Winners of the 2022-2023 William and Rhea Seath Awards Competition

Professor Odile Liboiron-Ladouceur and Dr. Dusan GostimirovicPreFab AI Photonics

Professor Odile Liboiron-Ladouceur and Dr. Dusan Gostimirovic, Postdoctoral Fellow, both from Electrical and Computer Engineering 

Executive Summary

The semiconductor industry can now integrate light on a chip, leading to higher data capacity in communications and many emerging applicationssuch as sensors, optical quantum computing, and optical neuromorphic computing. Light, however, is more susceptible to fabrication process deviations than its electronic counterpart. Our invention uses machine learning (ML) to predict and correct deviations in the design of photonic (optical) integrated circuits prior to nanofabrication, saving on cost, time, and energy. Since the publication of our paper and recent discussions with potential customers at an international conference earlier in November, it is evident that our solution addresses an invaluable need for better design tools that enable the next generation of photonics. Indeed, our technology is the first ML-based solution to correct design prior to fabrication, which will have considerable impact in the industry. The WRSA grant will enable us to deploy our next minimum viable product to gather feedback and validate its performance with a target group of users.

Jianyu Li and Shiyu Liu Profile PicturesBleedBloc: Next-Generation Hemostatic Technology to Stop Hemorrhage

Assistant Professor and Canada Research Chair Jianyu Li and Shiyu Liu, PhD Candidate, both from Mechanical Engineering

Executive Summary

Uncontrolled bleeding or hemorrhage remains an unmet clinical challenge, which causes ever-increasing socio economic burdens due to the aging population, increasing trauma injuries, limited supply of blood transfusion and conflicts around the world. Despite the significance and growing market of hemostatic agents, existing solutions cannot meet the clinical needs due to the limited mechanical performance and the lack of hemostatic efficacy. To address the clinical needs and save lives from hemorrhage, we have invented a paradigm-shifting hemostatic technology, called Liquid-Infused Microstructured Bioadhesive (LIMB). The LIMB can stop various bleeding conditions, including the most challenging non-compressible hemorrhage, in seconds, while exhibiting excellent biocompatibility and biodegradability. With its performance validated in vitro and in vivo, the LIMB overperforms clinically used hemostatic agents in terms of hemostatic efficacy and biosafety.

Back to top