2015 / 2016 CURRICULUM - COMPUTER ENGINEERING

ENTRY FROM CEGEP

Total credits: 113

First Semester (Fall 2015) 15 credits

- CIVE 281 Analytical Mechanics (3 cr, C - MATH 262 & MATH 263)
- COMP 202 Foundations of Programming (3 cr)
- MATH 262 Intermediate Calculus (3 cr, P - MATH 141 & MATH 153)
- MATH 263 Ord. Differential Eqns. For Engineers (3 cr, C - MATH 262)
- XXXX xxx Humanities & Social Sciences * (3 cr)

Second Semester (Winter 2016) 16 credits

- COMP 250 Introduction to Computer Science (3 cr)
- ECSE 200 Electric Circuits 1 (3 cr, P - PHYS 142 or CEGEP Equivalent; C - MATH 263)
- ECSE 221 Intro. to Computer Engineering (3 cr, P - COMP 202)
- FACC 100 Intro. to the Engineering Profession (1 cr)
- MATH 264 Advanced Calculus for Engineers (3 cr, P - MATH 262; C - MATH 263)
- MATH 270 Applied Linear Algebra (3 cr, P - MATH 263)

Third Semester (Fall 2016) 17 credits

- CCOM 206 Communication in Engineering (3 cr)
- ECSE 210 Electric Circuits 2 (3 cr, P - ECSE 200)
- ECSE 291 Electrical Measurements Lab (2 cr, C - ECSE 210)
- ECSE 321 Intro. to Software Engineering (3 cr, P - COMP 202 or COMP 208)
- ECSE 322 Computer Engineering (3 cr, P - ECSE 211, ECSE 221, and ECSE 291)
- XXXX xxx Humanities & Social Sciences * (3 cr)

Fourth Semester (Winter 2017) 17 credits

- ECSE 306 Fundamentals of Signals & Systems (3 cr, P - ECSE 211 & MATH 263)
- ECSE 323 Digital Systems Design (3 cr, P - COOM 206, ECSE 211, ECSE 221 & ECSE 291)
- ECSE 324 Intro. to Electronics (3 cr, P - ECSE 210)
- MATH 363 Discrete Mathematics (3 cr, P - MATH 263 & MATH 264)
- FACC 300 Engineering Economy (3 cr)

Fifth Semester (Fall 2017) 15 credits

- COMP 251 Algorithms and Data Structures (3 cr, P - COMP 250)
- ECSE 305 Probability & Random Signals 1 (3 cr, P - ECSE 303 or ECSE 306)
- ECSE 353 Electromagnetic Fields & Waves (3 cr, P - MATH 284 & ECSE 212)
- ECSE 414 Intro. to Telecom Networks (3 cr, P - ECSE 304 or ECSE 306 & ECSE 322)
- ECSE 425 Operating Systems (3 cr, P - ECSE 322 or COMP 273)
- XXXX xxx Impact of Technology on Society ** (3 cr)

Sixth Semester (Winter 2018) 18 credits

- ECSE 334 Introduction to Microelectronics (3 cr, P - ECSE 291, ECSE 330 & ECSE 303 or ECSE 306)
- ECSE 426 Microprocessor Systems (3 cr, P - ECSE 323 & COMP 208)
- ECSE 456 ECSE Design Project 1 (3 cr, P - ECSE 211, ECSE 322, ECSE 323 & ECSE 330)
- ECSE 4xx 11 Technical Complementary 1 (3 cr)
- FACC 300 Engineering Economy (3 cr)

Seventh Semester (Fall 2018) 15 credits

- ECSE 457 ECSE Design Project 2 (3 cr, P - ECSE 468)
- ECSE 4xx Lab Complementary (3 cr or 4 cr)
- FACC 400 Engineering Professional Practice (1 cr, P - FACC 200, 60 program credits)
- XXXX xxx t2 Technical Complementary 2 (3 cr)
- XXXX xxx t3 Technical Complementary 3 (3 cr)

Courses shown in boldface above must be passed with a grade "C" or better. A "D" is only acceptable in the courses not in boldface. Also, a grade of "C" is normally required in all prerequisites in order to proceed with the follow-on courses. (Exception: A student who fails a course with a grade of D may take an ECSE course that has it as a prerequisite, provided that the failed course is re-taken at the same time. Students thinking of doing this should meet with a departmental advisor.)

