Estimating Price Elasticities in Differentiated Product Demand Models with Endogenous Characteristics

Daniel A. Ackerberg∗ Gregory S. Crawford
UCLA University of Arizona
August 22, 2006
Extremely Preliminary and Incomplete - Please do not distribute

Abstract

Empirical models of differentiated product demand have typically allowed price to be endogenous, but proceed under the assumption that observed product characteristics are exogenous, i.e. uncorrelated with unobserved components of demand. This paper shows that such an assumption may not be necessary to obtain consistent estimates of price elasticities. We show that whether this is the case depends on properties of the instrument or instruments used for price. Since these properties are testable, this result has interesting implications on an applied researcher’s choice of price instruments. In the case where one cannot find an instrument that satisfies these properties, one can often bound the potential bias in estimated price elasticities due to endogenous product characteristics. Our ideas also lead to interesting thoughts about what sorts of variables would ideally like to have as price instruments. Lastly, we apply these ideas to data on demand for cable television, obtaining estimates of price elasticities that are in fact robust to endogenous product characteristics.

∗Thanks to Jin Hahn for comments and helpful discussion. All errors are our own.
1 Introduction

The recent literature in empirical IO has devoted significant effort to developing methodology for estimating demand systems in differentiated product markets. This is understandable since 1) many, if not most, markets are characterized by product differentiation, and 2) demand systems are a crucial component of many interesting IO questions. For example, an analysis of the price effects of mergers will depend on estimates of own and cross-price elasticities, which will typically come from an estimated demand system. An estimated demand system is also crucial for, e.g., measuring elasticities w.r.t. product characteristics, computing the welfare effects of new products or price changes, and creating optimal price indices. They can also be important indirect inputs in answering many other interesting IO questions. The general idea here is that if one is going to address general IO issues, one typically needs to have the demand system right.

Starting with Bresnahan (1987) and Berry, Levinsohn, and Pakes (1995, henceforth BLP), an important contribution of this methodology has been to base these demand systems on characteristics of the various products. This reduces the dimensionality of the system from the number of products available on the market (which can be very large, e.g. automobiles or computers) to the dimension of product characteristic space, making estimation feasible. Another key issue that has been addressed is that of price endogeneity. Given prices are choice variables of firms, it is likely that they will respond to components of demand that are unobserved to the econometrician, creating an endogeneity problem. Estimation has typically proceeded by trying to find appropriate "instruments" for price in order to solve this endogeneity problem.

In contrast, both the developers and appliers of this methodology have admittedly ignored potential endogeneity of product characteristics. In other words, practitioners have relied on the assumption that product characteristics are exogenous. Just like price, product characteristics are typically choice variables of firms, and as such one might worry that they are actually correlated with unobserved components of demand.

So why have existing studies relied on the assumption that product characteristics are exogenous? One reason is that it is likely in many instances that product characteristics are less endogenous than price. The idea here is that since price is often a more flexible decision than are product characteristics, it might be expected to be more correlated with unobserved demand components. On the other hand, it would certainly be preferable to allow for endogenous product characteristics as well. A second reason is that currently there are no particularly attractive alternatives. One possibility is to instrument for product characteristics as well as price, but this would require finding instruments for each product characteristics. It is already hard enough finding believable instruments for price. In addition, when one allows for the possibility of unobserved product characteristics, it is hard to imagine being able to find such instrumental variables. They would need to be correlated with observed product characteristics, but uncorrelated with unobserved product characteristics. It is unclear what variables would satisfy such a requirement.
Another possibility, suggested briefly in BLP, involved setting up moments in terms of *innovations* in demand unobservables rather than the demand unobservables themselves. This, when accompanied by an assumption on what firms’ information sets contain at the time when product characteristics are decided, can provide consistent estimates even when product characteristics are endogenous. BLP admit that this solution, which in practice involves pseudo-differencing the data, can be demanding on the data and we have yet to see it applied.

Lastly, one could imagine actually modelling firms’ choices of product characteristics. Crawford and Shum (2006) take this approach. While this might be the most appealing approach to the problem conceptually, it ends up being quite complicated in practice. As such, Crawford and Shum are forced to restrict attention to monopoly markets (although multiproduct) where there is only a one dimensional product characteristic. Their approach would be much harder if not impossible to apply to either oligopoly markets or markets with multidimensional product characteristics.

Our paper takes a different, simpler, approach to the problem of endogenous product characteristics. We start with the observation that one does not always need to estimate causal effects of changing product characteristics - for many questions, e.g. most short-run antitrust questions, one is primarily interested in own and cross price elasticities. Given this, we ask the following question: under what conditions will we get consistent estimates of price elasticities, *even* if product characteristics are endogenous?

Some simple econometric derivations show that under particular assumptions on our price instruments, standard estimation procedures (e.g. BLP) *do in fact* return consistent estimates of price elasticities, *even* if product characteristics are endogenous. These assumptions involve correlations between the instruments and the endogenous product characteristics, and perhaps most important, are testable. As a result, one can 1) test if our estimates are consistent even if product characteristics are endogenous, and 2) if not, perhaps appropriately choose price instruments to generate estimates that are robust to endogenous product characteristics. The analysis also sheds light on what types of data generating processes would generate instruments that satisfy this condition. In some cases where we cannot obtain consistent estimates of price elasticities, we can bound the bias in these estimates.

We end by illustrating our methodology using a dataset on demand for cable television. The data includes information from almost 5000 cable systems across the US. Our two key explanatory variables are price and the product characteristic "number of cable networks" offered. We have a number of potential price instruments, and we are able to test the above conditions for each of the various instruments. One of these instruments satisfies this condition, and thus by using this instrument we are able to consistently estimate price elasticities allowing for endogenous product characteristics. Interestingly, this instrument also gives more reasonable price elasticities than the others.
2 Econometric Preliminaries

We start by discussing some relatively simple econometric results that are relevant for our treatment of endogenous product characteristics. These results all concern instrumental variables estimation of causal effects in the presence of covariates. A key difference from the standard treatment of instrumental variables is that we will consider a situation where one is not interested in estimating the causal effects of the covariates (on the dependent variable). This allows us to use identification conditions that are different than the standard IV conditions. We later argue that these alternative identification conditions are particularly useful in a situation where product characteristics are endogenous. Another interesting attribute of these alternative identification conditions is that they are partially testable. We start by showing these ideas in a linear situation, and then generalize the ideas to the non-parametric model of Chernozhukov, Imbens, and Newey (2006).

2.1 Linear Model

Consider a linear model of the form

\[y_i = \beta_1 x_i + \beta_2 p_i + \epsilon_i \]

\(\beta_1 \) and \(\beta_2 \) respectively measure the causal effects of observables \(x_i \) and \(p_i \) on \(y_i \). \(\epsilon_i \) represents unobservables that also affect \(y_i \). Looking ahead to our application, one might interpret (1) as the demand curve for a product whose characteristics and price vary across markets - \(p_i \) is the price in market \(i \), \(x_i \) is an \(L \)-vector of the product’s characteristics in market \(i \), and \(y_i \) is quantity demanded. \(\epsilon_i \) are unobservables that could represent either characteristics of the product that are not observed by the econometrician or demand shocks in market \(i \).

