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Abstract

A reform to the Kyoto Protocol that allows signatories to avoid achieving the target
level of abatement upon payment of a fine, would achieve two goals. First, it would
defuse one U.S. objection to the agreement: the concern that the cost of achieving the

target might turn out to be extremely high. Second, unlike other cost-reducing measures
(such as trade in pollution permits) it would increase the equilibrium number of signatories
in a non-cooperative participation game. We study the participation game under an escape

clause using both a Nash Equilibrium and the concept of a Stable Set when nations are
“Farsighted”.
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1 Introduction

The control of greenhouse gasses (GHGs) requires international cooperation. The U.S. with-
drawal from the Kyoto Protocol (“Kyoto”), and the questionable compliance of signatories,
may render the agreement ineffective. The agreement may be weak because of design flaws
and/or because of the inherent difficulty of inducing sovereign nations to provide a public good.
The U.S. objected to (amongst other things) the Protocol’s imposition of an aggregate emissions
ceiling, expressing the concern that the economic cost of achieving this target might be very
large. If signatories discover that abatement costs are larger than anticipated, their compliance
may erode. Since the treaty extends only to 2012, it is worth understanding how its successor
should be designed. A reform to the Kyoto Protocol that allows signatories to avoid achieving
the target level of abatement upon payment of a fine, would achieve two goals. First, it would
defuse one U.S. objection to the agreement: the concern that the cost of achieving the target
might turn out to be extremely high. Second, unlike other cost-reducing measures (such as
trade in permits) it would increase the equilibrium number of signatories in a non-cooperative
participation game. We study the participation game under an escape clause using both a Nash
Equilibrium and the concept of a Stable Set when nations are “Farsighted”.

Although there is much more uncertainty about the benefit of GHG abatement than about the
cost of abatement, arguably cost uncertainty is more important to the design of an International
Environmental Agreement (IEA). Kyoto will be in force only four years; the duration of its
successor is also likely to be fairly short. During this period, we will learn the costs of a
particular level of abatement. Barring a catastrophic event, our information about the benefit
of this abatement will probably change only slightly during this period. Therefore, for the
purpose of designing a short-term IEA, it makes sense to treat abatement costs as a random
variable whose value will be realized during the lifetime of the IEA, and the abatement benefit
as a random variable that will be realized in the distant future.

Many papers (including Carraro and Siniscalco (1993), Barrett (1994), Bloch (1997), and
Dixit and Olson (2000)) and several books (including Finus (2001), Batabyal (2000), and Bar-
rett (2003)) study the formation of an IEA using the non-cooperative Nash Equilibrium (NE)
to a participation game. Details vary across the models, but the basic structure of this “stan-
dard model” is that in the first stage (the participation game) homogeneous countries decide
whether to join an IEA, and in a second stage (the abatement game) they choose the abatement
level. The critical assumptions are that (i) the IEA does not prescribe specific actions, and (ii)
the act of signing the IEA solves the collective action problem amongst members. Therefore,
in the abatement stage members act to maximize IEA joint welfare. In this model, the IEA
(typically) contains two or more members. If, contrary to the assumptions of this model, sig-
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natories committed to a particular level of abatement, the IEA size in the NE would (typically)
be 0. Commitment to a specific level of abatement increases the temptation to free-ride (by not
signing the IEA), thus decreasing the incentive to join such an agreement.

An important result from this model is that the equilibrium size of the IEA tends to be small
in circumstances when the potential benefits from cooperation are large. Holding fixed the
benefit from abatement, the potential benefit from cooperation is large when abatement costs
are small. Other things equal, an increase in the abatement cost increases the equilibrium size
of the IEA, simultaneously decreasing the benefit from cooperation. The “membership cost”
is the net cost to a nation of joining the IEA: its cost of abatement minus the benefit it obtains
from the additional abatement. The standard model implies that a higher membership cost
increases the equilibrium membership size. Although this result is somewhat counter-intuitive,
its explanation (discussed below) is straightforward, given the assumptions of the game.

This result implies that efforts to reduce the costs of IEA compliance might backfire, by re-
ducing equilibrium membership. There has been substantial interest in reforms to make Kyoto
more efficient, thereby reducing membership costs. After initial resistance, Kyoto signatories
accepted tradeable permits and “joint implementation”, and are discussing the use of “clean de-
velopment mechanisms”.1 These reforms reduce the membership cost. Another possibility is
a hybrid policy that uses tradeable permits with a price ceiling; a regulator has the power to in-
crease the allocation of permits to defend the price ceiling ((Pizer 2002), (Kopp, Morgenstern,
Pizer, and Ghersi 2002), (Victor 2003)). The current carbon reduction agreement amongst
northeastern U.S. states uses such a policy. This policy caps abatement costs and therefore re-
duces expected costs. If applied to Kyoto, this kind of policy would have removed, or at least
weakened one of the U.S. objections to the agreement. The irony is that if the standard model
of IEAs is a reliable description, the hybrid policy would have decreased nations’ incentive to
join Kyoto.

The standard model implies that the central impediment to a successful IEA is the difficulty
of inducing nations to forgo the temptation to free-ride, rather than design flaws such as the
failure to deal efficiently with the possibility of unexpectedly high abatement costs. Design
changes that increase efficiency might even be counterproductive. A corollary is that a suc-
cessful IEA requires some kind of external punishment; Barrett (2003), chapter 15, makes this
case persuasively. Some have proposed reforming the World Trade Organization to permit the
use of trade sanctions against countries that do not abide by a climate change IEA [cites here].

1Under joint implementation, a signatory obtains credit for abatement by investing in carbon abatement or
sequestration activities in another member country. Under the proposed clean development mechanism, a signa-
tory obtains abatement credit by investing in abatement or sequestration activities in a developing non-signatory
country.
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There appears to be little chance that the environmental tail will wag the trade dog, even if
such an outcome were desirable. If an effective IEA really does require an external threat, the
prospect of dealing successfully with the problem of climate change seems poor.

In our view, the pessimistic conclusion that effective IEAs require an external threat, and
that they are unlikely to benefit from design changes, is exaggerated. That conclusion is a
consequence of the assumption that the IEA stipulates only that it will maximize members’
welfare. That assumption does not describe how IEAs actually behave. In one sense this
assumption exaggerates IEAs’ power, because clearly these are not capable of solving the col-
lective action problem (although they might ameliorate it). In another sense, the assumption
understates IEAs’ power, because these are capable of prescribing contingent actions.

We modify the standard description of an IEA by replacing the assumption that signatories
commit (only) to maximizing members’ joint welfare, with the assumption that they can sign a
simple contract. In our setting, nations face uncertain costs of abatement. The IEA consists of
a contingent contract that contains an escape clause. This contract consists of two parameters, a
prescribed level of abatement and a cost of exercising the escape clause (a “fine”) that exempts
the signatory from the requirement to abate. Receipts from the escape clause payments are
returned equally to all signatories, except for a positive (possibly very small) amount that is lost
as a transactions cost. In the first stage nations decide whether to join the IEA (the participation
game). In the second stage (the abatement game) each signatory learns its abatement cost,
which is private information, and decides whether to abate or to invoke the escape clause, taking
as given other signatories’ decision rules. Non-signatories have a dominant strategy. The
Nash equilibrium to the abatement game depends on the outcome of the participation game (the
number of signatories) and on the two parameters of the IEA (the prescribed level of abatement
and the size of the fine).

Kyoto does have a prescribed level of abatement – a feature that the U.S. criticized – and in
that respect it does not conform to the standard description of an IEA. Our proposal differs from
Kyoto by including the escape clause. This modification has two desirable effects. First, it
protects signatories from unexpectedly high abatement costs, and thus answers one of the U.S.
objections. Second, it overcomes the “perverse” feature of the standard IEA, in which lowering
the cost of membership also lowers the equilibrium membership size. In our proposal, a lower
fine corresponds to a lower cost of membership, and it also leads to an increase in equilibrium
membership size in most cases. For some levels of the fine, all countries sign the IEA.

In order to be able to study the effect of an escape clause in a simple setting, we ignore
trade in emissions permits, an important feature of Kyoto. Trade in permits equalizes marginal
abatement costs across countries, but total abatement costs still differ, so even with trade there
is a role for the escape clause. Tradeable permits (with or without a price ceiling) “merely”
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reduce expected membership costs. When IEA members behave non-cooperatively at the
abatement stage, the escape clause can both reduce membership cost and increase equilibrium
membership size.

It would be unreasonable to think that so simple a design change could solve the free-rider
problem. We interpret the result as showing that a design change can substantially ameliorate
the free-rider problem. This may appear to be a fairly non-controversial claim, but it is contrary
to the IEA literature discussed above. That literature implies that design changes that reduce
costs are futile, or even counterproductive. This conclusion emerges from a model that has
become so widely used that it has taken on an air of inevitability. However, that standard
model of an IEA is neither plausible nor descriptive.

The standard model uses a NE to a one-shot participation game. Several recent papers on
IEAs (including Diamantoudi and Sartzetakis (2002) ?, and ?) are based on a more sophisti-
cated interpretation of rationality, in which nations understand how their provisional decision
to join a coalition would affect other nations’ participation decisions; nations are farsighted.
These papers are based on the theoretical developments in the study of games of coalition for-
mation; important papers in this area include Chwe (1994), Mariotti (1997), Xue (1998) and
Ray and Vohra (2001). We discuss the role of foresight in the model with an escape clause.

Section 2 sets out our model. Section 3 analyzes the one-shot NE, and Section 4 studies
the non-cooperative participation game when nations are farsighted.

2 The Model

Each of N homogenous nations decides whether to join an IEA to reduce a global pollution.
When nations make this decision the terms of the IEA are taken as given. The IEA specifies
a target level of abatement, normalized to 1, and it contains an escape clause that allows a
signatory not to abate if it pays a fine, F . Abatement is a global public good, with constant
marginal expected benefit, b > 0. If m countries abate, all countries receive the expected
benefit bm.

In the case GHGs and a short-lived IEA, it is reasonable to treat b as a constant. Potential
environmental damages are caused by the stock, not the flow of GHGs. During a short period
of time (less than a decade), the change in the stock of GHGs is small, relative to the stock.
Provided that expected marginal benefit is a continuous function of the stock, a change in the
number of countries that abate has a negligible effect on the marginal benefit of abatement.
Hereafter we choose units of the value of abatement to normalize by setting b = 1.

