Diffusion as Classification

Dror Etzion

Desautels Faculty of Management, McGill University, Montreal, Quebec H3A 1G5, Canada, dror.etzion@mcgill.ca

An overlooked aspect of the diffusion of a practice in a population is the emergence of a de facto classificatory schema, distinguishing between actors that adopt a practice and those that do not. To investigate diffusion as classification, I develop a simulation model that highlights the conditions under which limited diffusion of practices leads to the emergence and entrenchment of classificatory schemas. The model depicts classification as a systemic phenomenon resulting from the interplay of actor-level micromotives and field-level macrobehaviors that jointly drive diffusion. Whereas extant theory on the origin of classificatory schemas emphasizes the role of agency, results from the model suggest that classificatory schemas can emerge somewhat unintentionally as practices diffuse. Moreover, by conceptualizing diffusion as classification, I suggest a means for disentangling the closely related and often conflated concepts of diffusion and institutionalization.

Key words: diffusion; classification; classificatory schemas; institutionalization; signaling; agent-based modeling

History: Published online in Articles in Advance.

Introduction

Understanding the diffusion of practices is a central pursuit for organizational theorists (Strang and Soule 1998, Wejnert 2002). The foundation for this body of research is the analysis of the diffusion of innovations pioneered by Rogers (1995). The now iconic S-shaped diffusion curve depicts a stylized trajectory progressing from innovators and early adopters through majority adopters and culminating with laggards. Empirical support for this curve is plentiful, especially for technological products (Rogers 1995). One outcome implicit in the S-curve is that an innovation eventually diffuses through a population in its entirety. And indeed, the literature on diffusion has focused largely on explaining the rate and processes through which practices are adopted rather than the extent of adoption—tacitly assuming that practice adoption or rejection can be understood as a means of sending a signal, or conveying information, to external constituents. Jonsson (2009) depicted such an occurrence in the Swedish financial industry, in which some fund managers decided to establish socially responsible investment (SRI) funds. Other fund managers rejected this innovation for fear that clients would apply a deviance discount to firms that offered these instruments. Even though SRI funds began diffusing through the industry, by refraining from imitation, certain fund managers classified themselves as unswayed by the encroachment of these new, extraneous professional norms. Similarly, yet in a vastly different setting, Negro et al. (2011) tracked the diffusion of modern vinification techniques through the Barolo/Barbaresco district of Italy. These practices were adopted by producers pursuing consistency in their product offerings but were rejected by traditionalist winemakers intent on adhering to the region’s distinctiveness and an emphasis on terroir.

Several aspects common to these two cases are noteworthy and are at the heart of the issues examined in this article. First, they demonstrate how limited diffusion yields de facto classificatory schemas, enabling differentiation of organizations based on a criterion that is salient for audiences—namely, investing principles in the former example and wine characteristics in the latter. Second, the cases suggest that classificatory schemas distinguishing between adopters and nonadopters can be durable—as opposed to transient—if practice adoption remains limited to a subset of the population indefinitely,
rather than progressing to full diffusion or dissipating through abandonment. Third, the cases demonstrate that classificatory schemas are not always initiated exogenously by market mediators and may in fact emerge endogenously as organizations adopt or reject practices that are diffusing through a population.

Understanding diffusion as classification provides a complementary lens through which to examine processes of institutionalization. In the common view of diffusion as institutionalization, analytical scrutiny centers on the adoption decision and its causal predictors (Boxenbaum and Jonsson 2008). In this view, institutionalization coincides with full diffusion and ubiquity as an entire population succumbs to isomorphic pressures. Diffusion as classification, in contrast, directs analytical attention toward the classificatory schema as a socially constructed, population-level phenomenon. Rather than focusing on the individual adoption or rejection decision, it examines when and how classificatory schemas emerge and become entrenched.

Of course, not all instances of limited diffusion can or should be attributed to classification. In this article, I therefore focus on delineating the antecedents, processes, and conditions through which limited diffusion engenders classificatory schemas. I develop a model that depicts classification as an emergent, systemic phenomenon resulting from the interplay of actor-level “micromotives” and field-level “macrobehaviors” that drive diffusion (Schelling 1978, Zucker 1977). Its recursive nature emphasizes the role of actors in shaping field-level expectations that subsequently affect the adoption decisions of others. The model demonstrates how categories can emerge and become entrenched in a gradual, endogenous manner, rather than through deliberate action or exogenous forces. Ultimately, the model suggests that diffusion can in some instances promote, yet in others inhibit, the emergence and entrenchment of classificatory schemas.

Linking Classification and Diffusion

Classification pervades organizational settings because it facilitates comparability and commensuration. By condensing data and reducing information loads, classification is an immensely useful cognitive mechanism that simplifies and accelerates both decision making and action (Dutton and Jackson 1987, Powell and Colyvas 2008). As such, it is central to the functioning of not only public administration (Bowker and Star 1999, Mohr 1994) and the nation state (Porter 1995, Starr 1992) but also commercial settings as diverse as gastronomy (Rao et al. 2005), financial markets (Lounsbury and Rao 2004, Zuckerman 1999), and cinema (Waguespack and Sorenson 2011, Zuckerman et al. 2003).

Although categorization and classification² are ubiquitous, the specific classes and categories in use at a given point in time are often transient (Douglas 1986, Lounsbury and Rao 2004). Examples of category emergence abound, including hitherto uncategorized medical conditions (Foucault 2006, Hacking 2006), the establishment of “new” races and ethnicities (Robbin 1999), and the rise of food classified as organic (Lee 2009). Often, research on the emergence and entrenchment of classificatory schemas ascribes an important role to agency. Self-interested actors such as critics, analysts, and intermediaries in “mediated markets” (Zuckerman 1999, p. 1400) have an important stake in creating and cultivating classificatory schemas and subsequently classifying actors within them (Fleischer 2009, Zuckerman 2000). If successful, these schemas can become entrenched, occasionally becoming veritable institutions in their own right (e.g., the Michelin Red Guide for hotels and restaurants and the Fortune 500 list).

