �K(t)��1R(t)1���(t) (7)

_�(t) = ��(t)�HS = ��(t) (8)

Any solution that satis�es the above system along with the following transversality conditions

lim
t!1

e��t� (t)K (t) = 0 (9)

lim
t!1

e��t� (t)S (t) = 0 (10)

is a solution to the optimal control problem (1)-(4).

In the sequel we aim at obtaining an explicit solution to the DHSS problem. The line of attack can

be sketched as follows. Using (6), (7) and (8) yields

_�(t) = ��(t)� �(1� �)
1��
� (�0e

�t)
��1
� �(t)

1
� (11)

where �0 = �(0), the initial value of �; still to be determined. It is easily veri�ed that the solution to

this di¤erential equation reads

�(t) = e�t

"
�0

��1
� + (1� �)

�
�0
1� �

���1
�

t

# �
��1

(12)

where �0; the initial value of �; is still to be determined. From (2), (6) and substituting consumption

from (5) we have

_K(t) = K(t)

�
�(t)

(1� �)�(t)

���1
�

� �(t)
�1
� (13)

and since � and � are given functions of time, we solve for K as a function of time, and of the initial �

and �:

Next we can determine R(t) from (6) and solve for the resulting resource stock S(t): Finally, we use

the transversality conditions (9) and (10) to solve for the initial values of the co-state variables. Given

the strict concavity of the utility and production functions involved, if the DHSS problem has a solution,

it is unique. Hence, if we �nd a solution satisfying the transversality conditions it is the unique solution

to the DHSS problem.

Remark 1: Note that so far we haven�t used the resource constraint. The resource constraint will

be used below to determine the initial values of the co-state variables as well as the path of the resource

stock. It does not a¤ect the functional form of the paths of consumption, capital accumulation and

resource extraction.

It turns out that the solution for K from (13), and hence for R and S; can be expressed in terms of

a special function, i.e., the exponential integral de�ned as

Ea (z) �
Z 1

1

e�zuu�adu
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with a 2 R and z > 0 (see e.g., Abramowitz and Stegun, 1972, and Temme, 19966). A special case of

the exponential integral is

E1 (z) �
Z 1

1

e�zuu�1du

A simple change of variable allows to have this useful alternate expression for the exponential integrals

Ea (z) � za�1
Z 1

z

e�vv�adv. (14)

The function Ea (z) is a strictly decreasing function of z and, �nally,

E0 (z) =
e�z

z
:

Another property of the exponential integral that will prove useful for our purposes is (see Abramowitz

and Stegun,1972, p.229, inequality 5.1.20)

1

2
e�z ln

�
1 +

2

z

�
< E1 (z) < e

�z ln

�
1 +

1

z

�
(15)

which implies that

lim
z!1

E1 (z) = 0 and lim
z!0+

E1 (z) =1.

3 Solving the DHSS problem

In this section, we provide the steps to determine the solution to the set of conditions given by the

maximum principle (5)-(8). In view of (12) it will turn out convenient to de�ne

' = (1� �)
�

�0
1� �

���1
�

; �(t) = �
��1
�

0 + 't; x(t) =
��(t)

'
; x0 = x (0) ; � =

1� �
�

1� � (16)

The following observations will be useful for the rest of the analysis: the case � = 1 implies � = 1, � � 0

if and only if � � � and the variable x (t) is an a¢ ne function of time with x (t) = x0 + �t.

3.1 Consumption

Proposition 1

The optimal consumption path is given by

C(t) = e
��
� t� (t)

�
�(1��)

Proof : This is straightforward from (12) and (5)�
6Both Abramowitz and Stegun (1972) and Temme (1996) de�ne the exponential integral with a integer and allow for

z to be complex with Re (z) > 0. However, the de�nition extends naturally to allow a to be real or complex. It is this

generalized de�nition of the exponential integral that we use. In our analysis the argument, a, is real.
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3.2 Man-made capital

From (13), we have that the stock of man-made capital is given by

K (t) = K0e
�
R t
0
f(z)dz +

Z t

0

g (z) e�
R t
z
f(s)dsdz (17)

where

f(t) � �
�

�(t)

(1� �)�(t)

���1
�

and g(t) � ��(t)
�1
� :

Since �(t) = e�t�0 and �(t) = e
�t�(t)

�
��1 from (12) and (16), we have

f(t) = �
�

�0
1� �

���1
� 1

�(t)

and Z t

z

f (z) dz = � ln
�
�(t)

�(z)

� 1
1��

(18)

We now determine the second term of the right hand side of equation (17).

Lemma 1

Z t

0

g (z) e�
R t
z
f(s)dsdz = � 1

'
e
x0
� �(t)

1
1��

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��
(19)

where x(t) is de�ned in (16).

Proof : Appendix A.

We can now derive the path of the capital stock.