Students with prior programming experience can replace COMP 202 with an additional technical complementary upon receiving permission from the department.

Technical Complementary courses are selected from the list given on the next page.

The Lab Complementary course is normally taken in conjunction with a technical complementary.

* For instructions on selecting valid "Humanities and Social Sciences" courses, see www.mcgill.ca/ece, then: Programs and Courses > Undergraduate > Complementary Studies.

** For instructions on selecting valid "Impact of Technology on Society" courses, see www.mcgill.ca/ece, then: Programs and Courses > Undergraduate > Complementary Studies.

*** "Natural Science Complementary" courses must be chosen from the list below.

This sample curriculum is for students who wish to complete their degree requirements in 7 semesters. Students may, at any time, deviate from this structure. However, it is the student's responsibility to devise a study plan that has no course conflicts or prerequisite/corequisite violations. Academic advisors are available for help with course selection.

Revised 2015-06-04
TECHNICAL AND LAB COMPLEMENTARY COURSES - COMPUTER ENGINEERING PROGRAM

Technical Complementaries (3 courses) 9 credits

Students following the Computer Engineering program must take 3 courses (9 credits) from the following list. It is possible that not all the courses listed will be offered in any given year. Please refer to the up-to-date course assignments before selecting any course. Permission will not be granted to take Technical Complementary courses that are not on this list. ECSE 500 level technical complementaries are restricted to students with a minimum CGPA of 3.0 and B+ or better in the prerequisites.

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Pre-Requisites and Co-Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 424</td>
<td>Artificial Intelligence</td>
<td>(3 cr, P - COMP 206 or ECSE 321, COMP 251, MATH 323 or equiv)</td>
</tr>
<tr>
<td>COMP 557</td>
<td>Fundamentals of Computer Graphics</td>
<td>(3 cr, P - MATH 223, COMP 206 & COMP 251)</td>
</tr>
<tr>
<td>ECSE 404</td>
<td>Control Systems</td>
<td>(3 cr, C - ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 411</td>
<td>Communications Systems 1</td>
<td>(3 cr, P - ECSE 305 & ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>Discrete-Time Signal Processing</td>
<td>(3 cr, P - ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 415</td>
<td>Introduction to Computer Visions</td>
<td>(3 cr, P - ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>Parallel Computing</td>
<td>(3 cr, P - ECSE 427)</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>Embedded Systems</td>
<td>(3 cr, P - ECSE 322 & ECSE 323)</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>Fault Tolerant Computing</td>
<td>(3 cr, P - ECSE 322)</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>Human-Computer Interaction</td>
<td>(3 cr, P - ECSE 322 or COMP 251 and COMP 273)</td>
</tr>
<tr>
<td>ECSE 428</td>
<td>Software Engineering Practice</td>
<td>(3 cr, P - ECSE 321 or COMP 303)</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>Software Validation</td>
<td>(3 cr, P - ECSE 321 or COMP 303)</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>Introduction to VLSI CAD</td>
<td>(3 cr, P - ECSE 323 & ECSE 330)</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>Signal Processing Hardware</td>
<td>(3 cr, P - ECSE 322, ECSE 323 & ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 443</td>
<td>Intro to Numerical Methods in EE</td>
<td>(3 cr, P - ECSE 221, ECSE 330 & ECSE 351 or ECSE 353)</td>
</tr>
<tr>
<td>ECSE 450</td>
<td>Electromagnetic Compatibility</td>
<td>(3 cr, P - ECSE 221, ECSE 334 & ECSE 352 or ECSE 353)</td>
</tr>
<tr>
<td>ECSE 530</td>
<td>Logic Synthesis</td>
<td>(3 cr, P - ECSE 323)</td>
</tr>
<tr>
<td>ECSE 537</td>
<td>Advanced Digital Integrated Circuits</td>
<td>(3 cr, P - ECSE 333)</td>
</tr>
<tr>
<td>ECSE 548</td>
<td>Introduction to VLSI Systems</td>
<td>(3 cr, P - ECSE 323 & ECSE 334)</td>
</tr>
</tbody>
</table>