But whereas some classificatory schemas are devised and managed by market intermediaries, others hinge on classificatory choices made by the actors themselves. For example, a university diploma classifies individuals into graduates and nongraduates, serving as a signaling device that is used extensively in labor markets (Weiss 1995). A diploma enables “high-quality” job seekers to differentiate themselves from “low-quality” job seekers, and it allows the former to pursue more lucrative employment opportunities, thereby offsetting the costs they invest in university education (Spence 1973). This signal is viable only when some, but not all, individuals in a population decide to attain a diploma, thereby creating a “separating equilibrium” that distinguishes between graduates and nongraduates. Figure 1 depicts the proportion of the U.S. population with high school and university diplomas in the United States in the years 1940–2012. High school diplomas constituted a signal that classified actors “usefully” for employers in the middle of the 20th century. But as high school graduation rates swelled, this classificatory capacity declined.
For signaling theorists, receiving a high school diploma today is an example of a “pooling equilibrium” that cannot function as a classificatory schema because it is obtained by nearly the entire population. In contrast, a university degree, which is currently conferred on roughly 30% of the population, serves as a classificatory schema precisely because it is attained by only a subset of the population. As a consequence, even though individuals pursue higher education for a variety of reasons (Frazis 2002), “college graduate” has become a reified classificatory label in labor markets, with both employers and employees acutely aware of, and acting in accord with, the label’s significance. And through the recurrent adoption and rejection decisions of generations of actors that decide to pursue or forgo attainment of the diploma, this classificatory schema is continuously reconstituted.

Signaling theory thus provides a compelling explanation for how classificatory schemas function once they are in place. Yet it is doubtful that the diploma as a classificatory schema was instituted as a labor market mechanism, or even envisioned as such, when universities were first established by Catholic clergy in Europe in the Middle Ages. Rather, the importance of a university education (or lack thereof) as a signal of employee competency emerged gradually and became entrenched much later, after universities had become a fixture of society. This begs the question, how did the signal originate? Signaling theory is ill-equipped to provide an answer because it is fundamentally “an equilibrium theory with no dynamics” (Bacharach and Gambetta 2001, p. 168) and therefore cannot shed light on how classificatory schemas emerge, change over time, or fall into disuse. Moreover, signaling theory, similar to other economically grounded theories, is predicated on independent, rational actors. But large numbers of independent, rational actors are unlikely to form a consensus around a specific action that all will agree serves as a signal (Holm 1995, Schelling 1957). This implies that universally accepted classificatory schemas, perhaps unlike other economic institutions (North 1991) are virtually impossible to design ex ante or put in place purposefully. Indeed, as noted by Saddaby (2010, p. 16), we do not yet understand “the process by which categories originate and become reified.” How, then, might classificatory schemas emerge?

Limited Diffusion and Classification

Diffusion is a particularly mature arena of research, yet relatively few studies have examined the extent of diffusion (Abrahamson and Rosenkopf 1997). In fact, researchers studying diffusion focus primarily on widely diffused practices, paying scant attention to processes in which diffusion plateaus or discontinues (Rogers 1995). This emphasis on full diffusion has been intertwined with theoretical interest in processes of institutional isomorphism, wherein organizations become increasingly similar over time. Full diffusion is often conceptualized as a manifestation of isomorphism, a process of homogenization through which organizations come to increasingly resemble each other (Boxenbaum and Jonsson 2008). Indeed, institutional theorists have emphasized that many diffusing practices are adopted as a result of actors’ perceptions that they must acquiesce to “external assessment criteria” (Meyer and Rowan 1977, p. 350). By adopting certain modus operandi (Baron et al. 1986, Mezias 1990), forms (Fligstein 1985), and structures (Rao and Sivakumar 1999, Tolbert and Zucker 1983), organizations signal their conformity to these external criteria. These demands often become more stringent over time, impelling actors to adopt the same practices as their peers, thereby driving “an inexorable push towards homogenization” (DiMaggio and Powell 1983, p. 148), ultimately resulting in full diffusion. In this manner, full diffusion coincides with homogeneity. Because homogeneity renders differentiation impossible, organizational isomorphism is essentially an account of the demise of classificatory capacity. Put differently, in a homogeneous population, classification is precluded.

Whereas influential statements have emphasized the high degree of homogeneity resulting from institutionalization processes (Baron et al. 1986, Tolbert and Zucker 1983), recent theorizing has advocated a more nuanced view. Lounsbury (2007) and Schneiberg (2007) showed that institutionalization does not always lead to full diffusion and complete isomorphism by demonstrating that distinct practices and organizational forms often thrive concurrently. Colyvas and Jonsson (2011) emphasized the conceptual difference between diffusion and institutionalization, noting that institutionalization can lead to practices that are acceptable, yet not commonplace. Others have highlighted the importance of research on limited diffusion, both to mitigate the proadoption bias in empirical research (Denrell and Kovács 2008) and to comprehend why beneficial innovations diffuse more slowly than expected (Rogers 1995).

Regardless of why some practices do not diffuse fully, when populations of adopters and nonadopters coexist in an organizational environment, classification becomes possible, based on the decision to adopt or reject. To illustrate, Figure 2 depicts the classificatory ramifications of two stylized diffusion trajectories. In Figure 2(a), much like the diffusion trajectory of college diplomas depicted in Figure 1, adoption stabilizes at 40% of the population, yielding a classificatory schema that distinguishes between adopters and nonadopters. In Figure 2(b), a practice diffuses fully within a population, echoing the trajectory of the diffusion of high school diplomas depicted in Figure 1. Initially, classification is possible, but as time passes and adoption culminates, the resultant isomorphism precludes classification. When the population in its entirety has adopted a practice, that practice can no longer serve as a means of
In addition to this common view of categories, however, cognitive psychologists have developed other views of how categories originate and shape perception (Murphy 2004). One such view emphasizes categories that are goal based or ad hoc (Barsalou 2010), developed by audiences specifically to aid decision making. Prior intention is a prerequisite for the emergence of ad hoc categories; without a specific goal or intent, such categories do not come into existence (Barsalou 1983). Furthermore, ad hoc categories do not implant ideal, prototypical objects in actors’ memory that subsequently serve as classificatory prototypes. Rather, these categories group together potentially diverse objects that may have few shared characteristics except for their relevance to the specific goal being pursued (Barsalou 1991). An example of an ad hoc category is “things to extract from a burning house,” which can include objects such as a wallet, photo album, and cat. Note that these items share very few attributes—beyond the fact that they are worthy of salvage—making ad hoc categories difficult to reconcile with the prototype view.