Throughout, we will assume that \(p_i \) is potentially correlated with \(\epsilon_i \), i.e. that it is endogenous. We will also consider the possibility that \(x_i \) is endogenous. As mentioned in the introduction and above, a key distinction between \(x_i \) and \(p_i \) is that we assume that we are primarily interested in estimating the causal effect of \(p_i \) on \(y_i \). In contrast we are less interested or not interested in the causal effects of \(x_i \) on \(y_i \). We assume that we observe \(z_i \), a potential instrument for \(p_i \). In the demand context, one can think of \(z_i \) as a cost shifter. In contrast, we assume we do not have outside instruments for the covariates \(x_i \). WLOG, all variables are assumed mean-zero.

Consider IV estimation of (1) using \((x_i, z_i)\) as instruments for \((x_i, p_i)\). Aside from regularity and rank conditions, the typical assumptions made to ensure identification of the causal effect \(\beta_2 \) are

[b] Assumption L1: \(E[\epsilon_i z_i] = 0, E[\epsilon_i x_i] = 0 \)

Note that for simplicity we are considering the necessity for the instrument \(z_i \) to be correlated
with \(p_i \) (conditional on \(x_i \)) as a "rank" condition. This will be implicitly assumed throughout.

There are two components of Assumption \((L1)\). The first states that \(z_i \) is a valid instrument for \(p_i \), i.e. it is uncorrelated with the residual. As is well known, without outside instruments, \(E[\epsilon_i x_i] = 0 \) is also generally necessary for identification of \(\beta_2 \). Even if \(E[\epsilon_i z_i] = 0 \), any correlation between \(\epsilon_i \) and \(x_i \) will generally render IV estimates of \(\beta_2 \) inconsistent. This "transmitted bias" is analogous to that when one uses OLS when one regressor is exogenous and another is endogenous - in that case, OLS generally produces inconsistent estimates of both coefficients.

Now consider the following alternative set of assumptions

[b] Assumption \(L2 \): \(E[\epsilon_i z_i] = 0, E[z_i x_i] = 0 \)

Note the distinction between \((L1)\) and \((L2)\) arises in the second component - while \((L1)\) requires \(x_i \) to be uncorrelated with \(\epsilon_i \), \((L2)\) requires \(x_i \) to be uncorrelated with \(z_i \).

One can easily show that (again assuming regularity and rank conditions hold) that \((L2)\) ensures identification of the causal effect \(\beta_2 \). To see this, decompose \(\epsilon_i \) into its linear projection on \(x_i \) and a residual, i.e.

\[\epsilon_i = \lambda x_i + \tilde{\epsilon}_i \]

and consider the transformed model

\[y_i = \tilde{\beta}_1 x_i + \beta_2 p_i + \tilde{\epsilon}_i \]

where \(\tilde{\beta}_1 = \beta_1 + \lambda \).

By construction,

\[E[\tilde{\epsilon}_i x_i] = 0 \]

In addition,

\[E[\tilde{\epsilon}_i z_i] = E[(\epsilon_i - \lambda x_i) z_i] = E[\epsilon_i z_i] - \lambda E[x_i z_i] = 0 \]

by \((L2)\). Together, (3), (4) imply that the transformed model (2) satisfies \((L1)\). Hence, applying IV to this model produces consistent estimates of \(\tilde{\beta}_1 \) and \(\beta_2 \). While \(\tilde{\beta}_1 = \beta_1 + \lambda \) is not the causal effect of \(x_i \) on \(y_i \), \(\beta_2 \) is the causal effect of \(p_i \) on \(y_i \), so IV under \((L2)\) consistently estimates the parameter we are interested in.

There are a couple of intuitive ways to think about this result. First, for some intuition behind why this works, note that under \((L2)\), we could simply ignore \(x_i \) - lumping it in with the error term. This results in the model

\[y_i = \beta_2 p_i + (\beta_1 x_i + \epsilon_i) \]
Since z_i is uncorrelated with both x_i and ϵ_i, it is uncorrelated with the composite error term $(\beta_1 x_i + \epsilon_i)$. Hence, IV consistently estimates β_2. Of course, one would never do this in practice, as the resulting estimator would be inefficient relative to the one including x_i as a covariate. A second source of intuition behind the result is that because x_i and z_i are uncorrelated, the "transmitted bias" on β_2 described above disappears. This is again analogous to the more well-known OLS result - suppose that p_i is exogeneous and x_i is endogenous - in this case OLS can consistently estimate the causal effect of p_i when p_i and x_i are uncorrelated. However, in a moment we argue that this is a much more powerful result in an IV setting.

In summary, we can obtain consistent estimates of the causal effect of p_i on y_i even if other covariates x_i are endogenous and we have no outside instruments for them. We feel that this is an underappreciated result for a number of reasons. First, it is always preferable to have more possible identifying assumptions - in some cases, one simply might be more willing to make assumption $(L2)$ than assumption $(L1)$. Second, an important distinction between $(L1)$ and $(L2)$ is that while $(L1)$ is not a directly testable set of assumptions\(^1\), part of $(L2)$ is directly testable. Specifically, one can fairly easily check whether $E[z_i x_i] = 0$ in one’s dataset. It seems to us that if this condition appears to hold, there is no reason to make the non-directly testable assumption that $E[\epsilon_i x_i] = 0$. Thirdly, taking somewhat of a Bayesian perspective, we feel that in some cases, verifying that $E[z_i x_i] = 0$ may make us more confident in the untestable assumption that $E[\epsilon_i z_i] = 0$. The basic idea here is that if ϵ_i is analogous to x_i (except for the fact that ϵ_i is unobserved to the econometrician), e.g. x_i are observed product characteristics, ϵ_i are unobserved (to the econometrician) product characteristics, a finding that $E[z_i x_i] \neq 0$ might make one worried that $E[\epsilon_i z_i] = 0$. In our empirical model we investigate this idea further.

Lastly, compare this result to the OLS result described above where p_i is exogeneous and x_i is endogenous. In the OLS case, p_i and x_i will either be correlated or not - there is not much one can do to estimate the causal effect of p_i if they are correlated. On the other hand, in the IV case, there is the possibility that one has multiple instruments for p_i. In this case, one can explicitly look for potential instruments that satisfy $E[z_i x_i] = 0$. If one can find such an instrument (or instruments), we have shown that one can estimate β_2 consistently even with an endogenous x_i. This result is therefore important for the instrument selection issue when one is concerned about an endogenous x_i. It seems to us that one should be looking for instruments that satisfy this property. Later, this ends up being a key goal of our empirical model. Even if one is reasonably comfortable assuming that x_i is exogeneous, it seems to us that considering $E[z_i x_i]$ might be useful to examine possible "robustness" to violations of this assumption.