When nations decide whether to join the IEA, they do not know their true abatement cost.
At this stage nations are identical; they all face the same probability distribution for costs.
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Nation i knows that its abatement cost θi, is a random variable drawn from Θ = {θL, θH},
with θH > θL and p ∈ (0, 1) equal to the probability that θi = θH . The distributions of θi,
i = 1, . . . , N , are independent.2

The IEA game has three stages. The fine F and the level of abatement (normalized to
1) are determined in stage 0. We do not model this choice, although we consider its welfare
consequences. (The abatement level determinesΘ and p.) The parameters F,Θ, p are common
knowledge. In stage one, nations play a participation game in which they decide whether to
join the IEA. We study two types of equilibria to the participation game, the NE (Section 3)
and an equilibrium based on farsightedness (Section 4). The outcome of this game is a partition
between signatories and non-signatories. Nations understand how their participation decision
affects the final outcome in stage two. In stage two, each nation observes its own abatement
cost θ, it knows whether it is a signatory, and it knows the total number of signatories. Based
on this information, nations play a non-cooperative abatement game, each deciding whether to
abate.

If M nations sign the IEA in the first stage and M − m ≥ 0 of them invoke the escape
clause in the second stage, revenue from the fine is (M −m)F . This revenue is shared equally
among the M signatories (perhaps to provide a club good), except for a fraction 0 < 1− φ < 1

that is lost to transactions costs. Each of the signatories receives a transfer of M−m
M

φF .

2.1 Stage two: the abatement game

Without loss of generality, we define the level of abatement (normalized to 1) as the excess over
the individually rational level of abatement in the low cost state. This definition implies that

θL > 1. (1)

This inequality implies that non-signatories’ dominant strategy is not to abate.
A signatory must abide by the terms of the IEA. A signatory’s abatement decision depends

on its cost realization θ ∈ Θ and the number of signatories M ∈ N ≡ {0, 1, . . . , N}. The
signatory’s action set is {0, 1} where 1 stands for abating and 0 stands for not abating. Its
strategy is a mapping from Θ ×N to {0, 1}. We consider only symmetric pure strategy Nash
equilibria, hereafter referred to as simply NE.

There are three types of NE in the abatement game. In a type 0 NE, each signatory’s
strategy is not to abate for any cost realization; in a type 1 NE, each signatory’s strategy is to
abate only if its own cost is θL; and in a type 2 NE, each signatory’s strategy is to abate for either
cost realization. A nation that is indifferent between two actions breaks the tie by abating.

2In future work we will consider correlated costs.
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When a signatory decides on its strategy, it needs to assess the cost realizations (and thus
the actions) of the other signatories. When there are M signatories, the probability that m of
the M − 1 other signatories have cost θL is given by the binomial formula

pm,M−1 ≡
(M − 1)!

m! (M − 1−m)!
(1− p)m pM−1−m. (2)

2.2 Types of NE

We identify the combinations of F and M that support each of the three types of NE, beginning
with the type 0 NE. Suppose the IEA has M members and consider a particular signatory i with
cost θL. If it chooses not to abate, it pays the fine F . Since in a type 0 NE none of the other
signatories abates, the total fine received is MF and each signatory receives a “rebate” of φF .
Therefore, i’s net benefit of not abating is una,0 = −(1−φ)F , where subscript na denotes “not
abate” and 0 denotes a type 0 NE.

If i chooses to abate in a type 0 IEA, it incurs abatement cost θL and receives the benefit of
1+ M−1

M
φF , consisting of the benefit of pollution reduction and the rebate of other signatories’

fines. Thus, i’s net benefit of abating is ua,0(θL) = 1 + M−1
M

φF − θL.
Nation i will not abate given cost θL if and only if una,0 > ua,0(θL), or F < F1(M), where

F1(M) ≡
θL − 1
1− φ/M

. (3)

Consider next the type 1 NE, in which the equilibrium action is to abate only in a low cost
state. If signatory i has cost θL, and believes that each of the other M − 1 signatories abates
only if its cost is θL, i’s expected payoff if it abates is

ua,1(θL) =
M−1X
m=0

pm,M−1

½
m+ 1− θL +

M − 1−m

M
φF

¾
. (4)

The term in the brackets measures the benefit of abating when m of the other M−1 signatories
are in state θL and thus choose to abate. Signatory i’s expected benefit of not abating is

una,1 =
M−1X
m=0

pm,M−1

½
m− F +

M −m

M
φF

¾
. (5)

Signatory i will abate given cost θL if and only if ua,1(θL) ≥ una,1, which is equivalent to
F ≥ F1(M). Similarly, we can show that in a type 1 equilibrium i will not abate given cost θH
if and only if F < F2(M), where

F2(M) ≡
θH − 1
1− φ/M

. (6)
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Since F2(M) > F1(M), we know the abatement game has a unique type 0 NE if and only
if F < F1(M). Similarly, the abatement game has a unique type 1 NE when F1(M) ≤ F <

F2(M).
Consider now the type 2 NE. A signatory has the greatest incentive to not abate when its

cost is θH . If the penalty F is so high that a signatory chooses to abate even given θH , it will
also abate given cost θL. Suppose signatory i’s cost is θH . Given that all other signatories abate
in both states, i’s expected payoff if it abates is ua,2(θH) =M − θH . If it chooses not to abate,
its payoff is una,2 = (M−1)−F (1−φ/M). It abates at cost θH if and only if ua,2(θH) ≥ una,2,
or, after simplification, F ≥ F2(M). This inequality is also the condition for the existence of
the type 2 NE. In summary, we have

Proposition 1 The abatement game in stage two has a unique type 0 NE if and only if F <

F1(M), a unique type 1 NE if and only if F1(M) ≤ F < F2(M), and a unique type 2 NE if and
only if F ≥ F2(M).

Figure 1 graphs F1(M) and F2(M), which are decreasing and approach θL − 1 and θH − 1
respectively. The figure shows the regions of the different types of NE, conditional on M,F .
For brevity, we will sometimes refer to a “type of IEA” to mean an IEA that results in a certain
type of NE at the abatement stage. The fact that the graphs of F1(M) and F2(M) are decreasing
means that for a given level of F , an IEA member’s incentive to abate (weakly) increases with
the number of members. The reason for this relation is that each member’s share of the revenue
from the fine is 1

M
, so the net fine (after the rebate), M−φ

M
F , increases with the number of

members. It is more expensive to exercise the escape clause in an IEA with more members. If
there were no rebate (φ = 0) membership costs would be independent of M .

2.3 Payoffs in NE

Let πs,i(M ;F ) and πn,i(M), i = 0, 1, 2, be, respectively, the expected payoffs of a signatory
and a non-signatory in a type i IEA with M members and fine F . (s denotes “signatory” and n

denotes “non-signatory”.) Non-signatories never abate.
Since no signatories abate in a type 0 NE, πs,0 = una,0 = −(1 − φ)F and πn,0 = 0 =

πs,0 +G0, where G0 = (1− φ)F . In a type 1 NE, a signatory abates only if its cost is θL, so
its expected payoff is

πs,1(M ;F ) = puna,1 + (1− p)ua,1(θL) =M(1− p)−G1(F ) (7)

where ua,1 and una,1 are given in (4) and (5), and

G1(F ) = (1− p)θL + Fp(1− φ). (8)
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Figure 1: The Three Types of Nash Equilibria

(In a type 1 equilibrium, the expected fraction of nations that abate is (1− p); a signatory’s
expected abatement cost is (1 − p)θL and its expected fine payment, net of reimbursements is
Fp(1− φ).) The expected payoff of a non-signatory in a type 1 NE is

πn,1(M) =
PM

m=0 pm,Mm =M(1− p) = πs,1(M ;F ) +G1(F, φ). (9)

For a type 2 IEA, the associated payoffs of signatories and non-signatories are

πs,2(M) =M − θ̄, (10)

and
πn,2(M) =M = πs,2(M) +G2, (11)

where θ̄ = pθH + (1− p) θL is the expected value of θ, and G2 = θ̄.
In all three types of NE, a non-signatory has a higher payoff than a signatory, and the

additional benefit (or the gain) of the non-signatory, Gi, is independent of the IEA’s size, M .
The membership cost of the IEA is the reduction in expected value for a non-signatory that
decides to join the IEA, under the assumption that other nations’ actions (as distinct from their
strategies) remain fixed. Since the increased benefit from abatement is the constant 1, the
membership cost is Gi − 1. All nations enjoy the global public benefit of abatement, but the
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members incur a cost of Gi. We have the following relation

(1− φ)F < θL =⇒ G0 < G1 < G2. (12)

Provided that the fine and/or the transactions cost are sufficiently small, the membership cost is
higher in IEAs that produce a higher level of abatement. A smaller fine or smaller transactions
cost decrease membership costs in a type 1 equilibrium.

The payoff functions used above are indexed by i, the type of equilibrium, which is de-
termined by M,F . We use πs (M,F ) and πn (M,F ) to denote the equilibrium payoff of a
signatory and non-signatory, recognizing the endogeneity of the equilibrium type.

2.4 Relation to the “standard model”

The IEA in our model has less power (relative to the standard model), because it is not able
to solve the collective action problem (i.e., to enable members to guarantee to maximize joint
welfare). However, nations are able to commit to following a simple contingent contract, to
either abate or to pay to exercise an escape clause. Thus, nations in this model have a different
type of commitment ability, but it is not obviously greater or weaker relative to the standard
model.

In a type 1 equilibrium, a nation that has a low abatement cost (and therefore chooses to
abate) has a higher payoff than a high-cost nation (which decides to invoke the escape clause).
The low-cost nation has an incentive to pressure non-abating signatories to abide by the IEA
and pay the fine.

In a type 0 equilibrium, all signatories have negative payoff, (1− φ)F . We could modify
the game by allowing the IEA to costlessly disband if all signatories agree to do so. That
change causes una,0 = 0, and the value of F1(M) in equation (3) is replaced by θL−b

φ−φ/M . The
change requires slightly more complicated notation, because it introduces an additional action
(voting) at the abatement stage. The assumption that disbanding is costless is probably not
reasonable. If disbanding is an option that costs more than (1− φ)F (as we hereafter assume)
the IEA would never disband.