Proposition 2

The optimal path of the stock of capital is

K (t) = �(t)
1

1��

 
K0�

1
�
0 �

1

'
e
x0
�

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��!
(20)

Proof : Substituting (18) and (19) into (17) gives

K (t) = K0

�
�(t)

�0

� 1
1��

� 1

'
e
x0
�

�
'

�

�1��
�(t)

1
1��

�
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��
:

Factoring �(t)
1

(1��) and taking into account that ( 1�0 )
1

1�� = �
1=�
0 yields (20)�

3.3 Extraction

It follows from (6) and (16) that

R(t) =

�
1� �
�0

� 1
�

�(t)
1

��1K(t)
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Direct substitution from Proposition 2 yields

Proposition 3:

The optimal extraction rate is given by

R (t) =

�
1� �
�0

� 1
�

 
K0�

1
�
0 �

1

'
e
x0
�

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��!
(21)

3.4 The resource stock

The optimal path of the stock of the resource is the unique solution to (3) with S (0) = S0.

Proposition 4.

The optimal path of the stock of the resource is given by

S (t)� S0 = �
 
K0

�
1� �
�0

�0

� 1
�

� 1

�0
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�!
t

� 1

��0
e
x0
�

�
'

�

�1��
�2��

�
	

�
x (t)

�

�
�	

�
x0
�

��
with

	(x) = x2�� (E�(x)� E��1(x)) :

Proof : Appendix B.

3.5 Solving for the co-state variables

To fully characterize the optimal paths of consumption, the rate of extraction, and the stocks of capital

and the resource we still need to determine �0 and �0. We use the transversality conditions (9) and (10)

to do so.

Lemma 2

Given x0 > 0; the vector (�0; �0) is given by

�0 =

 
1

K0

1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�!�
(22)

�0 =

0BB@
�
�
�

�2�� �
1

1��

�� (1��)
�

	
�
x0
�

�
S0

1CCA
�

(��1)�+1

: (23)

Proof : Appendix C.
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De�ne

A =

 
�
(1� �)

1
�

�

! �
1��

S0
K0

(24)

and

h� (x) = �
�
x

�

� 1
��1+��1 	

�
x
�

�
E�

�
x
�

�
Lemma 3

For any S0 and K0 positive, x0 is the unique solution to h�(x0) = A.

Proof : Appendix D.

The determination of the optimal solution to the DHSS problem is now complete. For any given

positive values of S0 and R0 we solve for x0 using Lemma 3, then derive the initial values of the co-

state variables �0 and �0 from Lemma 2. We obtain the time paths of all the model�s variables from

Propositions 1-4.

4 Sensitivity analysis

We exploit the analytical tractability of the solution to the DHSS model to establish some key features

of the optimal paths. We focus on the consumption and the investment paths.

4.1 The optimal consumption path

We �rst study the conditions under which consumption is increasing for some initial period of time. We

highlight the role of the parameters of the model, like the pure rate of time preference and the initial

stocks of capital and the natural resource, on the possibility that consumption may rise for an initial

period of time. For the ease of exposition only, we focus on the case of a logarithmic utility function:

� = 1, i.e. U (C) = lnC. From the speci�cation of consumption in Proposition 1 it follows that the time

at which maximum consumption is reached is

t� = � 1

�'

�
'

�

�� 1 + ��0
�
=
1

�

�
�

1� � � x0
�

(25)

Clearly t� > 0 i¤ x0 < �
1�� which holds i¤A >

~A � h1
�

�
1��

�
> 0 . Indeed, we show in Appendix E that

h1 is a strictly decreasing function of x and therefore, given A and x0 such that h1 (x0) = A we have

x0 <
�

1� � i¤ A >
~A.
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Therefore, consumption is initially (i.e., for t < t�) increasing over time, if and only if A > ~A. For any

� 2 (0; 1) we have A � S0
K0

�
(1��)

1
�

�

� �
1��

> ~A when S0=K0 is large enough or � is small enough. More

precisely, from lemma 3 and (25) and using the implicit function theorem we have

dx0
d�

=

dA
d�

h01 (x0)
> 0 since h01 (x0) < 0 and

dA

d�
< 0 (26)

and thus
dt�

d�
= � 1

�2

�
�

1� � � x0
�
� 1

�

dx0
d�

< 0:

Also observe that the time where the peak takes place goes to in�nity as the rate of pure time

preference goes to zero. Indeed, �! 0 implies A!1; which implies that in the optimum h1(x0)!1;

so that, according to Appendix D, x0 ! 0: Therefore, for each given instant of time, the di¤erence between

the optimal rate of consumption with zero discounting can be made arbitrarily close to the utilitarian

optimum with discounting by choosing the rate of time preference small enough. Note, however, that this

convergence does not imply convergence over the entire trajectory. Consequently, by choosing the rate

of time preference small enough, we can postpone the moment in time at which consumption decreases

below the maximin rate of consumption.