\(^1\)It could be indirectly testable in the case where one has overidentifying restrictions, but those tests rely on auxiliary assumptions.
2.2 Non-linear Models

We next examine if this result holds up as we move to more flexible, non-parametric models. As an example, we consider the non-parametric IV model of Chernozhukov, Imbens, and Newey (2006) (CIN), i.e.

\[(5) \quad y_i = g(x_i, p_i, \varepsilon_i)\]

where \(x_i\) and \(p_i\) are defined as above. Two important restrictions of the CIN model are that \(\varepsilon_i\) is a scalar unobservable and that \(g\) is strictly monotonic in \(\varepsilon_i\). While this does allow for some forms of unobservable heterogeneous treatment effects (where the effect of \(p_i\) on \(y_i\) depends on unobservables) it is not completely flexible in this dimension. On the other hand, the model is completely flexible in allowing heterogenous treatment effects that depend on the observed covariates \(x_i\). CIN normalize the distribution of \(\varepsilon_i\) to be \(U(0, 1)\) - this is WLOG because of the non-parametric treatment of \(g\) - intuitively, an appropriate \(g\) can turn the uniform random variable into whatever distribution one wants.

The analogue of causal effects in the CIN model are "quantile treatment effects". Specifically,

\[g(x_i', p_i', q_\tau) - g(x_i, p_i, q_\tau)\]

is the causal effect on \(y_i\) from moving from \((x_i, p_i)\) to \((x_i', p_i')\), evaluated at the \(\tau\)th quantile of the \(\varepsilon_i\) distribution. Given the above normalization of \(\varepsilon_i\) to be \(U(0, 1)\), this is also the causal effect of moving from \((x_i, p_i)\) to \((x_i', p_i')\) conditional on \(\varepsilon_i = q_\tau\). As in the above linear model, we assume that we are only interested in estimating the causal effects of changing \(p_i\). In other words, the "quantile treatment effects" we are interested in are all given a fixed \(x_i\) (i.e. involve \(x_i' = x_i\)).

Again ignoring regularity and rank conditions, the key identification assumption of CIN is

\[\text{[b] Assumption N1: } (x_i, z_i) \text{ are jointly independent of } \varepsilon_i\]

This independence condition is considerably stronger than the zero correlation conditions in the linear model, but that is what is typically required for non-parametric identification of these sorts of models. More importantly for our purposes, while this assumption allows arbitrary correlation between \(p_i\) and \(\varepsilon_i\), it assumes that \(x_i\) is exogenous.

Our question is whether, as was done in the linear model, we can replace the assumption that \(\varepsilon_i\) is independent of \(x_i\) with an alternative assumption relying more on assumptions regarding the relationship between \(x_i\) and \(z_i\). It turns out we can. Consider

\[\text{[b] Assumption N2: } (x_i, \varepsilon_i) \text{ are jointly independent of } z_i\]

To consider estimation under (N2), we first show that (N2) implies that \(\varepsilon_i\) and \(z_i\) are inde-
dependent conditional on \(x_i \). To prove this, note that

\[
p(z_i, \epsilon_i | x_i) = \frac{p(z_i, \epsilon_i, x_i)}{p(x_i)} = \frac{p(z_i)p(\epsilon_i, x_i)}{p(x_i)} = p(z_i)p(\epsilon_i | x_i)
\]

where the second and last equalities follow from (N2).

What is the meaning of this result? (N2) states directly that our instrument is valid (in the sense of being independent of \(\epsilon_i \)) in the entire population. This simple implication of (N2) says that our instruments continue to be valid even after conditioning on \(x_i \). That is to say, conditioning on \(x_i \) does not generate correlations between \(z_i \) and \(\epsilon_i \). The importance of this result is quite intuitive - it says we can simply condition on \(x_i \) to avoid the problem of \(x_i \) being correlated with \(\epsilon_i \) - doing this conditioning does not destroy the properties of our instrument.

To formally do this conditioning, assume that \(x_i \) has a discrete support to avoid technical issues. Pulling the \(x_i \) dependence into the \(g \) function, we get

\[
y_i = g_{x_i}(p_i, \epsilon_i)
\]

Think about estimating this transformed model separately for each possible value in the support of \(x_i \). As just shown, conditional on being at each of these support points, \(\epsilon_i \) and \(z_i \) are independent. Of course, because of the correlation between \(\epsilon_i \) and \(x_i \), the distribution of \(\epsilon_i \) will vary across these support points. At each support point, renormalize the distribution of \(\epsilon_i \) to be \(U(0, 1) \) - this only involves changing \(g_i \). This transformed model now satisfies (N1) - hence, the CIN result suggests that we can estimate quantile treatment effects of this transformed model.

Importantly, because we have completely conditioned on \(x_i \), our quantile treatment effects are conditioned completely on \(x_i \). That is,

\[
g_{x_i}(p_i', q_\tau) - g_{x_i}(p_i, q_\tau)
\]

is the causal effect on \(y_i \) from moving from \((p_i) \) to \((p_i') \), evaluated at the \(\tau \)th quantile of the \(\epsilon_i \) distribution conditional on \(x_i \). These are slightly different than the quantile treatment effects of the untransformed model, but fine for our empirical purposes.

Summarizing, we have shown that as in the linear model, we do not have to necessarily assume that the covariates \(x_i \) are exogenous to estimate the causal effect of \(p_i \) on \(y_i \). We can instead look for instruments for \(p_i \) that appear to be independent of the covariates \(x_i \). Note that assumption (N2) is not quite as testable as in the linear case. Not only does \(z_i \) have to be independent of each
of \(x_i \) and \(\varepsilon_i \) individually, but \(z_i \) has do be independent of the entire joint distribution of \((x_i, \varepsilon_i)\). The only part of this that is directly testable is that \(z_i \) is independent of \(x_i \). However, this still should be a useful test. In addition, again appealing to a Bayesian perspective, finding evidence that \(z_i \) is independent of \(x_i \) may be supportive of the assumption that \(z_i \) is independent of \(\varepsilon_i \) and the joint distribution \((x_i, \varepsilon_i)\).

Before continuing, note that there is a third possible identifying assumption that one could also use to identify the above model. One could directly make the assumption that \(\varepsilon_i \) and \(z_i \) are independent conditional on \(x_i \), i.e.

\[
\text{Assumption N3: } (z_i, \varepsilon_i) \text{ are independent conditional on } x_i
\]

Identification of conditional quantile treatment effects under this assumption follows directly from the above. Note that while (N2) implies (N3), the reverse is not so. We think there are at least two important examples when this is the case. First, note that under (N3), there can actually be correlation not only between \(z_i \) and \(x_i \), but also between \(x_i \) and \(\varepsilon_i \). Suppose, for example

\[
\begin{align*}
z_i &= f^1(x_i) + \eta^1_i \\
\varepsilon_i &= f^2(x_i) + \eta^2_i
\end{align*}
\]

If \(\eta^1_i \) and \(\eta^2_i \) are independent (conditional on \(x_i \)), then (N3) will hold, even though both \(z_i \) and \(\varepsilon_i \) are correlated with \(x_i \). Given the structure of these two equations, this type of assumption might be appropriate when \(x_i \)'s are can be thought of as being determined outside the economic model under consideration.