3 Nash equilibrium of participation game

Here we describe the NE to the participation game when the size of the fine is taken as given
in the participation game. We show that for an interval of F , a reduction in membership
costs (smaller F ) increases equilibrium membership size. We then compare the equilibrium
membership size and global welfare in our setting with two versions of the standard model,
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where a reduction in membership costs decreases equilibrium membership size. In both our
setting and in the standard model, the equilibrium is subgame perfect. However, the second
stage game is different in the two models. In the standard model the IEA members behave as a
coalition and play a non-cooperative game with non-signatories. In our model all agents play
a non-cooperative game, but IEA members are subject to different rules.

3.1 The participation game with an escape clause

Here we consider the NE to the participation game when the IEA uses the escape clause and
chooses the fine before nations decide whether to join. Figure 2 reproduces Figure 1 and adds
three curves; recall that F1 and F2 are the lower and upper boundaries, respectively, of the
region where there is a type 1 equilibrium in the abatement game. (Table 1 in Appendix A
collects the definitions of various curves and functions.) F̃ (M) is the locus of points at which
πs,1(M ;F ) = 0 (signatories in a type 1 equilibrium have 0 payoff); payoffs are negative to the
left of that line. F0(M) is the locus of points at which πs,1(M ;F ) = πs,2(M) (signatories’
payoffs are equal in a type 1 and a type 2 equilibrium); below that line, signatories’ payoffs are
higher in a type 1 equilibrium. These functions are

F̃ ≡ (M − θL)
p− 1

p (φ− 1) F0 ≡
θH −M

1− φ
.

The inverse function of F = Fi (M) is M = F−1i (F ).
In addition to N (the number of nations), this model contains four parameters: the cost

parameters θi, the probability of a high cost, p, and the transactions cost parameter φ. Even
with this simple model, there are many possible configurations of the various curves used to
determine the equilibrium. A complete taxonomy would be uninteresting, so we consider a
single case that holds for reasonable parameter values. In the text we use Figure 2 to dis-
cuss informally the relation between the fine, F , and the set of NE to the participation game.
Appendix A provides a formal description of this correspondence, and the proof.

The equilibrium number of members must be an integer. Define h(x) to be the smallest
integer not less than x. The formal presentation in Appendix A respects the integer constraint,
but here, in order to keep syntax manageable, we ignore this constraint. For example, if we
state that a point x on the curve F1 is a NE, we mean that for the value of F given by the vertical
coordinate x, h

¡
F−11 (F )

¢
(i.e., the smallest integer greater than or equal to F−11 (F )) is a NE.

With this understanding, the heavily shaded curves in Figure 2 show the NE correspondence
(for all positive values ofF ). We discuss this figure, and then discuss the NE. We use subscripts
to denote the coordinate of a point; e.g., Fb is the vertical coordinate of point b and Mb is the
horizontal coordinate.
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Figure 2: The Nash Equilibria in the Participation Game

Define Mb ≡ θ̄−1+p
p

; denote point b as the intersection between F2 and the vertical line at
Mb.3 At point b, a signatory is indifferent between remaining in the IEA that results in a type 2
equilibrium, or leaving the IEA and being a non-signatory in a type 1 equilibrium. If the size
of the IEA (on or above F2) is less than Mb, a member would want to leave the IEA when this
defection causes the abatement stage equilibrium to switch from type 2 to type 1. A simple
calculation shows that point b always lies above F0 as shown in Figure 2.

Point g (defined in the Appendix) is the highest point on the line F̃ for which there is a NE
in the participation stage that leads to a type 1 equilibrium at the abatement stage. Define MN

as the value that satisfies F1(M) = F0(M). Appendix A shows that MN < Mb, as Figure 2
illustrates.

Figure 2 embodies several assumptions. The most important of these are that horizontal
distance between curves F2 and F1 is greater than 2 at point ‘e’ and that Mb − θ̄ > 2. The
appendix contains necessary and sufficient conditions for these assumptions. Sufficient condi-
tions are that θL is “moderately large” (e.g. at least 4), that there is a non-negligible difference
between high and low costs, and that the probability of high abatement costs is moderate or

3[A later draft will fix a small error to Figure 2 and the analysis. Define the value Fb0 =

sup
©
F | h

¡
F−12 (F )

¢
= h

¡
F−12 (Fb)

¢ª
and define point b0 as a point on F2 with vertical coordinate Fb0 . The

heavy line on the curve F2 (and all of the comments regarding that region) should be extended to point b0.]
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small (e.g., less than 0.5). Given our normalization, θL = 4 means that even if nations were
certain that costs are low, an IEA would have to contain at least four members for the IEA to
improve members’ welfare.

These assumptions imply that if, at the participation stage, a signatory considers defecting
from a candidate NE on F2 below point e (i.e., for an IEA larger than θ̄), then the signatory
knows that the resulting outcome at the abatement stage will be a type 1 NE rather than a type
0 NE. They also insure that for any candidate NE on F̃ consisting of fewer than θ̄ members, no
non-signatory wants to defect by joining the IEA. (If it were to join the IEA, the membership
would still be lower than Mb, the critical value below which a nation prefers being a non-
signatory to an IEA that results in a type 1 NE in the abatement stage, rather than a signatory to
an IEA that results in a type 2 equilibrium.)

Three facts about the equilibrium set are obvious. First, a membership size of 0 (not shown
in Figure 2) is always a NE. Second, outcomes with negative payoffs for IEA members cannot
be NE to the participation game. This fact means that outcomes to left of the upper envelope
of curves F1 and F̃ , and below F2, and outcomes above F2 with M < θ̄ are not NE Third, in
view of inequality (1), a member is deterred from leaving the IEA only if its defection would
change the equilibrium at the abatement stage, e.g. from a type 2 to a type 1, or from a type 1
to a type 0. This fact means that only the “nearest integers” on or to the right of curves F1, F2,
and F̃ are candidate NE.

At points on F1 below point c, signatories have a positive payoff. These points are NE in the
participation stage, leading to a type 1 equilibrium in the abatement stage. A signatory knows
that its defection would lead to a type 0 equilibrium in the abatement stage, and a 0 payoff for
non-signatories. Non-signatories do not want to join the IEA because the result would still be
a type 1 equilibrium. (This and other conclusions follow from our parametric assumptions.)
Other NE leading to type 1 abatement-stage equilibria consist of points between c and g on F̃ .
Here, a member’s payoff is non-negative. Defection by a signatory leads to a type 0 abatement-
stage equilibrium (and a 0 payoff for non-signatories). Defection by a non-signatory would not
change the abatement-stage equilibrium from a type 1, leaving the defector with a lower payoff.

Points on F2 below point b are NE that lead to type 2 equilibria in the abatement stage.
At these points, members do not want to leave the IEA, since that would result in a type 1
equilibrium and a lower payoff. Points above b on the envelope aeb are not NE, even though
members’ payoffs are non-negative there. At these points, any member would want to defect,
since it prefers to be a non-signatory in a type 1 equilibrium in the abatement stage. For
F > max {Fb, Fg} there are no NE other than 0.

The full-information first best outcome would have all nations abate even when they have
high costs if and only if N > θH . If cost realizations are private information (as we assume)
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and we impose incentive compatibility at the abatement stage, a type 2 equilibrium consist-
ing of all N nations leads to higher expected welfare than a type 1 equilibrium if and only if
N ≥ MN . It is straightforward to show that MN < θH . Thus, the incentive compatibility
constraint reduces the parameter space for which it is optimal to abate in only the low cost
state (e.g., it decreases the lower bound on N above which abatement in both states is socially
optimal) . In this respect, the incentive compatibility constraint (at the abatement stage) leads
to excessive abatement. This result is due to the fact that the type 1 equilibrium requires that
some nations incur a transactions cost, causing the type 1 NE welfare to be lower than in the
first best outcome. In contrast, there are no transactions cost in a type 2 equilibrium.

However, our game includes not only the abatement stage incentive compatibility constraint,
but also the constraint implied by non-cooperative behavior at the participation stage. The
smallest NE in the participation stage that produces a type 2 equilibrium at the abatement stage
is Mb > θH . Thus, (assuming that F can be chosen in stage 0) it is possible to induce all
nations to join the IEA and then abate in both states of nature if and only if N ≥ Mb > θH .
Therefore, if it is feasible to induce a type 2 equilibrium (by choice of F ) it is always optimal
to do so. If N < Mb, it is not feasible to induce a type 2 equilibrium.

In summary, it is possible to induce all nations to sign the IEA by choosing a sufficiently
small fine (M = N). If N < θH the optimal IEA leads to the first best pattern (abatement
in only the low cost state) but involves expected transactions cost equal to F1(N)p(1 − φ) =

Np (1− φ) θL−1
N−φ . If Mb < N the optimal IEA leads to the first best pattern (abatement in

both states) without transactions costs. If θH < N < Mb the optimal IEA leads to too little
abatement, since abatement occurs only in the low-cost state but it is optimal to abate in both
states; in addition, there is the transactions cost, as above.

3.2 Review of “standard result”

The standard model assumes that the IEA maximizes members’ joint welfare. Equivalently, the
IEA makes its decision after nations have made their participation decision. In order for this
assumption to be consistent with our setting, we require that the abatement decision is a binary
choice, e.g. because of some technological constraint. To demonstrate the fact that in the
standard model a decrease in membership cost reduces membership size and global welfare,
we first consider the simplest case, where the IEA is not able to observe agents’ costs, or to
induce them to reveal those costs. Here, the expected cost of a unit of abatement in both stages
of the game is θ̄.

We then consider the situation in which the IEA is able to induce members to reveal their
costs by means of an escape clause. These two games differ only in the policy menu available
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to the IEA (abatement choice vs. level of fine), not in the timing of the decisions. The ability
to use a fine increases the IEA’s set of feasible outcomes, relative to the case where the IEA
directly chooses abatement. Thus, conditional on membership size, the IEA payoff is (weakly)
higher when it is able to use a fine. However, the switch from choosing abatement to choosing
a fine lowers equilibrium membership size and reduces global welfare. We then compare the
outcome in these models with the outcome when the IEA uses an escape clause and the fine is
taken as given in the participation game.

3.2.1 The IEA chooses output conditional on M

Suppose (for now) that after nations have decided whether to join the IEA, the IEA decides
whether to abate. Conditional onM , the expected payoff to a signatory isΠ(M) = max

©
0,M − θ̄

ª
.

