
Pore Network Modeling Software Interface Development
Harold Day, Jeff T. Gostick*

Department of Chemical Engineering, McGill University, Montréal, QC, H3A 2B2, Canada
*Supervising Professor | Phone: (514) 398-4301 | Fax: (514) 398-6678 | E-mail: jeff.gostick@mcgill.ca

INTRODUCTION

OBJECTIVES

PORE NETWORK MODELING

MATHEMATICAL OPTIMIZATION

PYTHON & GUI DESIGN

FUTURE WORK

ACKNOWLEDGEMENTS

Polymer electrolyte membrane fuel cells (PEMFCs) [Fig 1.] are a promising
alternative to combustion engines for automotive applications due to their
ability to provide high power for long durations with short recharge times.
Current efforts in the field are directed towards increasing their power density

to lower costs and enhance commercial
viability.

This project is a subset of research aiming
to develop more accurate pore network
models to aid in the creation sophisticated
designs that overcome existing issues
centered around water retention in the
porous electrode: If the levels are too high
they inhibit transport in the gas layer, if
they are too low the membrane becomes
desiccated when operating at high
temperatures.

One of the ways in which the pore materials
for the fuel cell electrode are characterized is via air-water capillary pressure
curves. Researchers can experimentally obtain this data via a Mercury Intrusion
Porosimetry (MIP) setup. [Fig 2.]

Conventional modeling approaches
based on parallel capillary tubes fail to
reflect the properties and behaviour of
materials used, requiring unrealistic
contact angle hysteresis (over 80°) to
explain observations. Pore Network
Models (PNMs), from the most basic to
the most sophisticated, generally fare
much better when subjected to invasion
simulation.

Due to the inexistence of relevant Python code, we started
by porting over the most basic version of the PNM
generation algorithm:

1. Generate a matrix of random numbers following a Weibull
distribution to represent pore size

2. Obtain information about the pore structure from
assumptions made about pore shape

3. Obtain description of structure in terms of threshold
pressures according to the capillary tube pressure
(Washburn) formula

4. Perform invasion simulation across predetermined pressure
range using image processing algorithm [Fig 3.]

a. Determine which cells are accessible at each injection pressure
b. Label cell clusters according to proximity
c. Discard clusters not connected to injection layer
d. Quantify degree of invasion in terms of volume
e. Output simulated capillary pressure plot

Image analysis algorithms have been extensively developed
and optimized in Python libraries. We used
numpy.ndarray.nd_image which means that the ported
code is elegant, very efficient and fast.

An application [Fig 4.] was developed to allow users
to quickly and easily manage and visualize sets of
data, rapidly fit generic Van Genuchten and
Brooks-Corey curves, and recover optimal
parameters.

Simultaneous Perturbation Stochastic
Approximation (SPSA) [Fig 5.] is the method best
suited to matching modeling parameters to
experimental data. The current implementation of
the algorithm can easily recover generating parameters of artificial data from
basis-less initial guesses thanks to performance-improving tweaks discovered in
relevant literature.

Unfortunately, when fitting real
data, the relative simplicity of the
PNM prevents a snug curve-fit.
No unique combination of
parameters definitively minimize
the objective function, leading to
numerous local minima.

A semi-automatic manual fitting
GUI was developed, showcasing
the benefits of direct user
interaction and feedback it
provides. [Fig 6.]

This work was supported via funding provided by the Summer Undergraduate
Research in Engineering (SURE) program of McGill University and The Automotive
Fuel Cell Cooperation (AFCC).

Mark Summerfield's "Rapid GUI Programming with Python and Qt" and the
community at StackOverflow.com were invaluable aides in the software
development process and recommended to any aspiring Python programmer.

Enhance validity of basic code
Correlate pore sizes
Model surface roughness effects
Simulate late-pore filling

Port over more sophisticated, Voronoi-cell based model code

Further study SPSA algorithms to attain better understanding of its
parameters in the context of the problem at hand, and convey information to
user effectively

This project is an effort to verify the viability of an open-source,
operating-system-independent programming language as a main platform for
developing the modeling framework and deploying it for academic and
industrial use.

Port existing PNM Matlab code to Python

Review and augment algorithms as necessary

Design and implement a graphical user interface (GUI)

Emphasise making code accessible to non-expert users and produce
documentation geared to augmenting code in the future

FIG 3. Hinton diagrams displaying 2D invasion simulation
of 20x20 model in the 400-600[kPa] range.

FIG 1. Basic diagram of main elements involved in the operation of PEMFCs.
Source: www.fueleconomy.gov/feg/fc_pics/fuel_cell_still.gif

FIG 2. Diagram illustrating the essentials of a Mercury Intrusion Porosimetry setup.
Source: Jeff T. Gostick

FIG 4. Version 0.7 of the “Pore Network Model Manager” application. Supported features include: Import and Export of
both individual data sets and entire sessions, slicing of data points to home in on areas of interest (including
automatic bound fitting) and generation of industry-standard pore size histograms from capillary data or model.

FIG 6. “Finder” sub-application. While not yet fully integrated into the main
program, it allows users to make the process of finding best fit parameters
for data interactive and intuitive, with visual validation provided
immediately. Eventually it will be obsoleted (only relevant for 2-parameters)
but hot fix tools such as this one enhance productivity immensely.

Substantial effort was put towards researching the options available in terms of
GUI development. Python offers several design packages, of which three were
seriously considered for this project: Tkinter, wxPython and PyQt4 (chosen).

Additionally there are a number of plotting libraries available. The decision to
go with matplotlib over PyQwt came down mainly to the Matlab-friendly
syntax style of the former.

Features such as dynamic variable declaration and extensive event handling
(Qt’s SLOT and SIGNAL mechanism is a great example) make the programming
experience resemble the classical physical engineering design process more
than ever before, meaning that engineers
outside of software should have no problem
getting a handle on coding.

Designing the widget layout of a GUI with
non-expert users in mind required analysis of
existing soft guidelines such as the
OK|Cancel vs. Save|Discard ideologies.

The result is a vindication of Python as a solid
modeling platform, and software that is
portable, customizable, easily expandable
and very computationally efficient.

400[kPa]

500[kPa]

600[kPa]

Source: J. Spall: “An Overview of the Simultaneous Perturbation Method for Efficient
Optimization”, Johns Hopkins APL Technical Digest, Vol. 19, No. 4 (1998)

