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Descending pathways increase sensory
neural response heterogeneity
to facilitate decoding and behavior

Michael G. Metzen1 and Maurice J. Chacron1,2,*

SUMMARY

The functional role of heterogeneous spiking responses of otherwise similarly
tuned neurons to stimulation, which has been observed ubiquitously, remains un-
clear to date. Here, we demonstrate that such response heterogeneity serves a
beneficial function that is used by downstreambrain areas to generate behavioral
responses that follows the detailed timecourse of the stimulus. Multi-unit record-
ings from sensory pyramidal cells within the electrosensory system of Apterono-
tus leptorhynchus were performed and revealed highly heterogeneous re-
sponses that were similar for all cell types. By comparing the coding properties
of a given neural population before and after inactivation of descending path-
ways, we found that heterogeneities were beneficial as decoding was then
more robust to the addition of noise. Taken together, our results not only reveal
that descending pathways actively promote response heterogeneity within a
given cell type, but also uncover a beneficial function for such heterogeneity
that is used by the brain to generate behavior.

INTRODUCTION

Understanding how neurons process incoming sensory information to give rise to perception and behavior

(i.e., the neural code) remains a central problem in systems neuroscience. Although it is generally agreed

that behavioral responses (e.g., perceiving the location of an object within the visual field) are determined

by the activities of large neural populations,1–4 understanding how these activities are combined is compli-

cated by the fact that neurons across sensory modalities and motor pathways that encode the same stim-

ulus attribute exhibit a high degree of heterogeneity in their spiking responses to stimulation (visual,5,6

auditory,7 somatosensory,8 and motor9). Although previous studies have shown that such heterogeneity

has multiple benefits such as increasing coding efficiency,10–18 coding reliability,19,20 as well as making

learning and memory more robust,21,22 these are for the most part theoretical in nature and rely on com-

parison of mathematical models where heterogeneity can be systematically varied. Previous experimental

studies have relied on comparing the responses of a single neuron to repeated stimulus presentations to

those of a neural population with different response properties, such that any observed differences could

not be solely attributed to differences in heterogeneity.16 As such, the important question of whether het-

erogeneity serves a beneficial function that is used by the brain toward enhancing perception and behavior

remains unanswered to date.

Weakly electric fish benefit from a well-characterized anatomy and circuitry as well as behaviors consisting

of changes in their self-generated electric field in response to stimulation that do not require move-

ment,23,24 thereby making them an attractive model system for understanding how the activities of hetero-

geneous neural populations mediate behavioral responses to sensory input. The electric field is generated

through the electric organ discharge (EOD) and rely on perturbations of this field to acquire information

about the environment.25 When two conspecifics are in proximity to each another (i.e., <2 m), each fish ex-

periences an amplitude modulation (AM) of its own EOD whose amplitude (envelope) conveys information

as to the distance and relative orientation and motion between both fish.26–30 Previous studies have shown

that weakly electric fish display behavioral responses such that the EOD frequency faithfully follows the

detailed timecourse of envelope stimuli, indicating that information about the detailed stimulus time-

course must be encoded by sensory neurons and then transmitted to higher brain areas.31 This behavioral

response appears to be adapted to the natural statistics of envelope stimuli and is thought to help
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individuals make themselves appear more dominant during social interactions.31 A recent study has

demonstrated such envelope responses in the wild in freely moving fish, thereby making laboratory studies

of such envelope behavioral responses ecologically relevant.32 These furthermore display habituation to

repeated stimulus presentations, thereby suggesting that they are plastic and most likely change because

of top-down neural signals.31 More recent studies have shown that changes in envelope behavioral re-

sponses during sensory adaptation require top-down input from the forebrain.33 Further evidence sug-

gests that ELL pyramidal cell activity is necessary to generate the changes in EOD frequency that faithfully

track the envelope stimulus’ detailed timecourse.33–38 Envelope stimuli are encoded by peripheral electro-

receptor afferents that synapse onto pyramidal cells within the electrosensory lateral line lobe (ELL). Pyra-

midal cells display large heterogeneities in their spiking activities in response to stimulation29,39–41 and are

the sole output neurons of the ELL projecting to higher brain structures mediating the animal’s behavioral

responses.