The IEA instructs (all) members to abate if and only if M ≥ θ̄. The NE of the participation
game is h

¡
θ̄
¢
. To confirm this, note that if there are h

¡
θ̄
¢

members, each signatory’s payoff
is non-negative; no signatory would want to leave the IEA, because the resulting IEA would
choose not to abate, leaving the defector with a 0 payoff. No non-signatory wants to join, since
in view of inequality (1), h

¡
θ̄
¢
> h

¡
θ̄
¢
+1− θ̄. The non-signatory’s payoff in the NE exceeds

its payoff if it joins the IEA.
In this model, the membership cost equals θ̄ − 1. The level of membership, h

¡
θ̄
¢
, weakly

increases with membership cost; h
¡
θ̄
¢

is constant between integers, and jumps up by one unit
as θ̄ passes through an integer value. From equation (12), membership costs in the IEA with an
escape clause are never greater, and sometimes are less than θ̄ − 1.

The equilibrium global welfare of N nations is
¡
N − θ̄

¢
h
¡
θ̄
¢
. As θ̄ increases between

integers welfare falls, but welfare has an upward jump as θ̄ passes through an integer value.
(When N is an even integer, welfare is maximized at θ̄ = N

2
.) The fraction of potential welfare

achieved in equilibrium is h(θ̄)
N

. This example illustrates why the standard model leads to
a rather pessimistic view of IEAs: they achieve a substantial portion of potential gains from
cooperation only when those potential gains are small. IEAs are effective only when they are
unimportant.

This model assumes that when nations decide whether to join the IEA, they anticipate that
the IEA will maximize members’ joint welfare in the abatement stage. Members understand
that their participation decision might have an effect on the IEA’s action. If instead, the IEA
makes the abatement decision before agents decide whether to join (as is the case for Kyoto),
the equilibrium membership size is 0. In this case, there is nothing to offset nations’ temptation
to free-ride.4 The assumption that the IEA abatement decision is conditioned on membership

4Kyoto solved this free-rider problem by stipulating that the agreement would not enter into force unless a

14



size therefore increases the equilibrium size from 0 to h
¡
θ̄
¢
.

3.2.2 The IEA chooses a fine conditional on M

Suppose now that the IEA is able to use an escape clause with a fine. As above, the IEA
decision is made after nations decide whether to join; the decision is conditioned on M . If it is
optimal for the IEA to induce a type 1 equilibrium, it chooses the smallest fine that will achieve
this, F1 (M). Using equation (9), the expected payoff of a member is

Π̂(M) = max
©
0, (1− p)M −G1 (F1 (M)) ,M − θ̄

ª
.

Clearly Π̂ (M) ≥ Π (M). It is straightforward to show that for sufficiently small M it is
optimal to set F = 0 (so that no member abates), and for sufficiently high M it is optimal to set
F ≥ F2(M) (so that members abate for both high and low costs). For a range of intermediate
values of M it is optimal to induce a type 1 equilibrium at the abatement stage. Thus, M̂ < θ̄,
where M̂ = sup

n
M | Π̂(M) = 0

o
. It is also easy to see that in this model, the equilibrium

membership size is h
³
M̂
´

. Allowing the IEA to use a fine and escape clause, rather than
requiring it to directly chose abatement, makes the IEA more efficient, and reduces membership
costs, conditional on M . Since h

³
M̂
´
≤ h

¡
θ̄
¢
, we have another example where a reduction in

membership costs (weakly) reduces equilibrium membership size and may reduce equilibrium
global welfare.5

3.2.3 A comparison

Table 1 compares the equilibrium IEA size for games with different timing and different policy
instruments. The size of the IEA depends on both of these features. Allowing the IEA to
choose the level of the policy variable before rather than after nations decide whether to join,
increases the equilibrium size if the IEA uses a fine/escape clause; the timing change decreases
the size if the IEA selects the abatement level directly.

minimum level of participation was achieved.
5If h

³
M̂
´
= h

¡
θ̄
¢
, membership size and global welfare is the same under the two policy instruments. A

sufficient condition for h
³
M̂
´
< h

¡
θ̄
¢

is that M̂ + 1 < θ̄. When φ ≈ 1, the necessary and sufficient condition
for the latter inequality is that θL + 1 < θ̄. The change in global welfare from switching to the more efficient
instrument equals

∆ ≡
¡
N − θ̄

¢
h
¡
θ̄
¢
−
³
(1− p)N −G1

³
F1

³
M̂
´´´

h
³
M̂
´
.

For example, let p = 0.1, θL = 4, θH = 8, and 1−φ ≈ 0, so G1
³
F1

³
M̂
´´
≈ 3.6. In this case, h

³
M̂
´
= 4 and

h
¡
θ̄
¢
= 5, so ∆ ≈ (N − 4.4) 5 − (.9N − 3.6) 4 = 1. 4N − 7. 6. Provided that N ≥ 6 (i.e., assuming that the

IEA that chooses abatement can not obtain global cooperation), the switch to the more efficient policy instrument
reduces global welfare.
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IEA Policy instrument
Timing of IEA decision Level of abatement Level of fine with escape clause
Before nations make
participation decision

M∗ = 0 M∗ can be large

After nations make
participation decision

M∗ = h(θ̄) ≥ 2 (small) M∗ = h
³
M̂
´
≤ h(θ̄) (even smaller)

Table 1: Equilibrium IEA size in four different games

Non-signatories have a dominant strategy in the abatement game; the outcome of the par-
ticipation game therefore depends on how a nation’s participation decision will affect the sig-
natories’ actions in the abatement game. The critical membership size, below which the IEA
does not ever abate, or below which it abates in only the low-cost state, depends on the timing
and on the policy instrument.

The fact that IEA members obtain a rebate, and that the rebate decreases with the number of
IEA members (making it more expensive to exercise the escape clause) is critical to the ability
of the escape clause to increase equilibrium membership. If φ = 0, so that firms receive no
rebate, then the graphs of F1 and F2 are flat lines. In this case, a member’s equilibrium action
in the abatement stage is independent of the number of members. In that situation, nations
have no incentive to join the IEA in the participation stage (because their decision has no effect
on member’s behavior), and the equilibrium size of the IEA is 0.

4 Farsighted stability in the participation game

The Nash equilibria in the previous section assume that in the participation game nations believe
that: (i) if one nation deviates from equilibrium by withdrawing from or joining the IEA, other
nations do not respond by changing their participation decisions, and (ii) each nation acts on its
own, i.e., nations do not join or withdraw together in a coalition. In this section, we study the
IEA sizes when these assumptions are gradually relaxed.

Nations are likely to be more sophisticated, and more able to react to deviations, than the
NE assumes. For example, a nation may perform a thought experiment to predict how its
deviation form a particular equilibrium candidate would precipitate changes in other nations’
actions. The nation would compare the status quo payoff with the payoff under the eventual
equilibrium following its own deviation and other nations’ response – not on the payoff that
would result if no other nations responded. Such nations, using the terminology of Chwe
(1994), are farsighted.
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To understand the effects of farsightedness on the formation of IEAs, consider the IEA of
sizeM = h(θ̄)when F > Fa in Figure 2. In this IEA, each signatory’s payoff is πs,2(h(θ̄)) ≥ 0,
where the inequality is strict unless h(θ̄) = θ̄. Suppose a signatory to the IEA withdraws. The
immediate result of this deviation is an IEA with less than θ̄ members, and lying to the left of
the curve F̃ . In that outcome, each signatory’s payoff is negative, so the remaining signatories
would also withdraw, eventually leading to zero membership. Foreseeing the subsequent reac-
tions of the other signatories, the first signatory will not withdraw, because doing so leads to a
zero payoff instead of the non-negative payoff under the equilibrium h(θ̄). Thus, no signatory
to the IEA of size h

¡
θ̄
¢

wants to withdraw. We show that when nations are farsighted, this IEA
is stable; in the previous section we saw that it is not a NE.

The second implicit NE assumption may or may not be reasonable, depending on whether
nations can credibly coordinate in the negotiation process before the IEA is signed. For ex-
ample, if a group of nations agree to join the IEA together, can they sign a binding agreement
to guarantee that they will act as a group and no members will act differently? Although the
negotiation process eventually produces a binding agreement (the IEA), binding agreements
within the negotiation process before the IEA is formed may be harder to justify. Unlike the
IEA, these pre-IEA agreements are at best informal.

If binding agreements are not possible, nations will act alone in making their participation
decisions. But if binding agreements are possible, coalitional deviations have to be considered
in studying the participation game. Continuing with the above example, if, through some ex-
ogenous processes, the current proposal is the trivial IEA with zero members, nations acting
alone will not be able to form the IEA of size h(θ̄). However, when binding agreements are
possible, a group of h(θ̄) nations want to move the IEA from size zero to size h(θ̄). In both
cases, the nations can be farsighted.

Thus, in addition to the assumptions of rationality associated with a Nash equilibrium (e.g.,
each nation optimizes given the other nations’ actions), we assume in this section that the
nations are farsighted. Depending on whether pre-IEA binding agreements are possible, we
will analyze the negotiation game under two sets of assumptions:

Assumption 1 (Unilateral Farsight) The nations are farsighted, but coalitional deviations are
not possible: each nation acts on its own in deciding whether or not to join or to withdraw from
the IEA.

Assumption 2 (Coalitional Farsight) The nations are farsighted, and coalitional deviations
are allowed.

We analyze the participation game under Assumption 1 and calculate the associated stable
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set. We then show that a particular element of this set corresponds to the stable IEA under
Assumption 2.

4.1 Unilateral farsighted stable set

When nations are farsighted, solution concepts different from Nash equilibrium are needed
to predict the kinds of IEAs that will form in the participation game. One such concept is
Chwe (1994)’s farsighted stable set (FSS). We describe a variation of Chwe’s definitions using
Assumption 1.

In the participation game, let an outcome be a partition of the nations into signatories and
non-signatories, and let Z be the set of outcomes. Consider two outcomes a, b ∈ Z. Denote
a →i b if nation i can move the outcome from a to b. For example, if i is a non-signatory,
it can change the outcome by joining the IEA, making it one member larger. The preference
ordering of nation i between two outcomes is given by ≺i: a ≺i b if i prefers b to a. We define
a dominance relation between two outcomes that allows each nation to act only unilaterally, but
not in coalitions.

Definition 1 (Chwe (1994)) An outcome a ∈ Z is (unilaterally) indirectly dominated by out-
come b ∈ Z, denoted as a ¿ b, if and only if there is a sequence of outcomes, z0, . . . , zm
with z0 = a and zm = b and nations 0, . . . ,m − 1 such that zj →j zj+1 and zj ≺j b for all
j = 0, . . . ,m− 1.