Laboratory Complementary (one course) 2 credits

Students following the regular Computer Engineering program must take one course (2 credits) from the following list. It is possible that not all the courses listed will be offered in any given year. Please refer to the up-to-date course assignments before selecting any course. Permission will not be granted to take Laboratory Complementary courses that are not on this list.

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Pre-Requisites and Co-Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 434</td>
<td>Microelectronics Laboratory</td>
<td>(2 cr, P - CCOM 206, ECSE 334)</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>Signal Processing Hardware</td>
<td>(3 cr, P - ECSE 322, ECSE 323 & ECSE 304 or ECSE 306)</td>
</tr>
<tr>
<td>ECSE 487</td>
<td>Computer Architecture Laboratory</td>
<td>(2 cr, P - CCOM 206; C - ECSE 425)</td>
</tr>
<tr>
<td>ECSE 489</td>
<td>Telecommunication Network Laboratory</td>
<td>(2 cr, P - CCOM 206; C - ECSE 414 or ECSE 528)</td>
</tr>
<tr>
<td>ECSE 490</td>
<td>Digital Signal Processing Lab</td>
<td>(2 cr, P - ECSE 291 & CCOM 206; C - ECSE 412 or ECSE 512)</td>
</tr>
<tr>
<td>ECSE 491</td>
<td>Communications Systems Lab</td>
<td>(2 cr, P - CCOM 206 & ECSE 291; C - ECSE 411 or ECSE 511)</td>
</tr>
<tr>
<td>ECSE 493</td>
<td>Control & Robotics Lab</td>
<td>(2 cr, P - CCOM 206 & ECSE 291; C - ECSE 404 or ECSE 501)</td>
</tr>
</tbody>
</table>

Revised 2015-06-04
NATURAL SCIENCE COMPLEMENTARY COURSES

The following is the list of approved natural science complementary courses.

ATOC 214, Introduction: Physics of the Atmosphere
(3) (Fall) (3 hours lectures) (Prerequisite: CEGEP Physics) An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.

ATOC 215, Oceans, Weather and Climate
(3) (Winter) (3 hours lectures) (Prerequisite: CEGEP Physics or permission of the instructor) Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.

ATOC 219, Introduction to Atmospheric Chemistry
(3) (Winter) (3 hours lectures) (Prerequisite: CHEM 110 and CHEM 120, and one of MATH 139 or MATH 140 or MATH 150, or a CEGEP DEC in Science, or permission of instructor). An introduction to the basic topics in atmospheric chemistry. The fundamentals of the chemical composition of the atmosphere and its chemical reactions. Selected topics such as smog chamber, acid rain, and ozone hole will be examined.

BIOL 200, Molecular Biology
(3) (Fall) (3 hours lecture, 1 hour optional tutorial) (Prerequisite: BIOL 112 or equivalent.) (Corequisite: CHEM 212 or equivalent) The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

BIOL 215, Introduction to Ecology and Evolution
(3) (Fall) (3 hours lecture) (Prerequisite: BIOL 111) (Restrictions: Not open to students who have taken BIOL 208, BIOL 304 or BIOL 305. Not open to students who have taken ENV 200 and/or ENV 202.) An introduction to the fundamental processes of ecology and evolution that bear upon the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.