As a second example, suppose that \(z_i \) satisfies (N2), i.e. \((x_i, \varepsilon_i)\) are jointly independent of \(z_i \). But suppose that the econometrician does not directly observe the instrument \(z_i \). Suppose instead that what is observed is some function of \(z_i \) and \(x_i \), i.e.:

\[
z_i^* = h(z_i, x_i)
\]

In this case, while the observed instrument \(z_i^* \) certainly does not satisfy (N2), it does satisfy (N3). Hence, the causal effect of the endogenous \(p_i \) will be identified. Note that this would also be the case if other random variables \(\eta_i \) that are independent of \(x_i \) and \(\varepsilon_i \) also entered the above equation, e.g.

\[
z_i^* = h(z_i, x_i, \eta_i)
\]
2.3 Combining Identification Assumptions

Note that one can use different types of the above identification assumptions for different covariates. For example, suppose we expand our demand model to the following

\[y_i = g(m_i, x_i, p_i, \epsilon_i) \]

where now both \(m_i \) and \(x_i \) are covariates. Again, suppose that we are only interested in estimating the causal effect of \(p_i \) on \(y_i \). Consider the following assumption

Assumption N4: \((x_i, \epsilon_i)\) are jointly independent of \(z_i \), conditional on \(m_i \)

Assumption (N4) essentially combines assumption (N2) on the \(x_i \) covariates and assumption (N3) on the \(m_i \) covariates. To verify that we can identify conditional (on \(m_i \) and \(x_i \)) quantile treatment effects in this model, we just need to show that (N4) implies that \((z_i, \epsilon_i)\) are independent conditional on \(x_i \) and \(m_i \), i.e.

\[
p(z_i, \epsilon_i | x_i, m_i) = \frac{p(z_i, \epsilon_i, x_i | m_i)}{p(x_i | m_i)} = \frac{p(z_i | m_i)p(\epsilon_i, x_i | m_i)}{p(x_i | m_i)} = \frac{p(z_i | m_i)p(\epsilon_i | x_i, m_i)}{p(x_i | m_i)} = \frac{p(z_i | x_i, m_i)p(\epsilon_i | x_i, m_i)}{p(x_i | m_i)} = p(z_i | x_i, m_i)p(\epsilon_i | x_i, m_i)
\]

Given this result, it follows from the above (treating \(x_i = (x_i, m_i) \)) that we can identify the conditional quantile treatment effects.

Why might we want to treat our covariates asymmetrically? Recall our demand example. Suppose that \(m_i \) are market characteristics (e.g. the distribution of income, population density, etc.) and that \(x_i \) and \(\epsilon_i \) are respectively, observed and unobserved (to the econometrician) product characteristics. Recall that \(p_i \) is price, \(z_i \) is an instrument for price, and \(y_i \) is demand for the product. If \(z_i \), are e.g. input price shocks, it seems presumptuous to assume that they are independent of general market characteristics. However, it does seem plausible that, conditional on market conditions, variation in \(z_i \) might be independent of product characteristics \(x_i \) and \(\epsilon_i \).

3 Bounding Bias

Moving back to the linear case, the above derivations consider the situation where the instrument is uncorrelated with the endogenous product characteristics. But what if one is unable to find such an instrument? It turns out that in these cases, one can often use the observed correlation
between the instrument and the endogenous product characteristics to bound the possible bias on
the price coefficient. For related ideas, see Nevo and Rosen (2006). Among other things, this can
be used to choose between possible instruments.

In this section, we currently consider only two explanatory variables, although we extend this
below. We also start by just examining the OLS case - i.e. where one explanatory variable is
endogenous, and the question is how much bias is imparted on the other coefficient. Later we
move to the IV case we have been discussing above.

Consider the following model:

\[y_i = \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i \]

where all variables have been demeaned. Suppose that \(x_1 \) is potentially correlated with the
residual \(\epsilon \), but \(x_2 \) is uncorrelated with \(\epsilon \). Our primary concern is to estimate the parameter \(\beta_2 \).
Consider the OLS estimator formed by regressing \(y \) on \(x_1 \) and \(x_2 \).

\[\beta_{OLS} = (X'X)^{-1}X'y \]

where

\[
X = \begin{bmatrix}
 x_{11} & x_{21} \\
 \cdot & \cdot \\
 \cdot & \cdot \\
 x_{1N} & x_{2N}
\end{bmatrix}
\quad y = \begin{bmatrix}
 y_1 \\
 \cdot \\
 \cdot \\
 y_N
\end{bmatrix}
\]

Substituting in, we get:

\[\beta_{OLS} = (X'X)^{-1}X'y \]
\[= (X'X)^{-1}X'(X\beta + \epsilon) \]
\[= \beta + (X'X)^{-1}X'\epsilon \]

The second term is a bias term. Looking at the plim of this bias term in more detail, we have:

\[plim(X'X)^{-1}X'\epsilon = \left[\begin{array}{c}
 plim \frac{1}{N} \sum_i x_{1i}^2 \\
 plim \frac{1}{N} \sum_i x_{1i}x_{2i} \\
 plim \frac{1}{N} \sum_i x_{2i}^2 \\
 0
\end{array} \right]^{-1} \left[\begin{array}{c}
 plim \frac{1}{N} \sum_i x_{1i}\epsilon_i \\
 0
\end{array} \right] \]

The zero in the second element of \(X'\epsilon \) follows because of the assumption that \(x_2 \) is uncorrelated
with \(\epsilon \). WLOG, normalize the variance of each of \(x_{1i} \) and \(x_{2i} \) to unity. This generates a bias
term of

\[
(X'X)^{-1}X'\epsilon = \begin{bmatrix}
 1 & Cov(x_{1i}, x_{2i}) \\
 Cov(x_{1i}, x_{2i}) & 1
\end{bmatrix}^{-1} \begin{bmatrix}
 Cov(x_{1i}, \epsilon_i) \\
 0
\end{bmatrix}
\]

11
Inverting the matrix manually generates a bias vector of:

\[(X'X)^{-1}X'\epsilon = \begin{bmatrix} 1 - \text{Cov}(x_{1i}, x_{2i})^2 & \text{Cov}(x_{1i}, \epsilon_i) \\ -\text{Cov}(x_{1i}, x_{2i}) & 1 - \text{Cov}(x_{1i}, x_{2i})^2 & \text{Cov}(x_{1i}, \epsilon_i) \end{bmatrix}\]

We are only concerned with the second term in this bias vector, i.e.

\[\text{bias} = -\frac{\text{Cov}(x_{1i}, x_{2i})}{1 - \text{Cov}(x_{1i}, x_{2i})^2} \text{Cov}(x_{1i}, \epsilon_i)\]

The absolute value of this bias is

\[|\text{bias}| = \frac{|\text{Cov}(x_{1i}, x_{2i})|}{1 - \text{Cov}(x_{1i}, x_{2i})^2} |\text{Cov}(x_{1i}, \epsilon_i)|\]

First note that this bias term is increasing in the absolute value of \(\text{Cov}(x_{1i}, x_{2i})\) over its feasible range \((-1 < \text{Cov}(x_{1i}, x_{2i}) < 1)\). This means that given any level of correlation between \(x_{1i}\) and \(\epsilon_i\), lower (absolute) values of \(\text{Cov}(x_{1i}, x_{2i})\) indicate lower values of bias.