That is, starting with outcome a, m nations makes sequential unilateral changes, generating
a sequence of intermediate outcomes, z1....zm−1. Each nation (j) in the sequence prefers the
final outcome (b) to the interim outcome that it faces (zj−1). Thus, if a ¿ b, there is some
sequence of deviations from a that takes the outcome to b, and it is rational for each agent in
that sequence to make the deviation.

The farsighted stable set (FSS) is essentially von Neumann and Morgenstern (1953)’s stable
set armed with the indirect dominance relation. Due to the restriction to unilateral deviations in
Assumption 1, we define a unilateral FSS.

Definition 2 (Chwe (1994)) Given the set Z of outcomes and relation ¿, set V ⊆ Z is a
unilateral farsighted stable set (UFSS) of (Z,¿) if and only if
(i) V is internally stable: @a, b ∈ V such that b¿ a, and
(ii) V is externally stable: ∀b ∈ Z\V , ∃a ∈ V such that b¿ a.

We say that an IEA with M members is “unilaterally farsighted stable” (or simply “stable”
when there is no ambiguity) if and only if M ∈ V , the UFSS.

18



To understand the two requirements, note that if a¿ b then a and b cannot both be internally
stable, otherwise some sequence of players would cause a defection from a to b. Further, if b
is outside the FSS, then there must be an element a ∈ V that indirectly dominates b: if no
such element a exists, then b would be stable. The FSS thus contains all the outcomes that are
not indirectly dominated by other outcomes, and excludes all the outcomes that are indirectly
dominated by some other outcomes.

As Chwe (1994) showed using the Condorcet Paradox, the UFSS does not exist when cir-
cular decisions arise. In our setting, a nation might withdraw from an IEA anticipating that
another nation would join in its place; the new member would have the same incentive to with-
draw, leading to a cycle of one nation withdrawing and another joining. Circular decisions are
typical of coalition formation problems with farsight, and as we show in Appendix ??, they also
arise in our model for (M,F ) such that a Nash equilibrium with a strictly positive number of
signatories exists in the participation game. We assume that nations can find a way to “break
the cycle;” for example, we can follow Mariotti (1997) and impose large negative payoffs when
circular decisions arise.

Since the nations are assumed to be ex ante identical in the participation game, and since
we have ruled out cyclical outcomes, we can identify each outcome by the size of its associated
IEA, rather than by the identities of the nations. That is, Z = N , and each nation is either a sig-
natory or a non-signatory. This observation simplifies the determination of indirect dominance
relation between two outcomes (or two IEAs).

Lemma 1 Consider two IEAs of sizes M,M 0 ∈ N respectively.
(i) Suppose M > M 0. Then M ¿ M 0 if and only if πs(m;F ) < πn(M

0;F ) for all m =

M,M − 1, . . . ,M 0 + 1.
(ii) Suppose M < M 0. Then M ¿ M 0 if and only if πn(m;F ) ≤ πs(M

0;F ) for all m =

M,M + 1, . . . ,M 0 − 1.

The proof of the Lemma is a direct consequence of Definition (2) and is not presented.
Since cyclical outcomes are ruled out, we only need to search “in one direction” in deciding
the dominance relation. For example, when M > M 0, M 0 indirectly dominates M if a signa-
tory to the IEA of size M wants to withdraw, anticipating the subsequent withdrawal by other
signatories until the IEA settles at size M 0. In the process of moving from M to M 0, no non-
signatories have incentive to join the IEA, because otherwise circular decisions arise, resulting
in large negative payoffs.

The difficulty in finding the UFSS is that determining the stability of one IEA requires
knowing other stable IEAs. Unless we know at least one element of the UFSS, it is not possible
to determine the other elements. However, if we have identified the smallest element of the
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UFSS, a simple recursive procedure determines larger IEAs in the UFSS. This recursion uses
the following:

Definition 3 Given an IEA of size M0 < N , the set M(M0) generated by M0 is a finite and
strictly increasing sequence of integers,M(M0) ≡ {M j(M0), j = 1, 2, . . . , k}, such that

M1 =M0,

M j = h(mj), where mj = min{m ∈ R : πs(m) = πn(M
j−1)}, j ≥ 2

M j ≤ N, j = 2, . . . , k.

(13)

The sequence M(M0) depends on F , but we suppress that argument. We provide condi-
tions under which M(M0) = V . Given an IEA of size M0, the set M(M0) is generated by a
simple sequence of comparisons. Starting with M1 =M0, the next element M2 is the smallest
IEA size such that a signatory’s payoff in M2 is no less than the non-signatory’s payoff in M0.
This condition guarantees that a signatory in the larger IEA M2 does not want to withdraw, be-
cause doing so will lead other signatories to withdraw until M0 is reached, resulting in a lower
payoff. Once we identify M2, the next element M3 is found through the same procedure. This
process is to be repeated until the greatest possible element Mk is reached.6

We use Definition 3 to construct V by setting M0 equal to the smallest element of V . No
equilibrium outcome, including (M0, F ), can lie in a region where signatories have negative
profits, i.e. the open set consisting of M > 0 and (i) below the upper envelope of F1 and F̃ ,
and also below F2, and (ii) less than θ̄ and on or above F2. However, M0 can lie outside or
on the boundary of this region, or it can equal 0. Neither V or M(M0) contain a type 0 IEA
with positive members. We cannot exclude the possibility that both of these sets contain one
or more type 1 IEAs followed by one or more type 2 IEAs. If this possibility occurs, then there
is a single switch, because the smallest type 1 IEA (in either set) lies below F2 and the smallest
type 2 IEA lies on or above that curve. The following Proposition shows the relation between
M(M0) and V .

Proposition 2 M(M0) = V if and only if the following three conditions hold:
(i) When M0 = 0 then M2 − 1 is not a type 0 IEA (in the abatement stage)
(ii) Either all positive M j are the same type IEA; or there is a switch from a type 1 to a type 2
IEA, and the smallest type 2 IEA occurs at M j < Mb.
(iii) When M0 > 0 then πs (M0) ≥ πn (M) for M < M0.

6The equation πs(m) = πn(M
j) may have two solutions m1 and m2, where mi is associated with a type i

IEA. That is, it may occur that πs,1(m1) = πs,2(m2) = πn(M
j). Since m1 < m2, the procedure picks h(m1)

instead of h(m2).
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The intuition for Proposition (2) is straightforward. Conditions (i) and (ii) of the propo-
sition are used to demonstrate internal stability of M(M0), and condition (iii) is used to show
external stability ofM(M0). By construction ofM(M0), an IEA of size M j+1 is not indirectly
dominated by M j or by smaller IEAs Showing that M j is not indirectly dominated by M j+1

(or by larger IEAs) uses the first two conditions in the proposition. When M0 = 0 conditions
(i) and (ii) imply that the “last signatory” of the smallest positive stable IEA (M2) would prefer
to remain a nonsignatory. This requirement is needed because otherwise M2 would indirectly
dominate M0. The last signatory of the smallest positive IEA does want to join if the IEAs M2

and M2 − 1 are the same type, of if the IEA M2 is type 2 and the IEA M2 − 1 is type 1. (The
second possibility uses condition (ii).)

If all positive IEAs are the same type, then inequality (1) guarantees that the “last signatory”
to the IEA with M j+1 > M0 members would rather remain a non-signatory to an IEA with
M j+1−1members. Therefore M j+1 does not dominate M j . If the sequence of positive stable
IEAs switches from a type 1 at M j to type 2 at M j+1, but the switch occurs below Mb, the “last
signatory” to M j+1 again prefers to remain a non-signatory to the IEA with M j+1−1members.
Thus, under the first two conditions of the proposition, the setM(M0) is internally stable.

To verify external stability of this set, we note that all IEAs strictly between M j+1 and M j

are indirectly dominated by M j because of the monotonicity in M of payoffs. Similarly, IEAs
larger than Mk (defined as the largest element of M(M0)) are indirectly dominated by Mk.
When M0 = 0 there are no IEAs smaller than M1 = M0. When M0 > 0, condition (iii)
implies that IEA smaller than M0 are indirectly dominated by M0.

Proposition (2) implies that M j+1 −M j > 1.7 Not all (in fact, “very few”) integers are
elements of V . Consequently, for arbitrary F it is not true in general that making nations
farsighted enables them to achieve global cooperation. Ray and Vohra (2001) obtain a similar
result.

Proposition (2) enables us to find the UFSS V , by identifying its smallest element, M0,
and then applying the recursive relation in equation (13). The three conditions provide the
information needed to identify M0; that is, we choose M0 in order to satisfy these conditions,
so these conditions do not restrict the applicability of the algorithm. We can set M0 = 0 and
test whether conditions (i) and (ii) hold. If they do not hold, then M0 > 1, and we identify its
value using conditions (ii) and (iii). To verify that a candidate M0 > 0 is the smallest element
of V we only need to verify that it is not indirectly dominated by smaller IEAs.

We illustrate this process using the example in Figure 3. As in the previous section, the
7This claim follows directly from Definition 3 when successive elements of V result in the same type IEA.

When successive elements result in different type IEAs, the claim follows from condition (ii). If M j+1−M j = 1

and M j+1, M j are type 2 and type 1 IEAs then condition (ii) is violated.
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Figure 3: First Elements of the UFSS

equilibrium set (here, V ) depends on the relative positions of the curves F0, F1, F2, F̃ and Mb.
Figure 3 uses the definitions and assumptions implicit in Figure 2; in addition, it assumes that
(i) point c is above the line F2(N),8 (ii) the horizontal distance between F̃ and F1 at F = Fb is
not less than one, and (iii) the horizontal distance between θ̄ and F1 at F = Fd is not less than
one.

For this configuration of curves, we have:

Example 1 (i) If F < F1(N), the UFSS contains the single element of an IEA with zero mem-
bership.
(ii) If F ∈ [F1(N), F2(N)), the UFSS is the setM(M0), where M0 = h(F−11 (F )).
(iii) If F ∈ [F2(N), Fb) where Fb = F2(Mb), the UFSS is the set M(M0), where M0 =

h(F−12 (F )).
(iv) If F ∈ [Fb, Fd), where Fd is the level of F where F̃ and F2 cross, then the UFSS is the set
M(M0) where M0 = 0. The second element ofM(M0) is M2 = h(F̃−1(F )).
(v) If F ≥ Fd, the UFSS is the M(M0) where M0 = 0. The second element of M(M0) is
M2 = h(θ̄).