In organizational settings, audiences are likely to develop goal-based or ad hoc categories for decision making in domains such as purchasing, investing, or boycotting as part of the process of identifying producers with whom to engage (Durand and Paolella 2012). In these contexts, audience members do not necessarily prepossess an image of a prototypical organization with which they seek to transact. Rather, they begin by defining a goal (e.g., purchasing, investing, or boycotting, given a set of constraints) and then scan producers to categorize them in a manner conducive to goal attainment. For example, for the purpose of investing, audiences might be interested in distinctions among firms based on their use of incentive programs for executive compensation (Westphal et al. 1997). Or, for the purpose of purchasing, audiences might be interested in distinctions among firms based on their utilization of an environmental management standard (King et al. 2005). Adoption or rejection of a salient practice is particularly conducive to goal-based categorization, because an adoption or rejection decision is inherently dichotomous, making it straightforward to distinguish between two subsets of a population along a dimension of interest.

Entrenchment of Classificatory Schemas

At the level of the individual, if ad hoc categories are accessed frequently, they become well established in memory (Barsalou 1983, 2010). Analogously, in organizations, ad hoc categories that proved useful for prior goal attainment are likely to be accessed again if a similar or identical context reappears. Similar to other decision-making processes, when goal-based decisions recur frequently, they can become routinized (Cyert and March 1963), gradually undergoing a process of formalization, which codifies and thereby perpetuates interpretation, eventually yielding classificatory labels (Dutton

Figure 2 Diffusion Trajectories

Panel (a) depicts limited diffusion and the emergence of a classificatory schema. Panel (b) depicts full diffusion, precluding classification.

differentiating between members. The extent of diffusion therefore either engenders or precludes the emergence of classificatory schemas.

Emergence of Classificatory Schemas

The classification and categorization literature that has risen to prominence in organizational research in the past two decades (for overviews, see Hannan 2010, Hannan et al. 2007) is underpinned by work in cognitive psychology that examines how individuals classify. More specifically, it is grounded on the “common” or “prototype” view of categories (Mervis and Rosch 1981, Rosch and Mervis 1975). According to this view, individuals have in mind preexisting prototypes of objects that serve as yardsticks to which other objects are compared. Categorization occurs as individuals assess the similarity or dissimilarity of a given object to the prototype for that category. Common categories are relatively stable and are unidirectional, meaning that audiences impose them on producers. By nature, they are disciplinary, meaning that organizations that deviate from the prototype are penalized by audiences (Zuckerman 1999, 2000).
and actor characteristics or the withdrawal of valuable resources pursuant to an adoption decision.

In fact, although pressures to adopt a practice may be powerful, actors will weigh the adoption decision carefully, especially if adoption necessitates significant effort (Rao et al. 2001). Such a decision incorporates several elements. First, the potential adopter must be aware that a practice is diffusing. Second, the potential adopter must have some motivation to adopt, whether by perceiving a benefit of adopting, a penalty of not adopting, or both. And third, a cost is involved, reflecting the degree to which the practice is aligned with the actor’s competencies. These three components of decision making are explored below.

Awareness. A central stream in diffusion research has examined the social structure that underlies adoption decisions and the communication channels through which information about new practices flows (Strang and Soule 1998). Actors can become aware of new practices through interorganizational networks (Davis 1991), geographic proximity (Davis and Greve 1997), media coverage (Abrahamson and Eisenman 2008), or influential trendsetters (Abrahamson and Fairchild 1999). Markets can also provide feedback on the success of practice adoption simply by revealing how prior adopters flourish or perish (Lee and Pennings 2002, Terlaak and Gong 2008). The underlying insight is that practice adoption trends are known within a population and that awareness of a new practice increases as more referent peers adopt (Abrahamson and Rosenkopf 1993, Ansari et al. 2010, Rossman 2009).

Motivation. Even after actors become aware of a new practice diffusing, they still face a decision regarding whether they themselves should adopt it. Reasons for adoption are manifold, but in essence, they can be grouped in two overarching concepts: instrumental utility and social benefits of legitimacy (Westphal et al. 1997). The concept of instrumental utility refers to the technical gains from adoption obtained through greater operational efficiency, whereas the concept of social benefits of legitimacy refers to avoidance of sanctions as a result of a lack of conformity.

Costs. Even though new practices might be alluring, actors might hesitate in adopting them. Practice adoption implies disrupting existing routines and investing in the implementation of new ones, and it is clearly not without cost. Moreover, these costs will not necessarily be equal for all actors. New practices might be particularly easy for certain actors to implement yet onerous for others. In fact, the degree of fit between the practice and actor capabilities determines the extent to which these costs are high (Ansari et al. 2010, Rogers 1995) and consequently whether adoption or rejection will be selected (Spence 1973). Actors with a set of capabilities to which the diffusing practice is amenable will incur lower costs.
In short, a decision of whether to adopt or reject a practice begins with an awareness of the practice’s diffusion. Once aware, actors choose to adopt or reject the practice based on their assessment of its costs and benefits. Over time, as diffusion progresses, awareness, costs, and benefits of adoption may vary. In the next section, I develop a formal model that portrays this process and probes its classificatory implications.

Model
Although the concepts of diffusion and classification have been studied thoroughly, each has developed as a distinct research stream. Diffusion research has focused primarily on the macro-level mechanisms through which practices diffuse, whereas research on classification has emphasized the micro-level cognitive aspects of categorization. To develop new theoretical insights linking well-defined yet unrelated domains, simulation via computer modeling is a particularly useful tool (Davis et al. 2007). Agent-based simulation models are singularly well suited for understanding and exploring interactions between micro and macro levels (Macy and Willer 2002, Rousseau 2011).

In these models, a population of agents constantly scans its environment, with each agent acting and reacting to what other agents are doing (Axelrod and Cohen 1999). The output generated by agent-based models captures the cumulative population-level outcomes resulting from actor-level decisions made over time (Holland 1995). Agent-based models used in the social sciences have typically focused on complex population-level processes, such as the emergence of norms (Schelling 1971), participation in collective action (Granovetter 1978), and the diffusion of innovations (Rosenkopf and Abrahamson 1999). In these models, agents respond to social influences and selection pressures, often yielding counterintuitive patterns of differentiation, stratification, and clustering (DiMaggio and Garip 2011, Macy and Willer 2002).