Next, note that \(\text{Cov}(x_{1i}, x_{2i})\) is observed by the econometrician. Given this, our question is whether we can bound this bias. Unfortunately, \(\text{Cov}(x_{1i}, \epsilon_i)\) is not observed by the econometrician, and can in general can take any value from \(-\infty\) to \(\infty\) (as long as \(\text{Var}(\epsilon_i)\) is set high enough). Hence, we need to make some additional assumptions in order to bound this bias term. There are a couple of ways to proceed.

First, one could make a direct assumption on the possible range of \(\text{Cov}(x_{1i}, \epsilon_i)\). This seems like a strange term to be making assumptions on though. Second, note that the covariance of two variables is bounded by the product of their two variances, i.e.

\[|\text{Cov}(x_{1i}, \epsilon_i)| < SD(x_{1i})SD(\epsilon_i) < SD(\epsilon_i)\]

This implies that that:

\[|\text{bias}| < \frac{|\text{Cov}(x_{1i}, \epsilon_i)|}{1 - \text{Cov}(x_{1i}, x_{2i})^2} SD(\epsilon_i)\]

This bound can potentially be pretty tight. Suppose for example that \(x_{1i}, x_{2i}\), and \(\epsilon_i\) all contribute "equally" (in a causal sense) to \(y_i\). This would be the case if we set \(\beta_1 = 1, \beta_2 = 1, \text{ and } SD(\epsilon_i) = 1\). Then if, for example, \(\text{Cov}(x_{1i}, x_{2i}) = 0.2\), the maximal bias is 0.2, or 20% - this maximum occurs when \(x_{1i}\) and \(\epsilon_i\) are perfectly correlated.

It turns out that one can actually shrink these bounds a bit more. The reason is that if \(x_{1i}\) and \(x_{2i}\) are correlated and \(x_{2i}\) and \(\epsilon_i\) are uncorrelated, then \(x_{1i}\) and \(\epsilon_i\) cannot be perfectly correlated. However, this does not increase the bound by much when \(\text{Cov}(x_{1i}, x_{2i})\) is small, so we ignore this approach for now.
Of course, the above assumption that $SD(\epsilon_i) <= 1$ is one that could certainly seem arbitrary. Is there any natural upper bound for $SD(\epsilon_i)$? One somewhat natural bound might be the standard deviation of the dependent variable $SD(y_i)$. It is not necessarily the case that $SD(\epsilon_i)$ is less than $SD(y_i)$. However, there is a more primitive assumption that generates this result - that ϵ_i is positively correlated with $\beta_1 x_{1i} + \beta_2 x_{2i}$. This condition can also hold if ϵ_i is negatively correlated with $\beta_1 x_{1i} + \beta_2 x_{2i}$, but it cannot be too negatively correlated. Formally,

$$Var(y_i) = Var(\beta x_i) + Var(\epsilon_i) + 2Cov(\beta x_i, \epsilon_i)$$

Therefore:

$$Var(y_i) > Var(\epsilon_i) \iff Var(\beta x_i) + 2Cov(\beta x_i, \epsilon_i) > 0$$

$$\iff Var(\beta x_i) + 2Corr(\beta x_i, \epsilon_i)SD(\beta x_i)SD(\epsilon_i) > 0$$

This clearly indicates that if $Corr(\beta x_i, \epsilon_i) > 0$, then $SD(\epsilon_i) < SD(y_i)$. But even if $Corr(\beta x_i, \epsilon_i) < 0$, then the condition will still hold unless $Corr(\beta x_i, \epsilon_i)$ is very negative and $SD(\epsilon_i)$ is reasonably high. For example, note that if we assume that the observed characteristic are "twice as important" as unobserved characteristics (in the sense that $SD(\beta x_i) > 2SD(\epsilon_i)$), then the condition must hold, even if $Corr(\beta x_i, \epsilon_i) = -1$.

A couple of more notes - in the BLP context, at least the price component of βx_i will be negatively correlated with ϵ_i. This is slightly problematic for the potential argument that $Corr(\beta x_i, \epsilon_i) > 0$ (but not for the potential argument that $SD(\beta x_i) > 2SD(\epsilon_i)$). Another way motivate this condition is using a hypothetical thought experiment. Suppose, we took a dataset (i.e. observed x_i's and y_i's) and forced all x_i's to their means. The question is what is the variance of the new y_i's. If one is willing to assume that the new y_i's are not as varied as the original y_i's then $SD(\epsilon_i)$ must be $< SD(y_i)$.

3.1 IV Situation

Now we move back to the IV situation where x_{2i} is also endogenous. We assume the existance of an instrument z_i that is correlated with x_{2i} but uncorrelated with ϵ_i. Note that we will not be instrumenting for x_{2i}, i.e. our instrument matrix Z is equal to:

$$Z = \begin{bmatrix} x_{11} & z_1 \\ \vdots & \vdots \\ x_{1N} & z_N \end{bmatrix}$$

The IV estimator is given by:
\[\beta_{IV} = (Z'X)^{-1}Z'y \]
\[= (Z'X)^{-1}Z'(X\beta + \epsilon) \]
\[= \beta + (Z'X)^{-1}Z'\epsilon \]

The plim of this bias term is now:
\[p\lim(Z'X)^{-1}Z'\epsilon = \left[\begin{array}{c}
 p\lim \frac{1}{N} \sum_i x_{1i}^2 \\
p\lim \frac{1}{N} \sum_i x_{1i}x_{2i} \\
p\lim \frac{1}{N} \sum_i z_{i}x_{1i} \\
p\lim \frac{1}{N} \sum_i z_{i}x_{2i}
\end{array} \right]^{-1} \left[\begin{array}{c}
 p\lim \frac{1}{N} \sum_i x_{1i}\epsilon_i \\
0
\end{array} \right] \]

The zero in the second element of \(Z'\epsilon \) follows because of the assumption that \(z \) is uncorrelated with \(\epsilon \). Again, normalize the variances of each of \(x_{1i}, x_{2i}, \) and \(z_i \) to unity. This generates a bias term of
\[p\lim(Z'X)^{-1}Z'\epsilon = \left[\begin{array}{cc}
 1 & Cov(x_{1i}, x_{2i}) \\
Cov(z_i, x_{1i}) & Cov(z_i, x_{2i})
\end{array} \right]^{-1} \left[\begin{array}{c}
Cov(x_{1i}, \epsilon_i) \\
0
\end{array} \right] \]