CHEM 203, Survey of Physical Chemistry
(3) (Fall) (3 lectures) (Prerequisites: CHEM 110 and CHEM 120 or equivalent.) (Restriction: Intended for students in biological science programs requiring only one course in physical chemistry) (Restriction: Not open to students who have taken or are taking CHEM 204 or CHEM 213) A survey of the principles and methods of physical chemistry with emphasis on the use of biological examples. Topics will include thermodynamics, transport properties, kinetics, molecular structure and interactions, and spectroscopy.

ENVR 200, The Global Environment
(3) (Fall) (Section 001: Dowtown Campus) (Section 051: MacDonald Campus) A systems approach to study the different components of the environment involved in global climate change: the atmosphere, biosphere, hydrosphere, and lithosphere. The interactions among these components. Their role in global climate change. The human dimension to global change.

EPSC 201, Understanding Planet Earth
(3) (Fall or Winter) (3 hours lecture) Earth & Planetary Sciences: Learn about Earth’s origin, its place in the solar system, its internal structure, rocks and minerals, the formation of metal and fossil fuel deposits, and the extinction of dinosaurs. Discover the impact of the volcanic eruptions, earthquakes and mountain chains on Earth’s past, present and future. Explore 125 million-year-old Mount Royal.

EPSC 203, Structural Geology
(3) (Winter) (2 hours lectures, 3 hours laboratory) Primary igneous and sedimentary structures, attitudes of planes and lines, stress and strain, fracturing of rocks, faulting, homogeneous strain, description and classification of folds, foliation and lineation, orthorhaphic and stereographic projections.

EPSC 210, Introductory Mineralogy
(3) (Fall) (2 hours lectures, 3 hours laboratory) Crystal chemistry and identification of the principal rock-forming and ore minerals. Elementary crystallography. Optional 2-day field trip.

ESYS 200, Earth System Processes
(3) (Winter) (3 hours lecture) Complex interactions among the atmosphere, biosphere, geosphere and hydrosphere. Biological, chemical and physical processes within and between each “sphere” that extend over spatial scales ranging from microns to the size of planetary orbits and that span time scales from fractions of a second to billions of years.

MIMM 211, Introductory Microbiology
(3) (Fall) (3 hours lecture) (Corequisite: BIOL 200) A general treatment of microbiology bearing specifically on the biological properties of microorganisms. Emphasis will be on procaryotic cells. Basic principles of microbial genetics are also introduced.

PHYS 214, Introductory Astrophysics
(3) (Fall) (Prerequisite: CEGEP physics or PHYS 102 or PHYS 142.) (Restriction: Not open to students who have taken or are taking PHYS 205 or PHYS 206.) An introduction to astrophysics with emphasis placed on methods of observation and current models. Stellar radiation and detectors, quasars, black holes. Galaxies, large scale structure of the universe, cosmology.

PHYS 224, Physics of Music
(3) (Fall) (3 hours lectures) Restriction: Not open to students who have taken PHYS 225. An introduction to the physics of music. Properties of sound and their perception as pitch, loudness, and timbre. Dissonance, consonance, and musical intervals and tuning. Physics of sound propagation and reflection. Resonance. Acoustic properties of pipes, strings, bars, and membranes, and sound production in wind, string, and percussion instruments. The human voice. Room reverberation and acoustics. Directional characteristics of sound sources.

PHYS 230, Dynamics of Simple Systems
(3) (Fall) (3 hours lecture) (Prerequisite: CEGEP physics.) (Corequisite: MATH 222) (Restriction: Not open to students taking or having passed PHYS 251) Translational motion under Newton’s laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.

PHYS 260, Modern Physics and Relativity
(3) (Fall) (5 hours lectures) (Corequisite: MATH 222) History of special relativity; Lorentz transformations: kinematics and dynamics; transformation of electric and magnetic forces; introduction to topics in modern physics.