Four characteristics of agent-based models make them attractive for examining diffusion and classification. First, the feedback processes at the core of the models make them particularly suitable for analyzing longitudinal, chronically reproduced (Jepperson 1991) processes such as diffusion and institutionalization. In other words, they explicitly model dynamic “systems of interaction” (Schelling 1978, p. 14) among actors, wherein actor-level micromotives and population-level macrobehaviors are continuously influenced by each other (Mohr and White 2008, Powell and Colyvas 2008, Zucker 1977). Second, agent-based models do not require audiences to directly and explicitly influence actor decision making. They are thus particularly effective for describing settings in which actors typically do not—and cannot—perceive or analytically derive the demands and expectations of individual audience members (Leifer and White 1987). In agent-based models, as in reality, actors make decisions based on knowledge of their own quality and the observable behavior of their competitors (White 1981). Third, the models allow for time to be partitioned into very small increments. As such, they can be more accurate than traditional analyses of diffusion and institutionalization, which parse diffusion trajectories into distinct phases (Fligstein 1985), in some cases distinguishing only between early and late adoption (Palmer et al. 1993, Tolbert and Zucker 1983). And finally, agent-based models support the analysis of heterogeneous actors, with varying attributes on one or more dimensions. This characteristic is important for analyses of diffusion in which rationales for adoption likely differ within the population (Strang and Tuma 1993, Struben and Sterman 2008).

A Formal Model
A model for diffusion as classification describes a population of N producers into which a new practice is introduced. At each time period, the producers in the population can choose to adopt or reject the practice based on awareness, motivation, and costs. In terms of output, the model generates at each time period data on the number, n, and quality, q, of both adopters and non-adopters. The analysis centers on the contingencies that lead to the emergence and entrenchment of a classificatory schema distinguishing between actors that adopt a practice and those that reject it.

More specifically, each member i of the population is characterized by two uncorrelated attributes, quality and perceptivity, both distributed normally and time-invariant. Quality (q) quantifies a producer’s endowment of a certain characteristic of interest for audiences. For example, this characteristic might be the producer’s level of commitment to socially responsible investing or its winemaking philosophy, as highlighted in the introduction. Perceptivity (p) quantifies the capability of a producer to attend to the emergence of new practices. This skill is unrelated to the quality of the producer just described. Some producers may be endowed with a high quality level q_i yet because of their low perceptivity level p_i remain oblivious to the emergence of new practices and incognizant of the benefits that adoption might yield. Other producers may be very skilful at perceiving emergent practices (i.e., have a high p_i), yet their low quality level (i.e., a low q_i) might render adoption less compelling.

The model is run for T periods. At each period t in T, producers that have not yet adopted a practice make an adoption or rejection decision. At time t = 0, all producers are nonadopters; therefore, n_0 = 0. Once producers adopt a practice at time t, they cannot subsequently abandon it (this assumption is relaxed later). Practice adoption is assumed to be enacted at least in part for external audiences, so adoption or rejection decisions are
Once a producer has become aware of a practice, he or she then determines whether adoption would be favorable for her. A producer perceives both costs and benefits in the adoption decision, as captured by three factors: adoption costs \(AC \), adoption benefits \(AB \), and market value \(MV \). For each actor \(i \), the decision to adopt at time \(t \) hinges on whether the following inequality holds:

\[
MV_i + AB_i - AC_i > 0. \tag{2}
\]

I determine each of these three factors in turn below.

Adoption costs are the costs that a producer incurs to adopt a practice. These costs are time-invariant. To capture the concept of fit, implying that costs are greater for producers whose competencies are not aligned with the practice, \(AC_i \) decreases with quality \(q_i \):

\[
AC_i = MAC - q_i, \tag{3}
\]

where \(MAC \) is the maximum adoption cost for all producers in the model.

Market value is a function of audience interest in the practice. Ad hoc classificatory schemas do not emerge if audiences are not interested in classifying producers based on a practice, but if audience members believe the diffusing practice to be meaningful, they attach value to its adoption. This value typically evolves over time as audiences continuously recalibrate the value they assign to transacting with signaling actors (Spence 2002). Typically, early adopters capture greater value from audiences as they differentiate themselves from nonadopting producers. Later in the diffusion process, however, as a greater number of producers adopt the practice, the logic of supply and demand dictates that the premium accruing from audience interest will decline. This decline in premium is pronounced in early stages, whereas in later stages—as the number of adopters \(n \) nears \(N \) and the market becomes increasingly saturated—these changes in premium diminish. \(MV \) is thus modeled as a function of the square root of the number of adopters in the previous period \(n_{t-1} \). As opposed to adoption costs, market value is determined not by a producer’s quality, but rather by a population-level attribute—the number of prior adopters \(n_{t-1} \):

\[
MV_i = AI_{t=1} - \sqrt{n_{t-1}}, \tag{4}
\]

where \(AI_{t=1} \) is a constant that captures audience interest in the practice at time \(t = 1 \). This equation associates a specific value to the rather indeterminate concept of audience interest and specifies \(AI_{t=1} \) as equivalent to the market value of adoption for the first adopter in the population. Furthermore, if audiences are entirely uninterested in the practice \((AI_{t=1} = 0) \), then \(MV_{t-1} = 0 \), meaning that the practice has no market value at all.

Adoption benefits capture the two types of benefits obtained through adoption, instrumental and social. In contrast with adoption costs, which differ between actors, the instrumental benefits that accrue from adoption are essentially equal and time invariant (e.g., lower waste costs as a result of adopting a quality management system). Social benefits, in contrast, are a manifestation of audience interest and vary over time. At early stages, when a new practice such as quality management is introduced into the population of producers, audiences are relatively indifferent to it. In later stages, however, as more and more producers adopt the practice, audience interest intensifies, and audiences become increasingly hesitant to transact with a nonadopting producer for fear that the producer lacks legitimacy. As the number of adopters \(n \) nears \(N \), the social benefit of adoption increases markedly, because late adopters have the most
to gain from joining the ranks of their legitimate counterparts, thus warding off expulsion from the market. Adoption benefits are thus modeled not linearly, but rather as an exponential function of the number of adopters in the previous period \(n_{t-1} \):

\[
AB_t = SB_t + IB = \left(\frac{AI_{t-1}}{C} \right) \times n_{t-1} + IB, \quad (5)
\]

where \(SB \) captures the social benefits of adoption and \(IB \) the instrumental benefits of adoption, \(LI \) is legitimacy intensity, \(C \) is a scaling constant, and \(AI_{t-1} \) is the same as in Equation (4). High \(LI \) implies strong environmental demands for legitimacy resulting in increasing adoption benefits as adoption progresses. Similar to \(MV \), \(AB \) too is a function of the number of prior adopters. Note that at \(t = 1 \), \(AB = IB \), meaning that there are no social benefits in adoption, in line with theoretical expectations.