Inverting the matrix manually generates a bias vector of:
\[(X'X)^{-1}X'\epsilon = \left[\begin{array}{c}
\frac{Cov(z_i, x_{2i})}{Cov(z_i, x_{2i}) - Cov(z_i, x_{1i})Cov(x_{1i}, x_{2i})}Cov(x_{1i}, \epsilon_i) \\
\frac{-Cov(z_i, x_{1i})}{Cov(z_i, x_{2i}) - Cov(z_i, x_{1i})Cov(x_{1i}, x_{2i})}Cov(x_{1i}, \epsilon_i)
\end{array} \right] \]

Again, we are only concerned with the second term in this bias vector, i.e.
\[\text{bias} = \frac{-Cov(z_i, x_{1i})}{Cov(z_i, x_{2i}) - Cov(z_i, x_{1i})Cov(x_{1i}, x_{2i})}Cov(x_{1i}, \epsilon_i) \]

Note that this bias term is of the same magnitude as in the former case where \(x_{2i} \) was assumed exogenous. To see this, suppose that the instrument \(z_i \) generates half the variation in \(x_{2i} \). Then \(Cov(z_i, x_{2i}) = 0.5Var(x_{2i}) = 0.5 \) and \(Cov(z_i, x_{1i}) = 0.5Cov(x_{2i}, x_{1i}) \) (this second equation holds if the correlation between \(x_{2i} \) and \(x_{1i} \) is generated equally by the the \(z_i \) part of \(x_{2i} \) and the other part of \(x_{2i} \)). In this case, the 0.5’s cancel out and we get the same expression as above.

I’m not convinced that the absolute value of this bias term is necessarily increasing in \(Cov(z_i, x_{1i}) \). As \(Cov(z_i, x_{2i}) \rightarrow 1 \) it definitely does though. Regardless, however, this formula does seem to indicate that if one is choosing between instruments, one does not necessarily want to pick the instrument with the smallest \(Cov(z_i, x_{1i}) \) - the strength of the instrument, \(Cov(z_i, x_{2i}) \), is also relevant for the bias. In any case, again, all the elements of this bias term are estimable except for \(Cov(x_{1i}, \epsilon_i) \) (which doesn’t depend on choice of instrument). Hence one could simply estimate the first term of the above for each instrument and pick the lowest.

As in the prior section, one can also bound the bias. The absolute value of the bias is given
by:

\[
\text{abs}(\text{bias}) = \frac{\text{abs}(\text{Cov}(z_i, x_{1i}))}{\text{abs}(\text{Cov}(z_i, x_{2i}) - \text{Cov}(z_i, x_{1i})\text{Cov}(x_{1i}, x_{2i}))} \text{abs}(\text{Cov}(x_{1i}, \epsilon_i))
\]

which by the above

\[
\text{abs}(\text{bias}) < \frac{\text{abs}(\text{Cov}(z_i, x_{1i}))}{\text{abs}(\text{Cov}(z_i, x_{2i}) - \text{Cov}(z_i, x_{1i})\text{Cov}(x_{1i}, x_{2i}))} \text{SD}(\epsilon_i)
\]

So if \(\text{SD}(\epsilon_i) \) can be bounded as above, we have a bound on \(\text{abs}(\text{bias}) \).

3.2 Bias with Additional Covariates

To this point we have considered a model with just one endogenous variable \((x_2, \text{e.g. price}) \) and one possibly endogenous variable \((x_1, \text{e.g. a product characteristic}) \). This subsection derives the bias formula when there are additional (assumed exogenous) covariates.

Consider the following more general model model:

\[
y_i = \beta_1 x_{1i} + \beta_2 x_{2i} + W_i' \beta_W + \epsilon_i
\]

where \(W_i \) is a \(R \times 1 \) vector of additional exogenous covariates (e.g. market characteristics) and \(\beta_W \) measures their impact on demand for good \(i \). Let \(\tilde{X} \) and \(\tilde{Z} \), the matrix of explanatory variables and instruments, now be given by

\[
\tilde{X} = \begin{bmatrix}
x_{11} & x_{21} & W_{11} & W_{R1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1N} & x_{2N} & W_{1N} & W_{RN}
\end{bmatrix} = [X \ W] \\
\tilde{Z} = \begin{bmatrix}
x_{11} & z_1 & W_{11} & W_{R1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1N} & z_N & W_{1N} & W_{RN}
\end{bmatrix} = [Z \ W]
\]

where \(X \) and \(Z \) are as defined in the previous section and \(W \) is the \(N \times R \) matrix of additional exogenous variables.

The IV estimator is now:

\[
\beta_{IV} = (\tilde{Z}' \tilde{X})^{-1} \tilde{Z}' y
\]

\[
= \beta + (\tilde{Z}' \tilde{X})^{-1} \tilde{Z}' \epsilon
\]

where \(\beta \equiv (\beta_1 \ \beta_2 \ \beta_W)' \) is the \((R + 2) \times 1 \) vector of parameters.
The bias term is now

\[(\tilde{Z}'\tilde{X})^{-1}\tilde{Z}'\epsilon = \begin{bmatrix} Z'X & Z'W \\ W'X & W'W \end{bmatrix}^{-1} \begin{bmatrix} Z'\epsilon \\ W'\epsilon \end{bmatrix}\]

As earlier, we are particularly interested in the bias on β_2, but now have to allow for the additional influence of W on that bias.

To calculate the bias in the presence of W, we rely on the formula for partitioned regression (e.g. Greene (1990), p.33):

\[
\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} F_1 & A_{11}^{-1}A_{12}F_2 \\ -F_2A_{21}A_{11}^{-1} & F_2 \end{bmatrix}
\]

where $F_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$ and $F_2 = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$.

Applying this to our problem and focusing on the 2×2 matrix in the upper left of $(\tilde{Z}'\tilde{X})^{-1}$ (the other elements will have no impact on the bias due to the assumption that W and ϵ are uncorrelated), we get

\[
(\tilde{Z}'\tilde{X})^{-1}\tilde{Z}'\epsilon = \begin{bmatrix} Z'X & Z'W \\ W'X & W'W \end{bmatrix}^{-1} \begin{bmatrix} Z'\epsilon \\ W'\epsilon \end{bmatrix}
\]

\[
= \begin{bmatrix} ((Z'X) - Z'W(W'W)^{-1}W'Z)^{-1} & \cdot \\ \cdot & \cdot \end{bmatrix} \begin{bmatrix} Z'\epsilon \\ W'\epsilon \end{bmatrix}
\]

\[
= \begin{bmatrix} (Z'M_WX)^{-1} & \cdot \\ \cdot & \cdot \end{bmatrix} \begin{bmatrix} Z'\epsilon \\ W'\epsilon \end{bmatrix}
\]

where $M_W \equiv I_R - W(W'W)^{-1}W'$ is the "residual maker" for W, i.e. it yields the residual from a projection of any variable onto W.