We can also determine
dt�

dA
=
1

�

�
�dx0
dA

�
= � 1

�h01 (x0)
> 0

and therefore an increase of S0=K0 implies a larger t�. Note that the existence of a phase where con-

sumption is increasing with time depends on the ratio of S0 and K0 and not the absolute values of S0 or

K0.

The peak of consumption can be expressed, after manipulations, as

C� = �
1

1����
�

��1 e
�

��1
S0

(e�x0 � x0E1 (x0))

or, in terms of the initial stock of capital, as

C� = �

�
�

1� �

�� �
��1

e
�

��1K0
1

E1 (x0)

�
1

x0

� 1
1��

:

Consider now the rate of consumption that solves the following problem

MaxC fMin U (C)g (27)

subject to (2)-(4). It can be shown (Solow, 1974) that, provided that 1
2 < � < 1; the solution to this

problem, referred to as the maximin rate of consumption, is

~C = � (2�� 1)
1��
� S

1��
�

0 K
2��1
�

0 :
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The main criticism of the utilitarian criterion is that it discounts future consumption. It is intuitive

to think that the solution under such a criterion, which favors present consumption relative to future

consumption, would result in larger initial consumption than any consumption rate that would be sus-

tained at all time. We show below that this is not true in its generality. There exists a rate of pure

time preference �̂ > 0 such that if � < �̂ the initial rate of consumption is below the maximin rate of

consumption. The initial rate of consumption in the utilitarian framework is

C0 � C (0) =
1

�0
=

�K0

x0ex0E1 (x0)
(28)

The analysis of the ratio ~C=C0 as a function of x0 allows to determine the behaviour of ~C=C0 as a

function of � as well as S0=K0 in a compact way. The ratio ~C=C0 can be written as

~C=C0 =
� (2�� 1)

1��
�

(1� �)
1
�

� (x0)

where

� (x0) =

�
1

x0ex0E1(x0)
� 1
� 1��

�

ex0E1 (x0) :

Lemma 4:

We have d�
dx0

< 0 for all x0 > 0 with limx0!1 � (x0) = 0 and limx0!0+ � (x0) =1

Proof: See Appendix F:

We can now link the ratio ~C=C0 to � and to S0=K0 through h1 (x0) = A with A given in (24).

Proposition 5a:

The ratio ~C=C0 is a strictly decreasing function of �. Moreover there exists �̂ > 0 such that ~C=C0 > 1

i¤ � < �̂:

Proof: From (24) we have
dx0
d�

=

dA
d�

h01(x0)
> 0 (29)

since dA
d� < 0 and in Appendix E we show that h

0
1 (x) < 0 for all x > 0.

Using Lemma 4 along with dx0
d� > 0 and the fact that lim�!1 (x0) = 1 and lim�!0+ (x0) = 0

completes the proof

Asheim (1994) obtains this result using the assumption that the consumption path in a utilitarian

optimum has the following properties: (i) consumption is a continuous function of the rate of pure time

preference � and (ii) there exists �̂ > 0 such that if � < �̂ the initial rate of consumption is below the

maximin rate of consumption. These, plausible, properties have been assumed for instance by Asheim

(1994) to show that if at some instant of time Hartwick�s rule holds it does not mean that the economy
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is on a sustainable path. Our analysis provides a proof of both properties and shows monotonicity of

~C=C0 with respect to �. In the existing litterature these properties were shown to hold in the very

special case where the production function is Cobb-Douglas with constant returns to scale where the

production elasticity of capital is assumed equal to the elasticity of marginal utility (see e.g., Pezzey

and Withagen (1998) and Hartwick et al. (2003)). In our analysis we do not rely on this restrictive

assumption. Moreover, we can give closed form solutions of all other relevant variables, which will be

further exploited.

Indeed, our treatment also allows to determine the relationship between the ratio ~C=C0 and the ratio

S0=K0.

Proposition 5b:

The ratio ~C=C0 is a strictly decreasing function of S0=K0. Moreover there exists a ratio \S0=K0 > 0

such that ~C=C0 > 1 i¤ S0=K0 > \S0=K0:

Proof: From (24) we have

dx0
d (S0=K0)

=
1

h01(x0)

 
(1� �)

1
�

�

! �
1��

< 0 (30)

The proof that h01 (x) < 0 for all x > 0 is given in Appendix E.

Using Lemma 4 along with dx0
d(S0=K0)

< 0 and the fact that limS0=K0!1 (x0) = 0 and limS0=K0!0+ (x0) =

1 completes the proof

The ratio S0=K0 can be considered as an indicator of resource abundance. Proposition 5b states that

the initial consumption under a utilitarian criterion starts below the maximin rate of consumption if and

only the resource is abundant enough. This is not a priori intuitive. The utilitarian criterion is generally

considered as biased towards present generations and therefore under such a criterion it may be intuitive

to expect that abundance of resources will be heavily exploited by present generations at the detriment

of future generations. We have shown that a more abundant resource increases both the maximin rate of

consumption and the initial consumption rate under a utilitarian criterion. However, the latter increase

is smaller than the former. Thus, under a utilitarian criterion, it is not necessarily the present generation

that bene�ts most from a windfall of resources.