To recap, in each period \(t \), nonadopters face a two-stage decision process. The first stage involves awareness, and the second stage involves an assessment of the costs and benefits of practice adoption. If the producer is aware of the emergent practice, and the benefits outweigh the costs, the producer adopts the practice. At the end of each period \(t \), after all nonadopters have made their adoption or rejection decisions, two outcomes are assessed: (1) the extent of diffusion, as measured by the number of adopters; and (2) the clarity of the classification schema (Hannan et al. 2007, Hsu et al. 2012), as measured by the difference in average quality of the adopting group and the rejecting group.

Initial parameters for the model are specified in Table 1. Causal loop diagrams (e.g., Rudolph and Repenning 2002, Sterman 2001) are useful for depicting time-dependent, feedback-based dynamic systems. A causal loop diagram of the model is provided in Figure 4. I used the Ventana Simulation Environment (Vensim DSS) software to develop and run the model.¹ For robustness, in each scenario examined below, the model was run 200 times, each with a unique draw from random distributions of perceptivity and quality. Results shown are the average over all 200 runs.

Table 1 Summary of Model Variables and Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Base model value</th>
<th>Subsequent variation</th>
<th>Theoretical development</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Population size</td>
<td>1,000</td>
<td>SD = 9–25</td>
<td>Proposition 3</td>
</tr>
<tr>
<td>(q_i)</td>
<td>Quality</td>
<td>Mean = 100, SD = 18</td>
<td>(q = q(t))</td>
<td>Proposition 7</td>
</tr>
<tr>
<td>(p_i)</td>
<td>Perceptivity</td>
<td>Mean = 100, SD = 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H)</td>
<td>Awareness threshold</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MAC)</td>
<td>Maximum adoption cost</td>
<td>150</td>
<td>100–180</td>
<td>Proposition 2</td>
</tr>
<tr>
<td>(AI_{t-1})</td>
<td>Audience interest at (t = 1)</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>Scaling constant for social benefits of adoption</td>
<td>1,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IB)</td>
<td>Instrumental benefits of adoption</td>
<td>6</td>
<td>IB = Constant × Q</td>
<td>Proposition 6</td>
</tr>
<tr>
<td>(LI)</td>
<td>Legitimacy intensity</td>
<td>1</td>
<td>1–2</td>
<td>Proposition 1</td>
</tr>
</tbody>
</table>
Results
Each run of the model yields two graphs (see Figure 5). The graphs on the bottom panel plot the number of actors who are aware of the practice as well as the number of adopters, n, at each t in T. The graphs on the top panel plot the average quality of the group of adopters and the average quality of the group of nonadopters, again for each t in T. Figure 5(a) depicts the model output with LI set at 1.0. Figure 5(b) plots the model with all other parameters equal and LI set at 1.85.

Base Model
Figure 5(a) depicts a trajectory of limited diffusion. In line with the canonical S-curve trajectory, adoption progresses slowly at first, then increases rapidly for a brief period before slowing again. Adoption subsequently stabilizes when the number of adopters is still significantly smaller than N (n = roughly 26% of the population at $t = T$). This trajectory occurs only when the intensity of environmental demands for legitimacy is low. Initially, a large proportion of the population is unaware of the new practice, and nonadoption is primarily a result of ignorance, rather than purposive rejection. But as adoption increases, audience influence on the adoption decision becomes more potent, altering the practice’s market value and adoption benefits. Eventually, as adoption rates increase midway through the S-curve trajectory, most actors become aware of the opportunity to signal, and a classification process begins. Rather than adopting or rejecting the practice based solely on the instrumental benefits it confers, actors make a deliberate signaling decision and classify themselves by either adopting or refraining from adoption. Actors of higher quality incur lower adoption costs and decide to adopt. Actors of lower quality face higher costs and therefore perceive a negative net value of adoption; they consequently reject the practice. As a result, the average quality of adopters diverges from the mean in a positive direction, and the average quality of nonadopters diverges from the mean in a negative direction. Moreover, as the gap between the average quality of adopters and nonadopters widens, schema clarity increases. When diffusion stops, the average quality of adopters is substantially higher than the population mean and the average quality of nonadopters is substantially lower than the mean. The end result is an entrenched and clear classificatory schema.

Figure 5 Limited and Full Diffusion Trajectories Contingent on Legitimacy Intensity

Notes. In panel (a), $LI = 1.0$, resulting in limited diffusion that enables classification. In panel (b), $LI = 1.85$, resulting in full diffusion that precludes classification.
In contrast, when the intensity of environmental demands for legitimacy is high, adoption is rapid and quickly approaches \(N \), thus precluding classification. This full diffusion trajectory (see Figure 5(b)) at first parallels the limited diffusion trajectory in which early adopters with certain capabilities perceive instrumental benefit in practice adoption. A tentative classificatory schema emerges, initially distinguishing adopters from nonadopters. However, when the practice continues to diffuse, other producers are impelled by legitimacy concerns to adopt. And since legitimacy intensity is high, eventually all actors are compelled to conform via adoption, even if there is very little fit between their quality and the practice. The average quality of adopters consequently converges to the mean, thereby nullifying the emergent schema. Full diffusion of the practice precludes classification of actors based on adoption and rejection decisions.

The model thus generates trajectories consistent with both limited diffusion and full diffusion, suggesting that both scenarios can be explicated with one parsimonious set of constructs. In fact, one factor determines which of the two trajectories is generated in a given run: legitimacy intensity. In part, this result simply restates the obvious: when environmental demands for legitimacy are inexorable, isomorphism ensues. However, the opposite of this argument—what happens when environmental demands for legitimacy are not inexorable—has not been examined in great depth. The model suggests that classificatory schemas will emerge endogenously and subsequently become entrenched in situations where environmental demands for legitimacy are relatively weak—in other words, when rejection is not illegitimate.

