Tumour Detection in Glandular Breast Phantoms

Dady Coulibaly, Alexandre Bourdon, Emily Porter, Adam Santorelli, Mark Coates, Milica Popović
Department of Electrical and Computer Engineering, McGill University

Objective
Assess the tumour detection capabilities of an inexpensive microwave-based breast cancer detection system on life like breast phantoms.

Introduction
- On average, 14 Canadian women die of breast cancer every day and 64 others receive a positive test making it the second most common form of cancer among Canadian women [1].
- Early tumour detection increases the chances for successful treatment [2].
- We are studying microwave-based cancer detection because Mammography involves ionizing radiation and MRI is expensive.

Background
- Microwave-based cancer detection relies on the difference in electrical properties between healthy and malignant tissues.

Antennas:
- Designed to be ultra wideband.
- Operates best in a medium of relative permittivity \(\varepsilon_r \approx 10.2 \) which is close to that of the average healthy breast tissue. [5]
- Held in place by the radome (\(\varepsilon_r \approx 9.6 \)) that contains the phantoms.

System Setup

Glandular breast phantoms:
- Used for preclinical tests.
- Breast phantoms are made out of skin, gland, and fat mimicking tissues with appropriate electrical properties.
- We made measurements on three phantoms of different gland percentages 30%, 50% and 80%.
- Gland has dielectric properties closer to tumour [4], detection may be more difficult in higher gland percentage phantom.
- A tumour-like tissue is inserted in the phantoms to mimic a cancerous breast.

Antenna arrangements:
- We tested five antenna arrangements with three spherical tumours: 3 cm, 2 cm and 0.5 cm of diameter.
- Arrangements C and D yielded good tumour responses for all tumour sizes in all three phantoms.
- The quality of the tumour response is measured by the maximum of its absolute value, the peak tumour response.
- A tumour is detectable when the peak tumour response is above noise level.
- The table depicts the lowest peak tumour responses for each phantom for each case [6].

Conclusion and Future work
- Tumour detection was achieved in all phantoms.
- High gland percent does not seriously compromise the detection.
- Seek further improvement of the detection on more sophisticated phantoms.

References