4.2 The optimal investment path

The optimal investment path can be obtained by direct substitution of C (t), K (t) and R (t)

_K (t) = �(t)
�

1��

�
1� �
�0

� 1��
�

K0�
1=�
0 (31)

� 1
'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

�
�
�
e��t�(t)�

�
��1
� 1
�
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Figure 1:

The investment path can also initially increase over time and decline after reaching a peak and

eventually become negative. This was shown earlier by Asheim (1994). In particular he proves that if

the rate of time preference is such that C0 = ~C this will be the behavior of the investment path. Here we

provide a numerical example that illustrates the investment and consumption patterns as a function of

resource abundance. More precisely we set � = 1; K0 = 1; � = 0:6 and � = 0:03 and we plot the optimal

investment and consumption paths under a utilitarian objective and the maximin consumption rate for

di¤erent values of the stock of the resource.

We �rst set S0 = 0:5, we have that C0 < ~C and that investment is initially increasing over time and

declines after reaching a peak and eventually becomes negative, see Figure 1. When we set S0 = 0:1, we

have C0 > ~C and investment is always decreasing over time and eventually becomes negative, see Figure

2. There exists a threshold stock of the resource ~S0 for which C0 = ~C. For our numerical example the

approximate value of ~S0 is 0:1825. In Figure 3 we plot the case where S0 = 0:1825.

Note that investment becomes negative before the moment beyond which the optimal consumption

path under the utilitarian objective falls below ~C forever. We obtained this qualitative result for all

numerical simulations we have conducted.

It can be shown that, when � = 1
2 ; investment at time zero is equal to

_K (0) = �1
2

2ex0x0E1 (x0)� x0
ex0x0E1 (x0)� 1

S0.

From (48) (see Appendix F) we know the denominator is negative. Therefore, we have positive investment

13
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at time zero i¤ ex0E1 (x0) > 1
2 . Moreover, also from (48) (see Appendix F), we have

d (ex0E1 (x0))

dx0
= � 1

x0
+ ex0E1 (x0) < 0:

Therefore, there exists �x0(� 1:289) such that overshooting in man made capital occurs (i.e., _K (0) > 0)

i¤ x0 < �x0, i.e. i¤ � or K0 small enough or S0 large enough. Thus, it is relatively resource rich countries

that are more likely to overshoot in man made capital.

4.3 The case of decreasing returns to scale

We �nally consider the case of decreasing returns to scale, where the production function is given by

Y (t) = K(t)�R(t)� with � + � � 1 and �; � � 0 (32)

Trivially this function can be rewritten as

Y (t) = K(t)�
�
R(t)

�
1��

�1��
= K(t)� ~R(t)1�� (33)

where ~R (:) is such that ~R(t) = R(t)
�

1�� for all t � 0.

The resource constraint then reads

_S(t) = �
�
~R (t)

� 1��
�

(34)

As was noted in Remark 1 in Section 2, the functional �forms�of consumption, capital accumulation

and resource extraction, are not a¤ected by the resource constraint hence the optimal consumption as

well man-made capital along the optimal path still have the same �form�as in Proposition 1 and 278 . We

can use this observation to derive an interesting result with respect to the initial level of consumption.

It follows from the necessary conditions (5) -(8) that

_C(0)=C(0) > 0 if and only if � < �( ~R(0)=K0)
1��

The right hand side of the condition depends on the endogenous variable ~R; but, clearly, the condition is

satis�ed for a large enough initial resource stock. Hence, we may conclude that for a large enough initial

resource/capital ratio or for a rate of time preference small enough initial consumption will be increasing.

Moreover, for a high rate of time preference consumption will decrease monotonically, and it will start

above the maximin level.
7Proposition 3 can be invoked to obtain the functional form of ~R (t). The optimal extraction rate R (t) is thus given by�
~R (t)

� 1��
� .

8While the functional forms of the optimal paths in Proposition 1-2 carry over to the case of a production function that

exhibits decreasing returns to scale the initial values of the co-state variables are obviously di¤erent when � = 1� � from

the case where � 6= 1� �.
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5 Conclusion

We have given a closed form solution to the seminal model of an economy with man-made capital and

exhaustible resources, based on Dasgupta and Heal (1974), Solow (1974) and Stiglitz (1974). For this

economy with two assets, we give a closed form representation of the dynamics of all the variables in the

model and from all possible initial values of the state variables. We establish several features that the

solution may exhibit. In particular, we determine the condition under which the consumption is initially

increasing with time and the condition under which initial investment is positive. We have shown that

the initial consumption under a utilitarian criterion starts below the maximin rate of consumption if

and only the resource is abundant enough and that under a utilitarian criterion, it is not necessarily the

present generation that bene�ts most from a windfall of resources.
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Appendix A: Proof of Lemma 1