8For φ ≈ 1, point c lies above θH−1 (a necessary condition for c to lie aboveF2(N)) if and only if θH−θL > 1.
This inequality is very likely to be satisfied for the problem of climate change, where there is a large difference
between possible abatement costs.
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Figure 3 graphs the first one or two elements of the UFSS, which are represented by the bold
lines (ignoring the integer constraint). To see how Proposition (2) is used, consider first the case
when F ∈ [F1(N), F2(N)). (The same reasoning applies to the case when F ∈ [F2(N), Fb).)
Let M 0 be the IEA determined from the curve F1(·): M 0 = h(F−11 (F )). We showed in the
previous section that the IEA of size M 0 is a Nash equilibrium, i.e., πs,1(M 0) ≥ πn,1(M

0 − 1).
The inequality implies that πs,1(M 0) ≥ πn,1(M) for all M ≤M 0−1 since πn,1(·) is increasing;
therefore, condition (iii) in Proposition 2 is satisfied. Since IEAs of sizes higher than or equal
to M 0 are of the same type 1, Condition (ii) is satisfied when M0 = M 0. Thus, M 0 is the
smallest element of the UFSS, or M0 =M 0.

When F ∈ [Fb, Fd), there are two possible switches of IEA types: from type 0 to 1 (along
curve F1) and from 1 to 2 (along curve F2). If M0 = 0, the assumption that the horizontal
distance between F̃ and F1 is no less than one implies that condition (i) in Proposition 2 is
satisfied. Further, condition (ii) is satisfied since the curve F2 is to the left of Mb when F > Fb.
Since 0 is the smallest possible IEA, we know M(0) is the UFSS. Similarly, when F ≥ Fd,
conditions (i) and (ii) are satisfied and thusM(0) is the UFSS.

Comparing with Figure 2, nations with farsight are more likely to cooperate and more likely
to form larger IEAs. While no abatement by any nation (zero sized IEA) is always a Nash
equilibrium, it is not in the UFSS for certain values of F . In fact, if we ignore the effects of
the integer constraint, whenever there is a Nash equilibrium with a positively sized IEA (e.g.,
when F ∈ [F1(N), Fc) and F ∈ [F2(N), Fb)), this IEA also belongs to the UFSS. Further in
these cases, the zero sized IEA, a Nash equilibrium, is not in the UFSS. For other values of F ,
while the zero sized IEA is the only NE, it is not the only element in the UFSS.

When some of the Nash equilibria do belong to the UFSS, they only represent the first or the
smaller elements in the UFSS. The existence of larger IEAs in the UFSS means that farsighted
nations may possibly cooperate and form a larger IEA. The concept of UFSS is silent on the
procedure in which the nations negotiate and form a particular IEA. Imposing more structure
on the negotiation process may lead to finer predictions. For example, Ray and Vohra (2001)
assumes a bargaining procedure with an exogenous order of movements, and we can show that
under their procedure, the largest element in the UFSS will be proposed by the first mover and
will be accepted by all other nations.

The definition of the UFSS, and the game in which it arises, does not involve actions at
different points in time; the game is not written in extensive form. However, the UFSS does
have the “flavor” of subgame perfection, as Xue (1998) noted. It is as if nations performed
a thought experiment to predict the consequences of their actions. If we pursue the analogy
of subgame perfection a bit further, the UFSS implies that IEAs can unravel, but they can
not be built up. A nation can get the ball rolling by defecting from a stable IEA, but it can
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only get the ball rolling downhill. For example, suppose that we think of beginning at a
particular “subgame”, a status quo that falls just short of a stable IEA; that is, the size of the
IEA is M j+1 − 1, possibly as the result of a signatory’s defection from a stable IEA. Since
M j+1 ¿M j+1 − 1 (because no non-signatory wants to join the IEA), the IEA cannot be built
up to the next stable element. However, beginning with this “subgame”, signatories do want to
leave, causing the IEA to unravel to the next smallest stable element.

4.2 Coalitional farsighted stable set

Under Assumption 2, a group of nations may act together to deviate from the status quo. The
unilateral indirect dominance relation defined in Definition 1 can be extended to coalitional in-
direct dominance: the sequence of outcomes is generated by coalitional rather than unilateral
deviations, and the preference relation at each step must hold for all members of the coali-
tions within the step. The coalitional farsighted stable set (CFSS) can be defined similar to
Definition 2 except that the dominance relation is coalitional rather than unilateral.

Since unilateral deviations are still allowed in determining the CFSS, if IEA M 0 unilaterally
indirectly dominates IEA M , M 0 also coalitionally indirectly dominates M 0. Thus, IEAs not in
the UFSS are not in the CFSS either: the CFSS is a subset of the UFSS. The next proposition
derives the CFSS from the UFSS.

Proposition 3 For any F , the CFSS is a singleton which is the largest element of the associated
UFSS.

If coalitional deviations are possible, non-signatories to a smaller IEA may want to join the
IEA as a group, and thus enjoy the higher benefit of the larger IEA. In our model, allowing for
coalitional deviations raises the incentives of groups of non-signatories to join the IEA, but does
not affect the incentives of groups of signatories to withdraw from the IEA. The possibility of
binding agreements in the negotiation stage can only be welfare improving.

5 Discussion

We discuss the effects of the model parameters.

6 Conclusion
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A Nash equilibrium in the participation game: proofs

In this appendix, we formally state and prove the results described in Section 3.1. Table 2
collects definitions of notation.

h(x) The smallest integer no less than x

F2 The locus above which signatories in a high cost state prefer to abate in a type 2 NE
F1 The locus below which signatories in a low cost state prefer to prefer to pay the fine in a type 0 NE
F̃ The locus on which signatories have expected payoff of 0 in a type 1 NE

Mb

The value of M above which signatories have a higher payoff in a type 2 IEA
than they would as non-signatories in a type 1 IEA.

F0 The locus above which signatories’ expected payment is higher in a type 2 than a type 1 NE
Table 2: Definitions and notation

Figure 2 embodies three parametric assumptions.

Assumption 3 Point ‘a’ lies above the curve F2.

Assumption 4 The horizontal distance between curves F2 and F1 is greater than 2 at point ‘e’.

Assumption 5 Mb − θ̄ > 2 (equivalently, θ̄ > p+1
1−p).

These conditions are appropriate for a model that describes the problem of forming an IEA
to control GHGs. (i) A sufficient condition for Assumption 1 is that transactions costs are
positive but small. (ii) Even if nations were certain that abatement costs are low, an agreement
would have to contain at least several members in order for them to benefit from abatement.9

In addition, there is a non-negligible difference between high and low abatement costs. These
conditions are sufficient for Assumption 2. (iii) Finally, the probability of high abatement costs
is moderate or small (e.g., less than 0.5) so that Assumption 3 is satisfied.

Assumption 2 implies that if, at the participation stage, a signatory considers defecting from
a candidate NE on F2 below point e (i.e., for an IEA larger than θ̄), then the signatory knows
that the resulting outcome at the abatement stage will be a type 1 NE rather than a type 0 NE.
Assumption 3 insures that for any candidate NE on F̃ consisting of fewer than θ̄ members, no
non-signatory wants to defect by joining the IEA. (If it were to join the IEA, the membership

9That is, θL must be “moderately large”, e.g. θL ≥ 4. Given our normalization, θL = 4 means that in the low
cost state, at least four nations would have to abate in order for their joint welfare to be higher than if they did not
abate. As is clear from the lemmas below, this sufficient condition is very strong; the horizontal distance between
the two graphs, at point b, can be greater than 2 even if this condition does not hold.
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would still be lower than Mb, the critical value below which a nation prefers being a non-
signatory to an IEA that results in a type 1 NE in the abatement stage, rather than a signatory to
an IEA that results in a type 2 equilibrium.)

We first show that Mb > MN . By inspection of Figure 2, this inequality implies that point
b lies above the graph of F0.

Lemma 2 Mb > MN .

Proof. Since F0 − F1 is a decreasing function of M for M > 1, and F0 − F1 = 0 at MN ,
the lemma is true iff F0 − F1 < 0 at Mb. We have

F0 − F1 =
−M −MθH +MθL + φθH +M2 −MφθL

(φ− 1) (M − φ)
.

This expression is negative iff the numerator is positive. Evaluating the numerator at M =Mb

and simplifying yields

1

p2
(θL − 1)

£
p+ θL + pθH − pθL − pφθL − p2φθH + p2φθL − 1

¤
,

so we require the term in square brackets to be positive. This term equals

(1− φp) θ̄ − (1− p) = (1− p+ p− φp) θ̄ − (1− p)

= (1− p)
¡
θ̄ − 1

¢
+ p (1− φ) θ̄ > 0.

Assumption (3) states that the intersection of F̃ and F0, denoted point a, lies above the
curve F2. This assumption is equivalent to

φ− p

1− p
>

θL
θH

. (14)

This inequality holds if the transaction cost is small (φ close to 1) and/or if there is a substantial
cost difference in the two states.

Our characterization of the NE of the participation game requires that the horizontal distance
between F2 and F1 be greater than 2 for relevant values of F . We provide the necessary and
sufficient condition for Assumption (4), and then show that this condition implies that the two
graphs are “far enough apart”.

We begin with the following

Lemma 3 The horizontal distance between F2 and F1 is a decreasing function of F .

Proof. Using the definitions in section 2.2, we have F2 −M −1+θH
−M+φ

, so the inverse of this
function is M = −F2 φ

−F2−1+θH . Also, F1 = − (−1 + θL)
M

−M+φ
, so the inverse of this function
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is M = −F1 φ
−F1−1+θL . The horizontal distance between the two functions is

D ≡ Fφ
−θL + θH

(−F − 1 + θH) (−F − 1 + θL)
.

The derivative of D is

dD

dF
= −φ (−θL + θH)

F 2 − 1 + θL + θH − θHθL

(F + 1− θH)
2 (F + 1− θL)

2

The sign of this derivative equals the negative of the sign of F 2 − 1 + θL + θH − θHθL, so we
need to show that this expression is positive. Use the fact that F > θH−1, which implies that it
is sufficient to show that (θH − 1)2+θL−1 > θH (θL − 1), or (θH − 1)2 > (θH − 1) (θL − 1),
or (θH − 1) > (θL − 1). This inequality is true because θH > θL.