Proposition 1. Limited diffusion begets classification only when nonadoption does not threaten legitimacy.

Scope Conditions

Emergence and Stability. The model suggests that adoption costs play a significant role in determining whether a classificatory schema emerges. At high adoption costs, few actors adopt, leaving many high-quality actors in the nonadopting group. In other words, diffusion does not progress beyond the early-adoption stage, and the trajectory of adoption follows a concave form (see Figure 6), rather than the canonical S-curve. In essence, the classificatory schema does not take root. The small number of initial adopters creates relatively little awareness among producers—less than 20% compared with over 90% in the base model above. With such a low level of awareness, subsequent adoption is also low, and thus a positive feedback loop between producers and audiences that leads to further adoption does not materialize. Absent a “critical mass” of adopters, a classificatory schema does not emerge.

Classification is precluded not only when diffusion is weak but also (albeit in a different way) when diffusion is strong and adoption is widespread. In particular, when adoption costs are very low, a practice diffuses quickly and fully through the population and is eventually adopted by all actors. But when the vast majority or all actors have adopted a practice, its adoption can no longer serve as a classificatory mechanism. Whereas meager adoption prevents a classificatory schema from emerging, full adoption nullifies a schema (see Figure 5(b)). Together, these outcomes suggest that the range of adoption costs that fosters the development of classificatory schemas is rather narrow, lying between the excessively affordable and the inordinately expensive (see Figure 7).

Proposition 2. Classification through limited diffusion will emerge and endure when adoption costs are substantial but not overwhelming.

Population Characteristics. The extent to which actors are similar to or different from each other also has significant implications for the behavior of populations (Abrahamson and Rosenkopf 1993, Granovetter 1978).
The effects of population heterogeneity are displayed in Figure 8, in which the standard deviation of quality in the population is depicted as the independent variable. When a population is relatively homogeneous, the gap between the average quality of adopters and the average quality of nonadopters is small. In fact, at low heterogeneity, a classificatory schema does not emerge, and the diffusion trajectory is similar to that depicted in Figure 6. When heterogeneity is greater, the population includes a larger number of high-quality actors that adopt early, thus transforming practice adoption into an emergent classificatory mechanism that yields greater adoption benefits, in turn triggering the positive feedback loop that leads to classificatory entrenchment. Even though adoption rates increase with heterogeneity, schema clarity also increases because cost and benefit differentials between adopters and rejecters are more pronounced in heterogeneous populations.

Proposition 3A. Ceteris paribus, greater heterogeneity in a population leads to higher rates of adoption.

Proposition 3B. Ceteris paribus, greater heterogeneity in a population leads to greater schema clarity.

Bounded Rationality. The base model assumed that producers can precisely calculate the costs and benefits of adoption, based on the knowledge of their own quality and the benefits that adoption will provide. This calculation is, in reality, a difficult feat for producers to accomplish with a high degree of accuracy. To investigate the effects of incomplete knowledge of environmental conditions and inaccurate self-assessment of quality, an error term was added to the adoption decision (Equation (2)). This random, normally distributed term, with a mean of zero, led some producers to err on the side of optimism and believe that adoption would be more beneficial than its actual value and led others to undervalue the benefits of adoption. Introduction of the error term led to higher adoption rates because its effect was to increase the number of early adopters, thereby triggering the positive feedback loop that increases subsequent adoption. As such, the effect of bounded rationality on adoption rates is similar to that of increased heterogeneity. Yet, in contrast to the case of heterogeneity, the linkage between quality and the adoption or rejection decision is attenuated, because actors do not possess accurate information about themselves and about
the effects of practice adoption, thereby reducing schema clarity (see Figure 9).

Proposition 4A. *Ceteris paribus,* greater ambiguity about the costs and benefits of practice adoption leads to higher adoption rates.

Proposition 4B. *Ceteris paribus,* greater ambiguity about the costs and benefits of practice adoption leads to lesser schema clarity.

Extensions

Abandonment. Actors that adopt practices may subsequently abandon them (Rao et al. 2001). For example, the benefit of a classificatory schema might become negative for early adopters as later adopters make the practice more prevalent, thereby reducing its market value. Reciprocal defection (Lenox 2006) may ensue, wherein each instance of abandonment encourages additional abandonment, potentially “snowballing” and leading to a complete unraveling of a classificatory schema (Akerlof 1980). To investigate this possibility, the model was modified to allow actors that had previously adopted a practice to reconsider their decision. Specifically, in each time window *t,* all actors, not just nonadopters, assessed the net value of adoption using Equation (2). As before, actors that had not yet adopted the practice assessed whether the net value of adoption was greater than zero. In addition, actors that had previously adopted the practice could now assess whether the value of their prior adoption remained positive, and they were able to abandon the practice if the assessment yielded a negative result. Running the model with this extension revealed that the unraveling of an entrenched classificatory schema was unlikely. In fact, in various trajectories of diffusion, abandonment did not surpass 10% of the population of adopters. This was primarily due to the magnitude of social benefits of adoption once classificatory schemas had become entrenched. Absent a sudden, large decrease in market value, classificatory schemas continue to have a strong effect on actor adoption or rejection decisions, thus discouraging abandonment. However, whereas the option of abandonment did not lead to an unraveling of entrenched schemas, it did prevent some schemas from emerging. Specifically, for relatively costly practices, abandonment by a small number of actors in early stages, when schema emergence was at its frailest, did prevent an S-curve from developing. Yet, in general, results indicated that large-scale abandonment after a classificatory schema had become entrenched was unlikely to occur endogenously.

Proposition 5. Entrenched classificatory schemas remain entrenched unless environmental conditions change.

Loose Coupling and Decoupling. Practice adoption does not always yield instrumental benefits. In some cases, the practice may not be a good fit for the adopting organization and therefore may fail to deliver the expected results. In other cases, adoption might be purposefully symbolic and pursued solely to conform with audience expectations, rather than to substantially modify organizational outcomes (Westphal and Zajac 1994, 1998). In other words, practice adoption and quality could be either loosely coupled or decoupled entirely.

To examine the effects of loose coupling, Equation (5) was modified. Instrumental benefits were modified to be a linear function of quality, rather than a constant as in the base model. As a result of this modification, high-quality actors, for whom the practice was a good fit, gained greater instrumental benefits of adoption than low-quality actors. This model yielded roughly 6% greater adoption than the base model and also slightly reduced schema clarity.