From (18) we have

e�
R t
z
f(s)ds =

�
�(t)

�(z)

� 1
1��

Hence; since g (t) = ��(t)
�1
� and �(t) = e�t�(t)

�
��1 by de�nition, it holds thatZ t

0

g (z) e�
R t
z
f(s)dsdz =

Z t

0

� 1�
e�z�(z)

�
��1
� 1
�

�
�(t)

�(z)

� 1
1��

dz

= ��(t) 1
1��

Z t

0

e�
1
� �z�(z)�

1
1���

�
��1

1
� dz

From (15) we have x(t) � ��(t)
' ; z = �(z)��0

' and d�(z) = 'dz: HenceZ t

0

g (z) e�
R t
z
f(s)dsdz = ��(t) 1

1��

Z �(t)

�0

e�
1
� �

�(z)��0)
' �(z)��

d�(z)

'

= � 1
'
e
1
� �

�0
' �(t)

1
1��

Z �(t)

�0

e�
1
�
�
'uu��du

= � 1
'
e
x0
� �(t)

1
1��

Z �(t)

�0

e�
1
�
�
'uu��du

Consider the following change of variable

w =
u

�0
=

�

'x0
u

Then dw = �
'x0
du: HenceZ �(t)

�0

e�
1
�
�
'uu��du =

Z �(t)
�0

1

e�
x0
� ww��

�
'x0
�

���
'x0
�
dw

=

�
'x0
�

���+1 Z x(t)
x0

1

e�
x0
� ww��dw

=

�
'x0
�

���+1 Z 1

1

e�
x0
� ww��dw �

Z 1

x(t)
x0

e�
x0
� ww��dw

!

We also have

Z 1

1

e�
x0
� ww��dw = E�

�
x0
�

�
(35)

Let ! = x0w
x(t) : Then d! =

x0
x(t)dw andZ 1

x(t)
x0

e�
x0
� ww��dw =

Z 1

1

e�
x(t)
� !!��

�
x(t)

x0

���
x(t)

x0
d!

=

�
x(t)

x0

���+1 Z 1

1

e�
x(t)
� !!��d!

=

�
x(t)

x0

���+1
E�

�
x (t)

�

�
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Hence Z x(t)
x0

1

e�
x0
� ww��dw = E�

�
x0
�

�
�
�
x(t)

x0

���+1
E�

�
x (t)

�

�
So Z t

0

g (z) e�
R t
z
f(s)dsdz = � 1

'
e
x0
� �(t)

1
1��

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��
�

Appendix B: Proof of Proposition 4

The resource extraction path is given by (21):

R (t) =

�
1� �
�0

� 1
�

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��!
(36)

S (t)� S (0) = �
Z t

0

R(s)ds (37)

= �
�
1� �
�0

� 1
�
Z t

0

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�!
dz

+

�
1� �
�0

� 1
� 1

'
e
x0
�

�
'

�

�1�� Z t

0

x(z)1��E�

�
1

�
x (z)

�
dz

= �
�
1� �
�0

� 1
�

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�!
t

�
�
1� �
�0

� 1
� 1

'
e
x0
�

�
'

�

�1�� Z t

0

x(z)1��E�

�
1

�
x (z)

�
dz

To complete the determination of the path of the stock of resource we need to determine
R t
0
x(z)1��E�

�
1
�x (z)

�
dz.

We have

x(t) =
�
�
�
��1
�

0 + 't
�

'
=
��

��1
�

0

'
+ �t

Consider the following change of variable: �(z) = 1
�

 
��

��1
�

0

' + �z

!
= 1

�x(z): Then

 
�� � ��

��1
�

0

'

!
1
� = z
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and � 1�d� = dz and thereforeZ t

0

x(z)1��E�

�
1

�
x (z)

�
dz =

Z 1
� x(t)

x0
�

�1���1��E� (�) �
1

�
d�

=
1

�
�2��

Z 1
� x(t)

x0
�

�1��E� (�) d�

=
1

�
�2��

 Z 1
� x(t)

0

�1��E� (�) d� �
Z x0

�

0

�1��E� (�) d�

!