To state the next result we use the following definitions:

α ≡ (θL − θH)
3 < 0

β ≡ −2 (θL − 1.5) (θL − θH)
2

γ ≡
¡
3θL − θ2L

¢
θH +

¡
θ3L − 3θ2L + 2θL − 2

¢
.

(15)

The next lemma shows that Assumption (4) is equivalent to the following inequality:

R ≡ αp2 + βp+ γ < 0. (16)

Lemma 4 (i) F−12 (Fe)− F−11 (Fe)− 2 > 0 ⇐⇒ R < 0. (ii) A sufficient condition for R < 0

(when p ≥ 0) is that β < 0 and γ < 0. Both of these inequalities are satisfied if

θL > 3 and θH > θL +
2 (θL − 1)
θL(θL − 3)

. (17)

Proof. (Part i) Using the definition of D we have

D − 2 = − (4F − 2θL − 2θH − 2FθL − 2FθH + 2θLθH + 2F
2 + FθLφ− FθHφ+ 2)

(F − θL + 1) (F − θH + 1)
.

The denominator of this expression is positive, so D > 2 iff the numerator is positive. In
view of Lemma (3), this inequality requires that the numerator is positive evaluated at F =

−Me
−1+θH
−Me+φ

(where Me = θ̄). Evaluating the numerator at this point and simplifying gives the
expression

−φ K¡
−θ̄ + φ

¢2 , with K ≡
¡
2(θL − 1) + θ̄(θH − θL)

¢
φ+ θ̄

¡
θ̄ − 2

¢
(θL − θH) .

Since − φ

(−θ̄+φ)
2 < 0 we need to show that K < 0. Note that K is an increasing function of φ.

Therefore we need to establish that K evaluated at φ = 1 is negative. Denote this value as L:

L =
¡
2(θL − 1) + θ̄(θH − θL)

¢
φ+ θ̄

¡
θ̄ − 2

¢
(θL − θH) .
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Figure 4: The graph of θL + 2(θL−1)
θL(θL−3)

We write this expression as a function of p using θ̄ = pθH + (1− p)θL, using the definitions
in equation (15), to obtain the expression R given in equation (16). To establish part (ii) note
that R is concave in p, and at p = 0, R is decreasing if θL > 1.5 and R = γ. Therefore, a
sufficient condition for R < 0 for p ≥ 0 is θL > 1.5 and γ < 0. Suppose that θL > 3. Then
γ < 0 if and only if

θH > θL +
2 (θL − 1)
θL (θL − 3)

.

Figure (4) shows the graph of θL + 2(θL−1)
θL(θL−3) and the (dashed) line where θH = θL. For

θL > 4, R < 0 for all p and for nearly all θH > θL. Given our normalization, θL = 4 means
that in the low cost state, at least four nations would have to abate in order for their joint welfare
to be higher than if they did not abate.

The following corollary gives a necessary and sufficient condition for the horizontal distance
between F2 and F1 to be greater than 2 for values of F less than Fe.

Corollary 1 F−12 (F )− F−11 (F )− 2 > 0 for F ∈ (θH − 1, Fe) for all 0 < φ < 1 if and only if
R < 0.

Proof. The proof is immediate from the previous two lemmas.
We now formally state and prove the characterization of the NE to the participation game.10

10If nations could costlessly disband the IEA, there would be additional NE to the participation game. For
example, for F ≥ F2(θ̄), M = θ̄ is a NE. For F between Fc and the horizontal coordinate of the intersection
between F̃ and F2, F̃−1(F ) is a NE, leading to a type 1 equilibirum in the abatment stage.
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Proposition 4 We adopt Assumptions (3), (4), and (5). The IEA uses an escape clause with
fine F that is taken as given at the participation stage.
(i) For N ≥ F−12 (Fb), and for F ∈ [F2(N), Fb] there exists a NE to the participation game
consisting of h(F−12 (F )) members. The resulting abatement-stage NE is type 2.
(ii) The smallest IEA leading to a type 2 abatement-stage NE consists of Mb members, induced
by fine Fb.
(iii) For N ≥ F−11 (Fc), and for F ∈

£
F−11 (N), Fc

¤
there exists a NE to the participation game

consisting of h(F−11 (F )) members. This NE induces a type 1 equilibrium in the abatement
stage.
(iv) DefineFk to satisfy h

³
F̃−1 (Fk)

´
−F−11 (Fk) = 1; defineFq = sup

n
F | h

³
F̃−1 (F )

´
≤ F−12 (F )

o
;

finally define Fg = min {Fk, Fq}. It must be case that Fc < Fg ≤ Fd. For Fc ≤ F ≤ Fg there
is a NE with h

³
F̃−1(F )

´
members. This NE induces a type 1 equilibrium in the abatement

stage. For F > Fg there is no NE to the participation game that induces a type 1 equilibrium
in the abatement game.
(v) If F can be chosen at stage 0, it is feasible to induce a type 2 equilibrium at the abatement
stage iff N ≥Mb. If it is feasible to induce a type 2 equilibrium, it is optimal to do so.

Proof. (Proposition 2) We begin by explaining the meaning of Mb =
θ̄−1+p

p
and F2 (Mb),

the coordinates of point b in Figure 2. At these values, a signatory in a type 2 equilibrium has
the same payoff that it would obtain if it left the IEA and became a non-signatory in a type 1
IEA:

πs,2(M)

⎧⎪⎪⎨⎪⎪⎩
<

=

>

⎫⎪⎪⎬⎪⎪⎭πn,1(M − 1)

⇐⇒

M

⎧⎪⎪⎨⎪⎪⎩
>

=

<

⎫⎪⎪⎬⎪⎪⎭Mb

(18)

For points on the curve F2 below point b, a signatory in a type 2 equilibrium would not want
to leave the IEA if that defection induced a type 1 equilibrium; for points on F2 above b, a
signatory would want to defect if the result was a type 1 equilibrium.

Since Mb > θ̄, F2 (Mb) < Fe; therefore, by Corollary (1) the horizontal distance between
F2 and F1 is greater than 2:

F−12 (F )− F−11 (F )− 2 > 0 for F ∈ (θH − 1, F2 (Mb)] . (19)

We now prove the claims in Proposition 2.
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(i) For F ∈
£
F−12 (N), Fb

¤
consider the candidate equilibrium consisting of h(F−12 (F ))

members. If a member of the IEA defects, the resulting equilibrium to the abatement game is
type 1, in view of Corollary 1. The defector’s payoff is lower, in view of equation (18). No
non-signatory wants to defect from the candidate by joining the IEA, because πs,2(M + 1) <

πn,2(M). Therefore, the candidate is a NE.
(ii) For F > Fb we need to consider two possibilities. Consider first F ∈ (Fb, Fe). Clearly

M > h
¡
F−12 (F )

¢
is not an equilibrium: a member would want to defect by leaving the IEA,

since the resulting IEA would still induce a type 2 equilibrium in the abatement game. Similarly,
M = h

¡
F−12 (F )

¢
is not an equilibrium: by equation (18), a member would want to leave the

IEA, inducing a type 1 equilibrium in the abatement game. Next, consider F ≥ Fe. Over
this range of F , it is easy to see that the only candidate equilibrium is h

¡
θ̄
¢
. However, this

cannot be an equilibrium, since defection by a member would induce either a type 1 or a type
2 equilibrium in the abatement game (depending on the magnitude of F ). By equation (18),
a signatory who leaves the IEA (becoming a non-signatory) has a higher payoff than at the
candidate equilibrium.

(iii) For F ∈
£
F−11 (N), Fc

¤
, consider a candidate NE at M = h(F−11 ). Signatories’

payoffs are positive at h(F1(M)) because this point is to the right of F̃ (except at the endpoint
Fc where the payoff is 0). If any signatory were to defect by leaving the IEA, the resulting
NE in the abatement game is type 0, where a non-signatory obtains a 0 payoff. Therefore, no
signatory wants to defect.

We now need to show that non-signatories do not want to defect from the candidate equi-
librium by joining the IEA. Since h

¡
F−11 (F )

¢
+ 1 < F−11 (F ) + 2 < F−12 (F ) by inequality

(19)) the defection induces a type 1 equilibrium in the abatement stage. The defector’s payoff
is lower at the new point than at the candidate, because πs,1(M + 1;F ) < πn,1(M).

(iv) First note that if F > Fq the only candidate NE to the participation game that could
result in a type 1 equilibrium in the abatement game, isM = h

³
F̃−1 (F )

´
, since smaller values

would result in negative payoffs for signatories, and larger values would not be immune from
defection by signatories. However for F > Fq the candidate M = h

³
F̃−1 (F )

´
results in a

type 2 equilibrium in the abatement stage. Therefore, NE to the participation game that lead to
type 1 equilibria must have fines F ≤ Fq.

Next consider candidates M = h
³
F̃−1 (F )

´
for F > Fk. A signatory would want to

defect from this candidate, since the resulting abatement stage equilibrium would still be type
1. Therefore, NE to the participation game that lead to type 1 equilibria must have fines
F ≤ Fk.

Thus, for F ≤ Fg the candidate M = h
³
F̃−1 (F )

´
is consistent, in that it leads to a type

1 equilibrium, and it is immune from defection by signatories. Therefore we need only show
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that this candidate is immune from defection by a non-signatory. By virtue of Assumption (5),
if a non-signatory defects by joining the IEA, the resulting abatement stage equilibrium is still
type 1. Thus, the defecting non-signatory has a lower payoff. Therefore, the candidate is a NE
to the participation game.

(v) When all countries are in the IEA, aggregate welfare equals the joint welfare of IEA
members. Define MN to satisfy F0(MN) = F1(MN). On F0, signatories’ payoffs are the
same in a type 1 or a type 2 equilibrium consisting of all nations. Therefore, at MN :

πs,2(MN) = πs,1(MN ;F
−1
1 (MN)).

Recall that πs,2(M) is independent of F . For M < MN the point
¡
M ;F−11 (M)

¢
lies below

the line F0, so at that point πs,2(M) < πs,1(M ;F
−1
1 (M)). Therefore, for M < MN aggregate

welfare is higher in a type 1 equilibrium consisting of all nations, than in a type 2 equilibrium
consisting of all nations. The argument is reversed when M > MN .