A more extreme case decouples the linkage between quality and adoption costs entirely. This was modeled by defining adoption costs as a random variable itself,
uncorrelated with quality. The resultant diffusion trajectory is identical to the base model, but, not surprisingly, schema clarity is entirely nullified. This means that from an audience standpoint, observing only diffusion trajectories can provide no information whatsoever as to whether the resultant classificatory schema conveys meaningful information about quality.

Proposition 6. Absent a concrete linkage between adoption costs and quality, audiences cannot gauge the clarity of a classificatory schema.

Temporality. Economic signals function most accurately when they are invariant over time. For example, in the case of the diploma, the underlying quality about which the job seeker provides information is understood to be something akin to perseverance, a trait coveted by employers (Weiss 1995). A person that can overcome the trials and tribulations inherent in the pursuit of an academic degree is one that demonstrates steadfast commitment to goals over a multiyear period and, by implication, is not one to back away from challenging tasks in a work environment. This underlying trait, perseverance, is understood to be relatively time invariant, carrying over from university studies to the labor market.

The extent to which time invariance is applicable to organizations, however, is questionable. A firm committed to fair and balanced executive remuneration that establishes a compensation committee reporting to its board of directors may not remain committed to the same ideals in subsequent years, although it may keep the committee in place. Or an organization achieving environmental management system certification may subsequently reverse course in its pursuit of environmental goals and fall behind its peers in this regard, with decertification occurring years later (if at all). Organizations, in short, are not consistently of high or low quality; rather, their quality varies over time, and such changes in quality may not closely correspond to adoption and abandonment decisions. To assess the impact of change in quality over time, the assumption of time invariance in quality was relaxed. As shown in Figure 10, the results suggest that if quality is time dependent, a practice will diffuse more broadly and reduce schema clarity. At its extreme, if quality fluctuates considerably, full diffusion ensues even at low levels of legitimacy intensity. This occurs because even if quality is high for only a brief period, prompting adoption, it sets in motion the feedback loops that accentuate social benefits of adoption and thereby increase subsequent adoption rates.

Proposition 7A. Ceteris paribus, greater mutability of quality over time leads to higher adoption rates.

Proposition 7B. Ceteris paribus, greater mutability of quality over time leads to lesser schema clarity.

Discussion

When diffusion of a certain practice is not full but is instead limited, researchers may portray this outcome as an institutionalization attempt that falls short and identify reasons for this “failure” (Davis and Anderson 2008, Rao and Giorgi 2006). Or limited diffusion might be understood as a short-lived state in which organizations oscillate between adopting and abandoning practices (Abrahamson 1991, Miner and Raghavan 1999). However, limited diffusion does not necessarily need to be unstable or transitory. In fact, limited diffusion can constitute a schema for classification. This occurs when the diffusing practice is enticing, yet external pressures to adopt are not overwhelming, thereby permitting actors to make equally legitimate adoption or rejection decisions. A college diploma functions as a powerful classificatory schema not despite its limited diffusion but because of it.

This view of diffusion as classification stands in contrast to the more common view of diffusion as institutionalization. In the latter view, practices diffuse because
environmental pressures compel actors to adopt practices to signal legitimacy. As these practices become prevalent, adoption becomes taken for granted. Institutionalization coincides with full diffusion and ubiquity because the entire population succumbs to isomorphic pressures. However, this tight linkage between diffusion and institutionalization generates a “conceptual muddle” (Colyvas and Jonsson 2011, p. 27) not only around definitions of diffusion and institutionalization but also around the meaningfulness of empirical findings (Boxenbaum and Jonsson 2008).

Conceptualizing diffusion as classification helps surmount some of these difficulties by shifting analytical focus to the classificatory schema, rather than practice adoption. In viewing diffusion as classification, it is the schema, not the adoption decision, that is understood to be a taken-for-granted, rationalized myth (Meyer and Rowan 1977). Actors do not question the social fact of the classificatory schema or the necessity of sorting themselves, but they do think carefully about whether to adopt or reject a diffusing practice because both adoption and rejection are legitimate decisions. Reified classificatory schemas persist precisely because they do not render adoption decisions trivial and do not jeopardize actors’ legitimacy. This conceptualization disentangles not only institutionalization and diffusion but also institutionalization and legitimacy (Deephouse and Suchman 2008, Jepperson 1991) by demonstrating that the legitimacy of an institution—the classificatory schema as social fact—does not necessarily result in a dichotomy of legitimate (adoption) decisions versus illegitimate (rejection) decisions.

Furthermore, diffusion as classification suggests that audiences attempting to influence producer behavior face a quandary when striving to institutionalize practices intended to improve governance, increase workplace diversity, reduce environmental impact, and the like. If audiences proactively demand the adoption of certain practices by increasing legitimacy intensity and making nonadoption illegitimate, they cannot concurrently assess producer quality. The more pressure they place on a producer to adopt a practice, the more likely that these pressures will lead to symbolic adoption and full diffusion, thereby leading to a reduction in schema clarity. In other words, the more stringent the demands to adopt practices, the less audiences will be able to assess the effectiveness of these practices. Conversely, reasonably accurate assessments of producer quality can be obtained if legitimacy intensity is kept low, but low legitimacy intensity will not impel many producers to adopt practices that can lead to desired outcomes. Audiences cannot pressure producers to adopt a certain practice and at the same time accurately assess the effectiveness of that practice.

It is important to note that diffusion as classification can occur in a stable context, in line with calls for development of theory that does not require “momentous events” (Powell and Colyvas 2008, p. 277) to explain institutional emergence and change (Clemens and Cook 1999, Schneiberg 2005). Indeed, the only driver of diffusion highlighted in the model is local decision making performed by structurally equivalent actors (Schelling 1978, Strang and Soule 1998). Entrenchment and institutionalization are simply the end result of self-reinforcing feedback loops established by “interacting, thoughtful (but perhaps not brilliant) agents” (Miller and Page 2007, p. 3) coexisting in a stable environment, engaged in “mundane [tasks], aimed at interpretation, alignment, and muddling through” (Powell and Colyvas 2008, p. 277). Consequently, the model’s output suggests that classificatory schemas can emerge haphazardly as opposed to being purposefully initiated or externally imposed. Institutional entrepreneurship or other forms of agency are not a precondition.