=
1

�
�2��

�
	

�
x (t)

�

�
�	

�
x0
�

��
(38)

where Z B

0

�1�aEa(�) d� = 	(B) + �(2� a) (39)

where � (:) is the Gamma function and

	(B) � B2�a (Ea(B)� Ea�1(B))

To show (39), we �rst use (14) and then integrate by parts. We haveZ B

0

�1�aEa(�) d� =

Z B

0

F (�) d� = BF (B)�
Z B

0

�F 0(�) d�

where

F (�) =

Z 1

�

e�tt�a dt:

This gives Z B

0

�1�aEa(�) d� = B
2�aEa(B) +

Z B

0

�1�ae�� d�

or Z B

0

�1�aEa(�) d� = B
2�aEa(B) +

Z 1

0

�1�ae�� d� �
Z 1

B

�1�ae�� d� :

Using (14), the last part of the right-hand side can be substituted by B2�aEa�1(B) and we haveZ B

0

�1�aEa(�) d� = B
2�aEa(B) + �(2� a)�B2�aEa�1(B)

where � is the Gamma function. Thus, using (38), (37) and noting that
�
1��
�0

� 1
� 1
' simpli�es into

1
�0

completes the proof�

Appendix C: Proof of Lemma 2
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0 = lim
t!1

e��t� (t)K (t)

= lim
t!1

�
�
1� 1

�
0 + 't

� �
��1

�(t)
1

1��

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��!

= lim
t!1

�(t)

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1�� �
x1��0 E�

�
x0
�

�
� x(t)1��E�

�
x (t)

�

��!
(40)

The series expansion of the exponential integral when z tends to in�nity (see Abramowitz and Stegun

(1972), 5.1.51) reads

E� (z) = e
�z

 
1

z
� �

�
1

z

�2
+O

 �
1

z

�3!!
(41)

Therefore

lim
t!1

x(t)2��E�

�
x (t)

�

�
= lim

t!1
x(t)2��e�x(t)

 
1

x(t)
+O

 �
1

x(t)

�2!!

For any � 2 R we have limt!1 x(t)
2��e�x(t) = limx!1 x

2��e�x = 0 which implies

lim
t!1

�(t)
1

'
e
x0
�

�
'

�

�1��
x(t)1��E�

�
x (t)

�

�
= lim

t!1

'x(t)

�

1

'
e
x0
�

�
'

�

�1��
x(t)1��E�

�
x (t)

�

�
= lim

t!1

1

�
e
x0
�

�
'

�

�1��
x(t)2��E�

�
x (t)

�

�
= 0

The transversality condition gives

lim
t!1

�(t)

 
K0�

1=�
0 � 1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�!
= 0

This is satis�ed if

K0�
1=�
0 � 1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�
= 0 (42)

This is true for all � > 0. Solving for �0 gives (22).

Next we prove (23). We start again from Proposition 4 and take the transversality condition for K

into account. Recalling that

	(x) = x2�� (E�(x)� E��1(x))

we �nd

�S (0) = lim
t!1

� 1

��0
e
x0
�

�
'

�

�1��
�2��

�
	

�
x (t)

�

�
�	

�
x0
�

��
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Using the expansion (41) above gives

lim
t!1

	(x) = lim
x!1

�
x2�� (E�(x)� E��1(x))

�
= 0

So, the transversality condition becomes

S0 = �
1

��0
e
x0
�

�
'

�

�1��
(�)

2��
	

�
x0
�

�
which, after substitution of ' and noting that �

((��1)�+1) = �; gives

�0 =

0BB@�
�
�
�

�2�� �
1

1��

�� (1��)
�

	
�
x0
�

�
S0

1CCA
�

� (43)

Appendix D: Proof of Lemma 3

The proof is divided in two steps: (i) proof that x0 must be solution to h� (x) = A and (ii) proof that

there exists a solution to h� (x) = A.

(i) We have

S0 = �
1

��0
e
x0
�

�
'

�

�1��
�2��	

�
x0
�

�
and

K0�
1=�
0 =

1

'
e
x0
�

�
'

�

�1��
x1��0 E�

�
x0
�

�
(44)

Therefore

S0
K0

= ��
1
�
0

'

�0

�2��	
�
x0
�

�
�x1��0 E�

�
x0
�

� (45)

with

' = (1� �)
�

�0
1� �

���1
�

and thus
'

�0
=

�
�0
1� �

���1
� �1

=

�
�0
1� �

�� 1
�

Substituting '
�0
into (45) gives

S0
K0

= �
�
�0
�0

� 1
�
�

1

1� �

�� 1
� �2��	

�
x0
�

�
�x1��0 E�

�
x0
�

� :
Using the following relationship �

x0
�

� �
��1

(1� �) 1
��1 =

�0
�0

yields  
(1� �)

1
�

�

! �
1��

���2
S0
K0

= �x
1

��1+��1
0

	
�
x0
�

�
E�

�
x0
�

�
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or  
�
(1� �)

1
�

�

! �
1��

S0
K0

= �
�
x0
�

� 1
��1+��1 	

�
x0
�

�
E�

�
x0
�

�
Recall that

A =

 
�
(1� �)

1
�

�

! �
1��

S0
K0

and

h� (x) = �
�
1

�
x

� 1
��1+��1 	

�
1
�x
�

E�

�
1
�x
�

then x0 solves

h� (x0) = A

This completes (i).

(ii) We now argue that

lim
x0!0+

h� (x0) =1 and lim
x0!1

h� (x0) = 0

which given the continuity of h� over (0;1) proves, the existence of a sulution.