There are twomain classes of pyramidal cells, basilar and non-basilar,42,43 which are also referred to as ON-

and OFF-type because they respond to increased EOD amplitude with excitation and inhibition, respec-

tively.44,45 Both ON- and OFF-type pyramidal cells display large differences in apical dendritic morphology

as well as the location of their somata within the pyramidal cell layer,46 and can be each separated into

3 sub-classes.47 Specifically, cells whose somata are located most superficially tend to display large apical

dendritic trees and are referred to as superficial, whereas cells whose somata are located most deeply tend

to display small apical dendrites and are referred to as deep. Finally, cells whose somata are located in be-

tween tend to display intermediate apical dendrites and are referred to as intermediate.47 As such, there

are six ELL pyramidal cell types (ON andOFF-type superficial, intermediate, and deep). Because of a strong

negative correlation between apical dendritic length and baseline (i.e., in the absence of stimulation) firing

rate in vivo, it is possible to obtain information as to which type the recorded neuron belongs to, based on

this measurement as well as from responses to stimulation. Previous studies have shown large differences in

the response properties of ON- and OFF-type superficial, intermediate, and deep pyramidal cells to stim-

ulation48–53 (see40,41 for review).

ELL pyramidal cells furthermore receive large amounts of descending input from higher brain areas including

both direct and indirect projections from the nucleus praeeminentialis (nP).54 Previous studies basedon single-

unit recordings have shownmultiple functions for such input including gain control,55 adaptive cancellation of

redundant stimuli,56–58 as well as adaptively generating and optimizing responses to sensory input.33,35,36,59

Although the responses of single pyramidal cells within the ELL to envelope stimuli have been well-character-

ized,29,33–36,41,53,60–62 how they encode such stimuli at the population level is not well understood to date. Pre-

vious studies have shown that different ELL pyramidal cell classes serve different functions. For example, deep

pyramidal cells provide the necessary signal to their superficial counterparts that is needed to adaptively

cancel out redundant stimuli.56 However, the important questions as to whether: 1) descending input can in-

fluence response heterogeneity observed within a given cell class and; 2) such response heterogeneity serves

a beneficial function have not been investigated to date.

Here we demonstrate that response heterogeneity is mediated by descending input and serves a beneficial

function that is used by the brain to ultimately generate behavioral responses consisting of changes in EOD

frequency that follow the stimulus’ detailed timecourse. We found that response heterogeneity was

strongly attenuated only for ON-type low firing rate pyramidal cells following pharmacological inactivation

of such input. By comparing the coding properties of the same pyramidal cell population before and after

inactivation, we show that response heterogeneity serves a beneficial function in that decoders optimized

to reconstruct the envelope stimulus’ detailed timecourse are more robust to noise before as compared to

after feedback inactivation. Importantly, we demonstrate that this beneficial function is used by the brain to

generate these envelope behavioral responses. Taken together, our results provide evidence that hetero-

geneity is most likely not the result of noisy developmental processes but is rather actively enhanced by

neural circuits within the brain with downstream decoders tuned to take advantage of the resulting benefits

to coding to generate behavior.

RESULTS

We used an experimental preparation allowing for simultaneous multi-unit recordings from ELL pyramidal

cells whereas the animal performed behavioral responses (Figure 1A). Specifically, behavior consisting of

changes in EOD frequency that faithfully follow the stimulus’ detailed timecourse is recorded via a pair of
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electrodes located near the animal’s snout and tail (Figure 1A, top left). As mentioned above, such behavioral

responses are thought to help individuals make themselves appear more dominant during social interac-

tions.31 A high-density electrode array (Neuropixels probe) was inserted into the ELL region of the animal’s

brain and allowed simultaneous multi-unit recordings from ELL pyramidal cells (Figure 1A, top right). Stimuli

were delivered via a pair of electrodes located on either side of the animal (Figure 1A) and consisted of noisy

AMs (Figure 1A, left gray) of the animal’s own EODwhose envelope (Figure 1A, left, green) varied sinusoidally

at different frequencies within the behaviorally relevant range (0.001–1 Hz).27 Electrosensory afferents respond

to EOD AMs and envelopes63,64 and make synaptic contact with ELL pyramidal cells that in turn project to the

midbrain torus semicircularis (TS) and indirectly to higher brain areas whose activities mediate behavioral re-

sponses such as the nucleus electrosensorius as well as the prepacemaker nucleus (Figure 1B, black arrows).

ELL pyramidal cells also receive large amounts of descending input in part from TS via nP either directly or

indirectly via the eminentia granularis posterior (EGp; Figure 1B, pink arrows). Anatomical studies have shown

that pyramidal cells are organized into columns within the ELL.47 Specifically, each column consists of six cells

(ON andOFF-type superficial, intermediate, and deep; Figure 1B). Although only deeppyramidal cells directly

project to nP, all six cell types project to TS56 (Figure 1B).

