Winners of the 2019-2020 William and Rhea Seath Awards Competition
Professor Amine Kamen (Bioengineering) for “Advanced process for scalable production of viral vectors for gene and cell therapy”
Executive summary:
There is a revolution happening in medicine with the recent regulatory approval of novel cell and gene therapy treatments against so far incurable diseases, such as blood cancer and some types of rare genetic diseases. As a result, researchers in the field are moving toward the development of new promising approaches with application to other unmet medical needs. However, the complex manufacturing process behind these treatments is slowing down the research translation. Preclinical experiments as well as clinical trials require large quantities of high quality viral vectors and, to date, manufacturing centers are overburdened. Academic research laboratories and early stage companies do not have the infrastructure to develop and manufacture the needed biological material. We will exploit our integrated process for a high yield and scalable production of viral vectors (lentivirus and adeno associated virus) using our suspension technology platform instead of the ancient and difficult to scale adherent cell system. Our production process and capability can have a significant impact to support the increasing demand of these vectors and bridging the existing gap between research and clinic. With this award, we want to support end user validation in the form of salary and consumables towards commercialization.
Professor Pascal Hubert (Mechanical Engineering) for “Development of an innovative composite prepreg recycling system”
Executive summary:
Carbon fibre prepregs are the most widely used raw material for making high-performance composite structures. They consist of dry fibre impregnated with a partially cured polymeric resin and they represent a very significant portion of the total manufacturing cost of a given structure. The carbon fiber prepreg market is expected to grow
from USD 7.0 billion in 2019 to USD 11.5 billion by 2024. Current manufacturing practices, however, generate large quantities of prepreg waste, which poses both a financial burden on the manufacturer and a negative environmental impact. Several recycling solutions are being studied at the lab scale, but none have reached the level of maturity necessary for industrial implementation. This project aims at deploying a commercially viable recycling tool that transforms prepreg waste collected directly from an aerospace manufacturer into a high-performance compression moulding compound. The successful scale-up of this technology would lead to an unprecedented improvement in composites manufacturing sustainability within the aerospace industry. Estimated saving of USD 2-3 billion per year could be achieved with this technology developed at McGill as 30-50% of the carbon fibre prepreg purchased end up in the landfill. Furthermore, it would facilitate the adoption of composites within other major sectors, such as automotive, marine, recreational sporting goods, etc.