We start by rewriting h� (x) using the recurrence relationship (see Abramowitz and Stegun (1972),

5.1.14)

E�(z) =
1

� � 1
�
e�z � zE��1(z)

�
which gives

	(x)

E� (x)
= x2��

�
1� E��1(x)

E�(x)

�
= x2��

�
1� e

�x � (� � 1)E�(x)
xE�(x)

�
and thus

h� (x) = � (x)
�

��1

�
1� E��1(x)

E�(x)

�
= � (x)

�
��1

�
1� e

�x � (� � 1)E�(x)
xE�(x)

�
or

h� (x) = (x)
�

��1

�
e�x

xE�(x)
� (� � 1)

x
� 1
�

From Abramowitz and Stegun (1972), 5.1.51, we have that E� (z) is asymptotically equal (and we use

the symbol �) to

E� (z) �
e�z

z

�
1� �

z
+
� (� + 1)

z2
� � (� + 1) (� + 2)

z3
:::

�
(46)
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and therefore

z
1

1�� ezE� (z) � z
�

1��

�
1� �

z
+
� (� + 1)

z2
� � (� + 1) (� + 2)

z3
:::

�
(47)

This combined with � 2 (0; 1) gives

lim
z!1

z
1

1�� ezE� (z) =1 and thus lim
x!1

h� (x) = 0.

We now turn to the case where x ! 0+. Let n� denote the smallest integer strictly smaller than �.

It is straightforward to show that E� (x) is a strictly decreasing function of �. Hence, since n� � � � 1,

we have

h� (x) = x
�

��1

�
E��1(x)

E�(x)
� 1
�
� x �

��1

�
En� (x)

E
�
(x)

� 1
�

We have for all � 2 (0; 1]

lim
x!0+

En� (x)

E
�
(x)

=
E0(x)

E��n� (x)
= lim

x!0+

1

xexE��n� (x)

Using L�Hopital�s rule we have, for � > 1

lim
x!0+

En� (x)

E
�
(x)

= lim
x!0+

En��1(x)

E
��1(x)

= ::: = lim
x!0+

E0(x)

E��n� (x)
= lim

x!0+

1

xexE��n� (x)

and similarly for � � 0

lim
x!0+

En� (x)

E
�
(x)

= lim
x!0+

En�+1(x)

E
�+1(x)

= ::: = lim
x!0+

E0(x)

E��n� (x)
= lim

x!0+

1

xexE��n� (x)
:

We now show that

lim
x!0+

1

xexE��n� (x)
=1

Note that � � n� 2 (0; 1]. We distinguish between � � n� 2 (0; 1) and � � n� = 1:

Suppose that � � n� 2 (0; 1). The asymptotic behavior of E��n� (z) when z ! 0 is given by

E��n� (z) = z
��n��1�(1� (� � n�))�

1X
n=0

(�1)nzn
n! (1� (� � n�) + n)

which is found by using the following relationship

Ea(z) = z
a�1�(1� a)� za�1
(1� a; z)

where � is the Gamma function and 
 is called the incomplete Gamma function, and by the asymptotic

behavior 
 in the neighborhoud of zero (see Temme, 1996, p. 279). Therefore,

exxE��n� (x) = e
xx��n��(1� (� � n�))� exx

1X
n=0

(�1)nxn
n! (1� (� � n�) + n)

and since � � n� 2 (0; 1)

lim
x!0+

exxE
�
(x) = 0
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or

lim
x!0+

�
1

exxE
�
(x)

� 1
�
=1

and thus

lim
x!0+

h� (x) =1:

For the case where � � n� = 1 (i.e., � integer) we have

lim
x!0+

1

xexE1 (x)

using
1

2
e�x0 ln

�
1 +

2

x0

�
< E1 (x0) < e

�x0 ln

�
1 +

1

x0

�
gives

1

2
x ln

�
1 +

2

x0

�
< xexE1 (x0) < x ln

�
1 +

1

x0

�
thus

1

x ln
�
1 + 1

x0

� < 1

xexE1 (x0)
<

2

x ln
�
1 + 2

x0

�
since

lim
x!0+

1

x ln
�
1 + 1

x

� =1
we have

lim
x!0+

1

xexE1 (x)
=1

and thus

lim
x!0+

h� (x) =1:

To sum-up we have,

lim
x0!0+

h� (x0) =1 and lim
x0!1

h� (x0) = 0

where h� (:) is a continuous function of x over (0;1) :Therefore there exists at least one solution x0 > 0

to h� (x0) = A; for any A > 0: Taking into account that the solution of the optimal control problem

under consideration is unique, we thereby also establish uniqueness of x0�

Appendix E: Proof that h01 (x) < 0 for all x > 0.