Descending pathways mediate highly heterogeneous neural responses to envelope stimuli

We first investigated how ELL pyramidal cell populations responded to sinusoidal envelopes with fre-

quencies (0.1 Hz, 0.5 Hz, and 1 Hz) and contrasts (weak 9.1 G 2.9%, intermediate 23.2 G 2.9%, strong

49.7G 20.3%; see STAR Methods) that both varied within the natural range.27 Previous studies have shown

that single ELL pyramidal cells display high-pass tuning to envelope stimuli, such that their sensitivities

Figure 1. Experimental setup and relevant neural circuitry

(A) The animal is placed in an otherwise empty tank and behavioral responses (EOD; bottom left) as well as neural activity

(top right) are recorded simultaneously. The stimuli consisted of amplitude modulations (AMs) of the animal’s own EOD

(gray, middle left) whose amplitude (i.e., the envelope, green, middle left) was modulated sinusoidally at different

frequencies. The animal’s behavior (bottom left) follows the detailed timecourse of the envelope stimulus.

(B) Simplified circuit diagram. The envelope stimulus is transduced by electroreceptor afferents that project to pyramidal

cells within the electrosensory lateral line lobe (ELL). ELL pyramidal cells are organized in columns consisting of six

neurons (one ON- and OFF-type superficial, intermediate, deep per column) that in turn project to the midbrain torus

semicircularis (TS) and indirectly to higher brain areas mediating behavioral responses. Although all ELL pyramidal cells

project to TS, only deep ON- and OFF-type cells also directly (gray) project to the nucleus praeeminentialis (nP). ELL

pyramidal cells also receive large amounts of descending input (i.e., feedback; pink arrow) from nP.
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increase with envelope frequency.29,41 Descending pathways (i.e., feedback) were inactivated by injecting

the sodium channel antagonist lidocaine into the nP bilaterally (see STAR Methods; Figure 2A), as done

previously.35,36

We found that the spiking activities of ELL pyramidal cell populations in response to stimulation were highly

heterogeneous as seen from a raster plot before feedback inactivation (i.e., ‘‘control’’; Figure 2B, blue).

Indeed, different neurons preferentially fired at different phases of the envelope cycle (Figure 2B, blue).

We quantified response similarity by computing correlation coefficients between neural pairs (see STAR

Methods). Overall, we found that correlation coefficient values were uniformly distributed under control

conditions (Figure 2C, blue), which indicates a high degree of heterogeneity.

To investigate the nature of the mechanisms responsible for such heterogeneity, we first partitioned the

recorded neurons into six groups (see STAR Methods). First, each cell was classified as either ON- or

OFF-type based on responses to the carrier waveform (see STAR Methods). ON- and OFF-type cells can

easily be distinguished from one another as they fire during opposite phases of the carrier waveform

(Figures S1A and S1B). We note however that ON- and OFF-type strictly refers to the response profile to

Figure 2. ELL pyramidal cells display highly heterogeneous responses to envelope stimuli that are strongly

attenuated by pharmacological inactivation of feedback pathways

(A) Simplified circuit diagram showing that pharmacological inactivation of feedback (pink arrow) onto ELL pyramidal cells

was achieved by injecting lidocaine bilaterally into nP (red cross).

(B) Envelope stimulus waveform (top, green) and raster plots showing the activities of the same ELL pyramidal cell

population before (middle, blue) and after (bottom, red) feedback inactivation in response to this stimulus. Overall, it is

seen that responses were much more similar to one another after feedback inactivation.

(C) Histograms of the pairwise correlation coefficients between neural activities before (blue) and after (red) feedback

inactivation. Note the increased probability of obtaining large correlation coefficient values near unity after feedback

inactivation. Both distributions were significantly different from one another across our datasets (inset: two-sample

Kolmogorov-Smirnov test, p = 1.04*10�6, D = 39).
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the carrier and not the envelope stimulus. Indeed, it is possible to findON- andOFF-type cells that fire pref-

erentially during opposite phases of the carrier yet respond similarly to the envelope (Figure S1A). Next, we

partitionedON- andOFF-type cells each into low, medium, and high firing rate based on their firing activity

in the absence of stimulation that likely correspond to superficial, intermediate, and deep types (see STAR

Methods). Overall, if the heterogeneity in envelope response observed for our dataset is primarily because

of different cell types having different response properties, then we would expect that the firing activities of

same type cells should bemore similar (i.e., more highly correlated) than those of different type cells. Over-

all, we found similar largely uniform distribution for correlation coefficients between same type cells, which

was comparable to that obtained for our entire dataset (compare Figures S2A–S2C, blue). Moreover, the

distributions of correlation coefficients computed within cell type was not significantly different than that

computed across cell types (Figure S2B). This indicates that response heterogeneity to envelope stimuli

is not primarily because of differences across cell types. Rather, levels of response heterogeneity similar

to that observed for the entire dataset is observed for each cell type.