Focusing on the first two elements of this matrix multiplication gives us the formulas for the bias on β_1 and β_2 that are analogous to those developed in the previous section:

\[
(Z'M_WX)^{-1}Z'\epsilon = \begin{bmatrix} \frac{1}{N}X_1'M_WX_1 & \frac{1}{N}X_1'M_WX_2 \\ \frac{1}{N}Z'M_WX_1 & \frac{1}{N}Z'M_WX_2 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{N}X_1'M_W\epsilon \\ 0 \end{bmatrix}
\]

Inverting the matrix manually generates a bias vector of:

\[
(Z'M_WX)^{-1}Z'\epsilon = \begin{bmatrix} \frac{Z'M_WX_2}{(X_1'M_WX_1)(Z'M_WX_2) - (Z'M_WX_1)(X_1'M_WX_2)}(X_1'M_W\epsilon) \\ \frac{-Z'M_WX_1}{(X_1'M_WX_1)(Z'M_WX_2) - (Z'M_WX_1)(X_1'M_WX_2)}(X_1'M_W\epsilon) \end{bmatrix}
\]
Again, we are only concerned with the second term in this bias vector, i.e.

$$bias = \frac{-Z'M_WX_1}{(X_1'M_WX_1)(Z'M_WX_2) - (Z'M_WX_1)(X_1'M_WX_2)}(X_1M_W\epsilon)$$

This formula is analogous to what we had earlier (Equation (8)) once we partial out the influence of W. Note however, that even if Z and X_1 are uncorrelated, the partialled out M_WX_1 and M_WZ may be correlated. We are also currently working on extending these bounds to non linear models.

4 Implications on Commonly Used DCMs

Show how this result can be applied to logit, nested logit, RC models. Key point is showing that price elasticities can be inferred without knowing the causal effect of x on market shares in each of this models. Fairly simple in the logit/NL cases, a little more complicated in the RCM case.

5 Empirical Example

We demonstrate the ideas developed in this paper in an empirical example using data from the cable television industry. The data report the number of offered Basic and Expanded Basic cable services, and the prices, market shares, and number of cable programming networks offered on each service for a sample of 4,447 cable systems across the United States.2

Summary statistics for each of the variables follow the appendix. We consider a simple example based as closely as possible on the theory described above. We estimate a logit demand system for each of the products offered by the cable system in each market. The key explanatory variables are price (tp) and number of offered cable programming networks (tx).

We consider a number of instruments for price, all based on variables that influence the marginal cost of providing cable service. The primary marginal cost for cable systems are "affiliate fees", per-subscriber fees that they must pay to television networks (e.g. ESPN) for the right to carry that network on their cable system. These instruments are:

- Homes Passed (hp).- If larger cable systems have better bargaining positions with content providers, they may receive lower affiliate fees.
- Franchise Fee ($franfee$).- Franchise fees are payments made by cable systems to the local governing body in return for access to city streets to install their cable systems. Systems facing higher franchise fees may have higher marginal costs and therefore charge higher prices. This was the primary price instrument used in Goolsbee and Petrin (2005).

2The data have a lot more, esp. the identity of offered networks for each bundle, demographic info in each market, etc.
Average Affiliate Fees (tcx). - Kagan Media collects information about the average (across systems) affiliate fee charged for the vast majority of television networks offered on cable. This variable calculates the average fee for the networks offered by each cable system in the sample.

MSO Subscribers (msosubs) -. Multiple System Operators, or MSOs, are companies that own and operate multiple cable systems across the country (e.g. Comcast, Cox). This variable proxies for bargaining power of cable systems in (nationwide) negotiations with television networks.

Prices in other markets (tip, tipst, tipreg). - MSOs generally negotiate the affiliate fees they will pay to television networks on behalf of all the systems in the corporate family. As such, the marginal cost for providing cable service should be similar for cable systems within an MSO. If demand shocks are uncorrelated across these systems, cable prices in other markets for systems within the same MSO might be a good instrument for prices in any given market. Hausman (1998) and Nevo (2001) have used the this strategy of finding instruments in the cereal market and Crawford (bundling paper) has used it in cable markets. Because it relies heavily on the lack of correlation in demand errors across markets, we construct three measures of this instrument: the average price for each offered cable service within an MSO excluding the current system (tip), the average price for each offered service within an MSO excluding those systems in the current systems state (tipst), and the average price for each offered service within an MSO excluding those systems in the current systems’ census region (tipreg).³

Here are the preliminary results. First the results of the first-stage regression of price (tp) on all the explanatory variables and the instruments (Separate regressions for each instrument. Include instrumenting for price with itself for completeness).⁴ Most of the results are of the correct sign and of reasonable magnitude. [Only weird ones is franchise fee - higher fees are associated with lower prices.]

<table>
<thead>
<tr>
<th>Variable</th>
<th>fols</th>
<th>fivhp</th>
<th>fivfr~e</th>
<th>fivtcx</th>
<th>fivms~s</th>
<th>fivtip</th>
<th>fivti~t</th>
<th>fivti~g</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx</td>
<td>0.000</td>
<td>0.256</td>
<td>0.247</td>
<td>0.016</td>
<td>0.254</td>
<td>0.240</td>
<td>0.254</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.009</td>
<td>0.009</td>
<td>0.021</td>
<td>0.009</td>
<td>0.009</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>tp</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hp</td>
<td></td>
<td>-0.051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>franfee</td>
<td></td>
<td></td>
<td>-0.273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³We use the four major Census regions: NE, S, MW, and W.
⁴Other variables not reported in the table are dummy variables for goods 1, 2, 3, and 4 in each market as well as dummy variables indicating for each good whether the next higher goods are also offered, i.e. ind31 = a dummy variable in demand for good 1 indicating whether good 3 was also offered in that market.
Here are the associated IV results using each instrument as the single instrument for price (standard errors below the estimates). Also reported is the estimated impact to mean utility of an additional cable programming network.

As expected, instrumenting for price generally yields a larger estimated price sensitivity.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ols</th>
<th>ivhp</th>
<th>ivfra−e</th>
<th>ivtcx</th>
<th>ivmso−s</th>
<th>ivtip</th>
<th>ivtipst</th>
<th>ivtip̂g</th>
</tr>
</thead>
<tbody>
<tr>
<td>tp</td>
<td>-0.038</td>
<td>-0.022</td>
<td>-0.048</td>
<td>-0.024</td>
<td>-0.025</td>
<td>-0.070</td>
<td>-0.090</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.022</td>
<td>0.030</td>
<td>0.015</td>
<td>0.010</td>
<td>0.005</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>tx</td>
<td>0.029</td>
<td>0.025</td>
<td>0.032</td>
<td>0.026</td>
<td>0.026</td>
<td>0.038</td>
<td>0.042</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.005</td>
<td>0.007</td>
<td>0.004</td>
<td>0.003</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Here are the associated average estimated own-price elasticity (averaged across all products). The patterns basically mirror the estimated price sensitivities in the table above.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastols</td>
<td>5807</td>
<td>-0.4299353</td>
<td>.2106194</td>
<td>-2.730194</td>
<td>-.0107715</td>
</tr>
<tr>
<td>elastivhp</td>
<td>5807</td>
<td>-.2394281</td>
<td>.1100084</td>
<td>-1.507058</td>
<td>-.0075227</td>
</tr>
<tr>
<td>elastivfra−e</td>
<td>5807</td>
<td>-.5390264</td>
<td>.2733753</td>
<td>-3.458999</td>
<td>-.011781</td>
</tr>
<tr>
<td>elastivtcx</td>
<td>5807</td>
<td>-.267501</td>
<td>.1240874</td>
<td>-1.686831</td>
<td>-.0081377</td>
</tr>
<tr>
<td>elastivmso−s</td>
<td>5807</td>
<td>-.2776902</td>
<td>.1292619</td>
<td>-1.752155</td>
<td>-.0083485</td>
</tr>
<tr>
<td>elastivtip</td>
<td>5807</td>
<td>-.8115802</td>
<td>.4374062</td>
<td>-5.397118</td>
<td>-.013089</td>
</tr>
</tbody>
</table>

