

Energy Harvesting for Portable Devices: Solar Energy for Cell Phones

Sajid Al Rashid and Tyeler Matsuo

Department of Mechanical Engineering, McGill University

Introduction

- Estimated 6 billion cell phone users in the world in 2011 (ITU World Telecommunication/ICT Indicators database)
- 76% of total cell phone users live in developing countries

Current Problem:

- Cell phones require frequent charging, making them less autonomous
- Many users in developing countries do not have access to grid electricity or charging stations are miles from villages

Solution:

Portable energy harvester to power mobile phones using photovoltaics

Energy Requirement of a Cell Phone

Total load requirement of a cell phone :

Cell Phone Activity	Hours/day	Power Consumpion (W)	Daily Energy Consumption (Wh/day)
Phone Call	1	1	1
Standby	18	0.01	0.2
Idle	5	0.5	2.5
Tatal	24		2 7

		Conventional	Flexible	
	Panel Area	80 cm ²	80 cm ²	
	Total number of cells	20	80	
	Cells in Series	10	10	
	Arrays in Parallel	2	8	
	Module Voltage	4.9 V	5.3 V	
	Module Current	314.4 mA	296.8.mA	
	Module Rated power	1.55 W	1.57 W	
		Electrical Connection		
	Conventional Design		Glass	
	FVA			
	(Ethylene-vinyl acetate)		Backsheet	
		Solar Cell		
	Flovible Design	Electrical Connection		
	PVF			-Silicone
	(Polyvinyl Fluoride)			
		Solar Cell		
	Mechanical Properties			
Conventional		Flexible		

Panel Design: Conventional vs. Flexible

Can we use solar energy for cell phones?

Monocrystalline Silicon cells offer the best available photovoltaic (PV) solution based on high conversion efficiency of about 20%

- Cells made from a thin slice of a large single crystal of pure molten silicon
- Extremely brittle and fragile so an effective packaging method is necessary to allow monocrystalline silicon cells to be portable

Two options were examined:

- ^o Encapsulate and embed **conventional cells** in a protective frame, or
- ^o Slice cells to very small thicknesses to create **flexible cells**

	Conventional	Flexible
Efficiency, η	≈20%	19.6%
Open Circuit Voltage, V _{oc}	676 mV	686 mV
Short Circuit Current Density, J_{sc}	39.3 mA/cm ²	37.1mA/cm ²
Area	4 cm ²	1 cm ²
Power/cell	77.6 mW	19.6 mW

- Cell thickness: 200 µm
- Module Weight: 100 g
- Susceptible to brittle fracture
- Must be kept flat and rigid to avoid fracture

Electrical Connection

- Electrical contacts placed on top of cells create shadowing losses
- Series connected modules respond poorly to partial shading

205

- Cell thickness: 50 µm
- Module Weight: 5 g
- Can undergo considerable deformation before fracture
- Electrical connections made on the side of each cell so no losses due to shading
- Redundant parallel connections provide improved response to partial shading

Advantages and Applications of Flexible Cells

Source: pvsolarchina.com/5-monocrystalline-silicon-5-inch-125-series-solar-cell.html

Source: P. Verlinden, et. al. Sliver solar cells: A New Thin-Crystalline Silicon Photovoltaic Technology. Solar Energy Materials and Solar Cells, 9:3426, 2006.

Required Power

Required Power (considering current losses and other 0.72 W maintenance losses, $\eta = 0.83$)

```
Required Power (considering conservative design, \eta = 0.5)
                                                  1.4 W
```

Panel Area Required for 20% efficient Cells

70 cm²

0.6 W

A look at Required Panel Size vs. Typical Phone Size

Proposed panel size 70 cm²

Advantages

- Conform to complex geometry due to small cell size
- Easily obtain voltage of 5V required for charging USB devices such as cell phones
- Can withstand one time and repeated flexure

Applications

- Possible to integrate into apparel such as clothing or backpacks or onto the back panel of electronics
- Rollable panels can allow storage of large modules in small, portable cases

Source: Evan Franklin et. al. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology. Advances in OptoElectronics.Vol 2007: 3.

Conclusions

- Solar energy can be used in stand-alone systems to power cell phones or act as a supplemental source to avoid the need for frequent charging
- Monocrystalline solar cells offer the best solution due to its high efficiency
- Power requirements can be met with a 70 cm² solar panel under optimal conditions
- Different design options exist for monocrystalline cells: conventional and flexible

Flexible solar cells:

- ^o Have better mechanical stability and electrical reliability than conventional crystalline silicon cells while still maintaining high efficiencies
- Potential for diverse applications such as apparel integrated photovoltaics or direct application onto portable electronics