By part (ii) above, the smallest IEA that results in a type 2 NE in the abatement stage
consists of Mb members. By Lemma (2), this value is greater than MN , the value above which
it is optimal to induce a type 2 equilibrium.

B Farsighted stable sets: model details

In this section, we provide the model details for Section 4.

B.1 Circular decisions under farsightedness

Consider a Nash equilibrium IEA of the participation game identified in Section 2, and suppose
the IEA’s size is M . Being a NE implies that πs(M ;F ) ≥ πn(M − 1, F ). Suppose a signatory,
say nation i, withdraws from the IEA, and consider the reaction of a non-signatory, say nation
j. Since πs(M ;F ) ≥ πn(M − 1, F ), nation j has incentive to join the IEA, and if it joins,
i’s payoff becomes πn(M ;F ) > πs(M ;F ). Anticipating j’s reaction, i thus has incentive to
withdraw: it can become a free-rider since j will join in its place. But this argument can go on
forever, since every signatory has incentive to withdraw in order to become a free-rider.

B.2 Proof of the propositions

Proposition 2. (Proof.) To demonstrate “only if” we merely show that if any one of the
conditions are note satisfied, then the setM(M0) is either not internally or not externally stable.
This claim is straightforward, and we do not provide the details. The proof demonstrates the
“if” part of the proposition, following the outline given in the paragraph below the statement
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of the Proposition. Step 1 uses conditions (i) and (ii) to establish that M(M0) is an internally
stable set, and Step 2 uses condition (iii) to confirm its external stability.

Step 1 (Internal Stability): Payoffs are monotonic in M . In addition, in order to move from
an IEA of size M j to an IEA of size M j+s with s > 1 it is necessary to “move through” an
IEA of size M j+1. Therefore, the fact that M j+1 does not indirectly dominate M j implies that
larger IEAs also do not indirectly dominate M j . Similarly, the fact that M j does not indirectly
dominate M j+1 implies that smaller IEAs also do not dominate M j+1. These facts allow us
to demonstrate internal stability by showing that neither of the IEAs M j nor M j+1 indirectly
dominate each other.

No element ofM(M0) can indirectly dominate a larger element of the set. For example to
move from M j+1 to M j , one signatory has to begin the process by leaving the IEA. The “first
deviator’s” payoff is no higher (except for knife-edge cases, strictly lower) when it becomes a
non-signatory at M j instead of remaining a signatory at M j+1. (For the knife-edge case, recall
our assumption that in the case of a tie, a nation prefers to abate.)

To complete the argument for internal stability, we need only show that no element ofM(M0)

can indirectly dominate a smaller element of the set. We do this by showing that M j+1 does
not indirectly dominate M j .

First consider the case where M j and M j+1 are both positive and both of the same type.
Recall from Lemma (1(ii)) that in order for M j ¿ M j+1, it must be true that πn(m) ≤
πs(M

j+1) for all m =M j,M j + 1, . . . ,M j+1 − 1. Thus, for this step, all we need to establish
is that this inequality does not hold for some m. We establish this inequality for the case of
m =M j+1 − 1.

Recall that πs,i(1) < πn,i(0), i = 0, 1, 2; a nation never wants to be the sole member of an
IEA. Equations (7) - (11) imply that ∂πs(M, i)/∂M = ∂πn(M, i)/∂M . The two conditions
above imply that, if IEAs of sizes M and M − 1 are of the same type,

πs,i(M) < πn,i(M − 1), or M ¿M − 1, M = 1, . . . , N. (20)

If M j and M j+1 are of the same type, M j+1 − 1 and M j are of the same type as well,
implying that M j+1 ¿M j+1 − 1.

Next consider the case where M j is a type 1 IEA and M j+1 is a type 2 IEA. (We know
that there can be no type 1 IEAs larger than the smallest type 2 IEA because the curve F2 lies
above F1.) By condition (ii), M j+1 < Mb. By the definition of Mb, a nation prefers to be a
non-signatory to an IEA of size M j+1 − 1 rather than a signatory to an IEA of size M j+1, so
again M j+1 ¿M j+1 − 1.

Finally, consider the case where M0 = 0, so that πn (M0) = 0. If it were the case that the
IEA with M2 − 1 were a type 0 equilibrium, then a nonsignatory would want to join that IEA,
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because joining increases its payoff from 0 to a non-negative level. In that case, M1 indirectly
dominates M2, violating internal stability. However, if the IEAs with M2− 1 and M2 are both
the same type, M2 ¿ M2 − 1. The “last signatory” does not want to join, so M2 does not
indirectly dominate M1. Also, if M2 is a type 2 IEA and M j − 1 is type 1, then by virtue of
condition (ii) we again have M2 ¿M2 − 1.

Step 2: (External stability) We need to show that each element in N in the complement
of M(M0) (i.e. N/M(M0)) is indirectly dominated by some element of M(M0). The set
N/M(M0) is the union of two sets, IEAs that are smaller than, or larger than M0. Denote
these as A = {M |M < M0,M ∈ N/M(M0)} and B = {M |M > M0,M ∈ N/M(M0)}.

Consider set A. When M0 = 0, A = ∅, so for this subset we need only consider M0 > 0.
In this case, condition (iii) states that IEAs smaller than M0 are indirectly dominated by the
IEA of size M0.

Now consider set B. We show that M j indirectly dominates IEAs with sizes between M j

and M j+1 for j + 1 ≤ k (Recall that k is the index of the largest element of M(M0).) That
is, M ¿ M j for all M = M j + 1, . . . ,M j+1 − 1. In addition, for j = k, M ¿ M j for all
M =M j + 1, . . . , N . We provide details only for the case of j < k; the proof is similar when
j = k.

From (13), we know πs(m
j+1) = πn(M

j). We need to consider two cases: where M j and
M j+1 are the same type of IEA, and were they are different types. Suppose first that IEAs of
sizes M j and M j+1 are of the same type i, i.e., πs,i(mj+1) = πn,i(M

j). Since πs,i(·) is strictly
increasing in M , the equation means that πs,i(M j+1−1) < πn,i(M

j), which in turn implies that
πs,i(M) < πn,i(M

j), for all M =M j +1, . . . ,M j+1− 1. Since all these IEAs are of the same
type i, we know πs(M) < πn(M

j) and thus M ¿M j for all M =M j + 1, . . . ,M j+1 − 1.
Suppose instead that IEAs of sizes M j and M j+1 are of different types. Here there are two

possibilities. Either (i) M j = 0 and M j+1 is a type 1 or type 2 IEA, or (ii) M j+1 is a type 2
and and M j is a type 1 IEA. (As explained in the text, there can be no positive elements of the
stable set that are type 0.)

First consider the possibility M j = 0, which occurs when j = 1 and M0 = 0. In this case,
πs(M) < 0 for 1 ≤M < M2, soM ¿M j = 0 for allM = 1, 2, . . . ,M j+1−1. Next consider
the case where M j+1 is a type 2 and and M j is a type 1 IEA. Let M 0 ≤M j+1 be such that the
IEA of size M 0 − 1 is of type 1 but that of M 0 is of type 2. For IEAs between M 0 and M j+1,
Because πs,2(M j − 1) < πn(M

j), we know πs,2(M) < πn(M
j) for all M ∈ [M 0,M j+1 − 1].

That is, M ¿ M j for all M ∈ [M 0,M j+1 − 1]. For IEAs between M j and M 0 − 1 we know
from (13) that πs,1(M 0 − 1) < πs(M

j); if this inequality did not hold, M 0 − 1 instead of M j+1

would have been the next element in M(M0) after M j . Again, since πs,1(·) is increasing,
we know πs,1(M) < πs(M

j) for all M ∈ [M j + 1,M 0 − 1]. Therefore, M ¿ M j for all
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M ∈ [M j + 1,M 0 − 1].

Confirmation of Example 1
(i) If F < F1(N), the IEA is of type 0 and its signatory earns negative payoffs. Signatories

to an IEA of any positive size have incentive to withdraw, i.e., M ¿ 0 for all M > 0. In this
case, the UFSS has only one element M = 0.

(ii) Let M 0 = h(F−11 (F )). Recall that the IEA of size M 0 is a Nash equilibrium, i.e.,
πs,1(M

0) ≥ πn,1(M
0 − 1), implying that πs,1(M 0) ≥ πn,1(M) for all M ≤ M 0 − 1 or M ¿

M 0. Since IEAs of size M ≥ M 0 are of the same type 1, Corollary ?? implies that M 0 is
not indirectly dominated by any M > M 0. Thus, M 0 is the smallest farsighted stable set, or
M0 =M 0.

(iii) Suppose F ∈ [F2(N), Fb). The proof is the same as the case of (ii) since the IEA of
size M 0 = h(F−12 (F )) is also a Nash equilibrium, and IEAs of sizes M ≥ M 0 are of the same
type.

(iv) Suppose F ∈ [Fb, Fd). To show that M0 = 0, we only need to show that M0 is not
indirectly dominated by any M > 0. But we know from Figure 3 (and from Assumption 5)
that there are two possible switches of IEA types: from type 0 to type 1 along curve F1, which
is to the left of curve F̃ , and from type 1 to type 2 along curve F2, which is to the left of Mb.
Thus, the conditions in Proposition 2(ii) are satisfied, and M0 = 0 is not indirectly dominated
by M > 0 from Corollary 2

(v) Suppose F ≥ Fd. The proof is similar to case (iv): M0 = 0 since the conditions in
Proposition 2(ii) are satisfied for all three possible switches of IEA types.

Proposition 3. (Proof) Consider first the set Mi(M0) defined in Definition 3, with the
largest element being Mk

i . From (13), we know

πs,i(M
k
i ) ≥ πn,i(M

k−1
i ) > πn,i(M

k−2
i ) > . . . > πn,i(M

1
i ). (21)

Consequently, at any IEA M j
i , j < k, a group of Mk

i − M j
i non-signatories have incentive

to join the IEA together, and earn πs,i(M
k
i ) instead of πn,i(M j

i ). That is, Mk
i coalitionally

indirectly dominates all other elements in the setMi(M0).
As shown in Proposition ??, the UFSS contains Mi(M0) and possibly other IEAs in the

UFSS with sizes smaller than M0, But from the proposition, we know πs(M0) ≥ πn(M)

for M ∈ UFSS, M < M0. Then from (21), we know πs,i(M
k
i ) > πn(M), and thus Mk

i

coalitionally indirectly dominates M .
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