5Because cable services are cumulative, it is technically cleaner to look just at the highest-quality good offered in each market. Doing so yields qualitatively similar results.
Here is an estimate of the relationship between each included instruments and the number of offered cable networks (tx). All are statistically significant, except for the price of cable service at other systems within the same MSO (tip).

This suggest that the results using tip are likely to be the most reliable. We can formalize this comparison using our upper bounds. In particular suppose we use (9) to calculate upper bounds on the absolute value of the bias, imposing the assumption the assumption that \(\frac{1}{N} X_1 M_{W} \epsilon < \sqrt{\frac{1}{N} X_1 M_{W} X_1} \sqrt{\frac{1}{N} y M_{W} y} \). we get the following bias bounds using the various instruments:

\[
\begin{align*}
\text{bias}_\text{hp} &= 0.42032582 \\
\text{bias}_\text{franfee} &= 0.45246954 \\
\text{bias}_\text{tcx} &= 2.4384633 \\
\text{bias}_\text{msosubs} &= 0.0829468 \\
\text{bias}_\text{tip} &= 0.0047211 \\
\text{bias}_\text{tipst} &= 0.05610395 \\
\text{bias}_\text{tipreg} &= 0.029
\end{align*}
\]
biastipreg = 0.04769696

To be continued........

6 Appendix

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>origcid</td>
<td>5807</td>
<td>3196.54</td>
<td>1874.354</td>
<td>1</td>
<td>6481</td>
</tr>
<tr>
<td>year</td>
<td>5807</td>
<td>2002</td>
<td>0</td>
<td>2002</td>
<td>2002</td>
</tr>
<tr>
<td>nprod</td>
<td>5807</td>
<td>1.535905</td>
<td>.6809579</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>prod</td>
<td>5807</td>
<td>1.267952</td>
<td>.5175304</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>y98</td>
<td>5807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y99</td>
<td>5807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y00</td>
<td>5807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y01</td>
<td>5807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y02</td>
<td>5807</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chancap</td>
<td>5807</td>
<td>46.1307</td>
<td>20.93914</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>hp</td>
<td>5807</td>
<td>5.204854</td>
<td>13.50131</td>
<td>.018</td>
<td>418.2</td>
</tr>
<tr>
<td>franfee</td>
<td>5807</td>
<td>1.480799</td>
<td>1.819802</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>msosystems</td>
<td>5807</td>
<td>551.5468</td>
<td>513.5846</td>
<td>0</td>
<td>1353</td>
</tr>
<tr>
<td>msosubs</td>
<td>5807</td>
<td>3.863265</td>
<td>4.528929</td>
<td>0</td>
<td>13.75</td>
</tr>
<tr>
<td>msopaysubs</td>
<td>5807</td>
<td>3096293</td>
<td>4116557</td>
<td>0</td>
<td>1.34e+07</td>
</tr>
<tr>
<td>logsrat</td>
<td>5807</td>
<td>-.0968512</td>
<td>1.507517</td>
<td>-6.587178</td>
<td>7.090035</td>
</tr>
<tr>
<td>s</td>
<td>5807</td>
<td>.4618122</td>
<td>.2740264</td>
<td>.0006661</td>
<td>.9972565</td>
</tr>
<tr>
<td>tp</td>
<td>5807</td>
<td>22.46918</td>
<td>8.197811</td>
<td>.95</td>
<td>80.85001</td>
</tr>
<tr>
<td>tip</td>
<td>5459</td>
<td>23.62627</td>
<td>6.728524</td>
<td>7.5</td>
<td>56.33334</td>
</tr>
<tr>
<td>tipst</td>
<td>4832</td>
<td>23.70755</td>
<td>6.706235</td>
<td>9.59</td>
<td>51.78333</td>
</tr>
<tr>
<td>tipreg</td>
<td>4548</td>
<td>23.5211</td>
<td>6.652446</td>
<td>10.95</td>
<td>51.06667</td>
</tr>
<tr>
<td>tind1</td>
<td>5807</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tind2</td>
<td>5807</td>
<td>.2342001</td>
<td>.4235343</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind3</td>
<td>5807</td>
<td>.0316859</td>
<td>.1751776</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind4</td>
<td>5807</td>
<td>.0020665</td>
<td>.0454154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind21</td>
<td>5807</td>
<td>.4367143</td>
<td>.4960215</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

21
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>tind31</td>
<td>5807</td>
<td>.0909247</td>
<td>.2875268</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind41</td>
<td>5807</td>
<td>.0082659</td>
<td>.0905482</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind32</td>
<td>5807</td>
<td>.0613053</td>
<td>.2399102</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind42</td>
<td>5807</td>
<td>.0061994</td>
<td>.0784987</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tind43</td>
<td>5807</td>
<td>.0041329</td>
<td>.0641605</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind1</td>
<td>5807</td>
<td>.7657999</td>
<td>.4235343</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind2</td>
<td>5807</td>
<td>.2025142</td>
<td>.401908</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind3</td>
<td>5807</td>
<td>.0296194</td>
<td>.1695496</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind4</td>
<td>5807</td>
<td>.0020665</td>
<td>.0454154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind21</td>
<td>5807</td>
<td>.2025142</td>
<td>.401908</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind31</td>
<td>5807</td>
<td>.0296194</td>
<td>.1695496</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind41</td>
<td>5807</td>
<td>.0020665</td>
<td>.0454154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind32</td>
<td>5807</td>
<td>.0296194</td>
<td>.1695496</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind42</td>
<td>5807</td>
<td>.0020665</td>
<td>.0454154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ind43</td>
<td>5807</td>
<td>.0020665</td>
<td>.0454154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>indtop</td>
<td>5807</td>
<td>.7657999</td>
<td>.4235343</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tx</td>
<td>5807</td>
<td>17.44946</td>
<td>10.61949</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>tcx</td>
<td>5807</td>
<td>4.573625</td>
<td>2.422858</td>
<td>0</td>
<td>10.52</td>
</tr>
</tbody>
</table>

References

[10] Greene, W.