We compute the derivative of the function h1 and �nd

h01 (x) =
(e�x)

2
(1� �)� (e�xx (1� �) + e�x)E1(x) + (E1(x)))2 x�

(E1(x))
2
x

1
1��+1

0 (1� �)

The sign of the denominator is positive. Therefore the sign of h0 (x) is the same as the sign of the

numerator, denoted by N(x). Using the property of the exponential integral that

1

2
e�x ln

�
1 +

2

x

�
< E1(x) < e

�x ln

�
1 +

1

x

�
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it holds for all x 2 (0;1) that

N (x) < e�2xZ (x)

where

Z (x) �
 
(1� �)� (x (1� �) + 1) 1

2
ln

�
1 +

2

x

�
+

�
ln

�
1 +

1

x

��2
x�

!
.

For the derivative of Z (x) we get

Z 0 (x) = �1
2
(1� �) ln(1 + 2

x
) +

x(1� �) + 1
x(x+ 2)

+�

�
ln(1 +

1

x
)

�2
� 2� 1

1 + x
ln(1 +

1

x
)

The second derivative is

Z 00 (x) = �2
2x� 3x�+ x2 � 2x2�+

�
4x�+ 4x2�+ x3�

�
ln 1

x (x+ 1) + 1

(x+ 1)
2
(x+ 2)

2
x2

Using
1
x

1 + 1
x

< ln

�
1 +

1

x

�
<
1

x

we have �
2x� 3x�+ x2 � 2x2�+

�
4x�+ 4x2�+ x3�

�
ln(
1

x
(x+ 1)) + 1

�
>

�
2x� 3x�+ x2 � 2x2�+

�
4x�+ 4x2�+ x3�

� 1
x

1 + 1
x

+ 1

�
and thus

Z 00 (x) < (�2)

�
2x� 3x�+ x2 � 2x2�+

�
4x�+ 4x2�+ x3�

� 1
x

1+ 1
x

+ 1
�

(x+ 1)
2
(x+ 2)

2
x2

which after simpli�cations becomes

Z 00 (x) < (�2) (3 + �)x+ (3� �)x
2 + x3 (1� �) + 1

(x+ 1)
3
(x+ 2)

2
x2

< 0

So Z 00 (x) < 0 for all � 2 [0; 1] and all x 2 (0;1) and therefore

Z 0 (x) 2 (Z 0 (1) ; Z 0 (0))

with

lim
x!1

Z 0 (x) = 0 and lim
x!0+

Z 0 (x) =1
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that is Z 0 (x) > 0 for all x 2 (0;1) and therefore

Z (x) 2 (Z (0) ; Z (1))

with

lim
x!1

Z (x) = 0 and lim
x!0+

Z (x) = �1

Since Z (x) < 0 all x 2 (0;1) we have N (x) < 0 and h01 (x) < 0 all x 2 (0;1)�

Appendix F: Proof of Lemma 4

We show that (i) d(x0e
x0E1(x0))
dx0

> 0 with 0 < x0ex0E1(x0) < 1 for all x0 > 0 and (ii)
d(ex0E1(x0))

dx0
< 0

with 0 < ex0E1(x0) for all x0 > 0.

(i) We have d(x0e
x0E1(x0))
dx0

= �1+(1 + x0) ex0E1(x0). Using the fact that (see Abramowitz and Stegun

(1972) p. 229 Inequality 5.1.19)
1

z + 1
< ezE1 (z) <

1

z
for z > 0 (48)

we have
1

x0 + 1
< ex0E1 (x0)

gives d(x0e
x0E1(x0))
dx0

> 0 and therefore 1
x0ex0E1(x0)

�1 is a strictly decreasing function of x0 over the domain

(0;1) with

lim
x!0+

1

xexE1 (x)
=1

using
1

2
e�x0 ln

�
1 +

2

x0

�
< E1 (x0) < e

�x0 ln

�
1 +

1

x0

�
gives

1

2
x0 ln

�
1 +

2

x0

�
< x0e

x0E1 (x0) < x0 ln

�
1 +

1

x0

�
thus

1

x0 ln
�
1 + 1

x0

� < 1

x0ex0E1 (x0)
<

2

x0 ln
�
1 + 2

x0

�
since

lim
x!0+

1

x ln
�
1 + 1

x

� =1
we have

lim
x!0+

1

xexE1 (x)
=1

and

lim
x0!1

0@ 2

x0 ln
�
1 + 2

x0

�
1A = lim

z!0+

�
z

ln (1 + z)

�
= 1
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therefore 1
xexE1(x)

� 1 is a strictly decreasing function from (0;1) into (0;1).

(ii) d(e
x0E1(x0))
dx0

= � 1
x0
+ ex0E1(x0) from

ex0E1 (x0) <
1

x0

we have d(ex0E1(x0))
dx0

< 0 for all x0 > 0 with

1

2
ln

�
1 +

2

x0

�
< ex0E1 (x0) < ln

�
1 +

1

x0

�
and therefore

lim
x!0+

exE1 (x) =1

and

lim
x!1

exE1 (x) = 0
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