To reiterate, not all instances of diffusion can or should be explained through a classificatory lens. Classification through practice adoption, it would seem, emerges and becomes entrenched over relatively long periods of time, rather than in instances where adoption and abandonment occur in spikes or waves. Classificatory schemas based on limited diffusion would appear to be those that are based on practices that necessitate significant investment of resources and prior deliberation, as opposed to inexpensive practices or those which delemitize nonadopters. Such classificatory schemas will generally be distinct from extant classificatory schemas already salient to a field around which common categories have previously adhered. It may be particularly fruitful to use the lens of diffusion as classification to examine the origins and persistence of stratification by means of logics (Louksbury 2007) and governance (Okhmatovskiy and David 2012, Schneiberg 2007) in order to understand the contingencies that lead to the establishment of fields characterized by an enduring coexistence of small numbers of organizational archetypes.

In addition, classificatory schemas and their attendant diffusion trajectories can also be of central importance for analyzing collective identity development (Fiol and Romanelli 2012). Whether by rejecting a diffusing practice (such as modern vinification techniques) or adopting one (such as socially responsible investing principles), identity-based movements are meaningful only insofar as they stand in contrast to other, more mainstream behavior (Lamont and Molnár 2002). Actors intent on maintaining differentiation may therefore see value in preserving and reinforcing an emergent classificatory schema as opposed to having practices diffuse fully. Indeed, identity movements by their very nature appear to be minority movements prone to self-limiting dynamics that preserve uniqueness (Bearman and Brückner 2001).
Of course, theoretical statements developed and illustrated through simulation should be subsequently extended and probed through empirical analysis. Models are inevitably shaped by choices made by modelers, such as scope conditions, and the functional form of parameters employed (Starbuck 2006). By recognizing that models are unavoidably incomplete and are simplified depictions of complex social realities, future empirical research can provide much greater nuance and richness to processes of diffusion as classification. In particular, future work should strive to link the somewhat artificial coefficients utilized in the model with grounded, real-world constructs. Greater specificity will serve not only to test the usefulness of the view of diffusion as classification but also to allow comparative research between contexts. Longitudinal studies are especially likely to be helpful for understanding which emergent classificatory schemas are attended, how they gain traction, when they become institutionalized, and why they become irrelevant, either through full diffusion or through abandonment.

Note that the model developed here did not explore the effects of implementation. Adoption is essentially a discrete, dichotomous decision and is often executed in a manner that is visible to audiences, particularly when legitimacy intensity is high. Implementation, in contrast, is often neither discrete nor dichotomous. Actors and organizations that decide to adopt a practice can then implement it to a varying extent, doing so either quickly or gradually. Often, the thoroughness of implementation is not easy for external audiences to gauge. Moreover, the relationship between adoption and implementation is often nuanced. For example, practices can be adopted grudgingly and ceremonially but then implemented more thoroughly than initially expected, yielding surprisingly significant changes in quality (Feldman and March 1981, Lounsbury 2001). Future research should delve more deeply into the link between adoption and implementation and its ensuing effects on classification.

An important line of future research could integrate the view of classification presented here and extant work on classificatory schemas as disciplinary devices driven, in large part, by enthusiasts, market mediators, and opinion leaders (Hannan et al. 2007, Iyengar et al. 2011, Zuckerman 1999). Many practices that begin diffusing do, at some point, attract market mediators and undergo codification and formalization via processes of standardization, accreditation, and association, eventually becoming institutionalized sources of trust in market settings (Zucker 1986). When and at what point market mediators seize upon emergent classificatory schemas and convert them into such sources of trust is a worthy arena for future research. More broadly, development of a more profound understanding of how classificatory schemas can serve as both informative (enabling) and disciplinary (constraining) market mechanisms would appear to be an important theoretical undertaking.

Organizational scholars have devoted considerable effort to understanding how organizations respond to institutional pressures of various types (Oliver 1991). By and large, however, prior research has suggested that responses to these pressures are bifurcate. Actors are often portrayed as facing an all-or-nothing decision: to either succumb to existing norms or to set about overthrowing them through acts of institutional entrepreneurship, with very little middle ground between these two extremes (David and Bitektine 2009, Heugens and Lander 2009, Powell and Colyvas 2008). A more nuanced view would suggest that a middle ground is plausible, engendering limited diffusion and thereby maintaining diversity. A better understanding of the antecedents of limited diffusion and its consequences is thus conducive to a more robust and comprehensive theory of institutions.

Acknowledgments

The author is indebted to Jeroen Struben and Elham Tayaran for the time, effort, and modeling expertise they so generously contributed to this project. Insight and encouragement provided by Olivier Chatain, Gregoire Croidieu, Robert David, Fabrizio Ferraro, Peer Fiss, Mike Lounsbury, Steve Maguire, Aviad Pe’er, Matteo Prato, senior editor Lori Rosenkopf, and two anonymous reviewers are gratefully acknowledged. This research was supported by the Social Sciences and Humanities Research Council of Canada [SSHRC Award 410-2009-1259].

Endnotes

1 Following Strang and Soule (1998), for clarity of exposition I use the term practice to denote any diffusing item, which might be a behavior, strategy, belief, technology, or structure.

2 The terms “class” and “category” are often used interchangeably. Hannan et al. (2007) defined categories simply as classes characterized by a particularly high level of consensus.

3 Note that there is no normative weight associated with either “high” or “low” quality labels. For example, SRI funds have the attribute of integrating social concerns into investment decisions, whereas this attribute is absent from other funds. Thus funds that emphasize SRI principles have higher quality in terms of integrating social concerns into investment decisions, whereas mainstream funds are lower in this quality. Alternatively, and equivalent in terms of classificatory significance, mainstream funds can be characterized as having higher quality in terms of traditional financial values and SRI-focused funds as lower quality. Model outcomes are invariant under these initial designations.

4 The model is essentially a discrete-time model of difference equations and can therefore be run with other software, even on a spreadsheet. The code for the model is available from the author upon request.

References

Dror Etzion is an assistant professor of strategy and organization at the Desautels Faculty of Management, McGill University, and an associate member of the McGill School of the Environment. He received his Ph.D. from IESE Business School. His primary research interests are in the domain of metrics and commensuration, particularly within the context of sustainability.