Next, we investigated the effects of feedback inactivation. Overall, we found that ELL pyramidal cell activ-

ities in response to the same stimulus were much more similar after such inactivation (i.e., less heteroge-

neous; Figure 2B, compare blue and red raster plots showing population activity for the same neurons

before and after feedback inactivation, respectively). Indeed, more correlation coefficient values near unity

were observed after feedback inactivation (Figure 2C, red, arrow). As such, the distributions of correlation

coefficients obtained before and after inactivation were significantly different from one another (two-sam-

ple Kolmogorov-Smirnov test; p = 1.04*10�6, D = 39), indicating that such inactivation significantly reduces

heterogeneity. Of interest, other attributes such as firing rate and sensitivity to the stimulus were not signif-

icantly altered by feedback inactivation (Figure S3). We note that the current study uses high-density arrays

to record the activities of ELL pyramidal cell populations simultaneously in response to envelope stimuli,

whereas previous studies instead relied on single unit recordings and focused on neurons that displayed

clear responses to such stimuli. However, our results were similar to those obtained previously when

only considering ELL pyramidal cells that displayed clear responses to envelope stimuli as quantified by

neural sensitivity (see STAR Methods; compare Figures S4A and S4B of35).

How does feedback inactivation reduce heterogeneity? One possibility is that, because superficial cells

tend to receive the largest amount of feedback and deep cells the least,40 feedback inactivation makes

the envelope responses of superficial ELL pyramidal cells more similar to those of intermediate and

deep cells. To test this prediction, we investigated the effects of feedback inactivation on all six cell types.

Overall, only the activities of low firing rate ON-type cells became more similar to one another after feed-

back inactivation, whereas no significant change was observed for all five other cell types (Figure S5A).

Moreover, the correlation coefficient distribution within cell type was significantly different than that across

cell types (Figure S5B). As such, our results show that feedback inactivation does not reduce heterogeneity

by making the responses of different cell types more similar to one another. Rather, such inactivation re-

duces heterogeneity selectively within one cell type (low firing rate ON-type) whereas the heterogeneity

of all other cell types is not significantly affected.

Neural heterogeneity serves a beneficial function by increasing decoding robustness

Does heterogeneity within ELL pyramidal cell activities in response to envelope stimuli serve a beneficial

function (i.e., would such heterogeneity promote better information transmission about the stimulus’

detailed timecourse that is used by downstream brain areas to generate appropriate changes in EOD fre-

quency)? To answer this question, we considered a decoder for which the envelope stimulus waveform is

predicted from a weighted sum of neural activities (Figure 3A). We chose this decoding scheme because

the animal’s behavioral responses consisting of changes in EOD frequency that faithfully follow the enve-

lope stimulus, indicating that information as to the detailed timecourse must be retained along the brain

pathways mediating this behavior.31 Because pyramidal cells are the sole output neurons of the ELL that

respond to the stimuli used in the current study, their activities are most likely necessary to generate

behavior. We included all six cell types in this analysis as they all project to higher brain areas.56 The weights

were optimized such as to minimize the root-mean-square error (RMSE) between the predicted (i.e., the

weighted sum of neural activities) and actual (i.e., the envelope) stimulus waveforms (see STAR Methods).

To quantify the effect of heterogeneity, we compared the performance of this optimal decoder using

experimental data from the same ELL pyramidal cell populations that were recorded before and after feed-

back inactivation. Overall, we found similar performance under both conditions (Figure 3B, compare top
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left and right traces). Thus, heterogeneity does not alter the performance of the optimal decoder. Of inter-

est, in both cases, there was a significant negative correlation between weight magnitude and firing rate

(Figures S6A and S6B), suggesting that low firing rate cells are assigned weights with larger magnitude

than high firing rate cells. We thus compared weights for all six cell types and found that weight magnitude

was highest for low firing rate ON-type cells (Figure S6C).

We then quantified the robustness of optimal decoders before and after feedback inactivation. To do so,

we added noise to the optimal weights obtained in each case and progressively increased noise intensity

(see STAR Methods). Overall, the decoding performance decreased in both cases but at a significantly

higher rate after feedback inactivation (Figure 3C, compare blue and red, Figure 3C, inset; Wilcoxon signed

rank test; p = 0.047, N = 7). Thus, our results show that heterogeneity serves a beneficial function, as the

optimal decoder is more robust (i.e., the performance decreases less) to the addition of noise when

compared to a more homogeneous population.

Heterogeneity is functionally relevant to determine behavioral responses at the organismal

level

Information carried by neural populations is only important to an organism if it is actively being decoded by

neurons within downstream brain areas. Thus, although our results so far show that heterogeneity increases

Figure 3. Heterogeneities are functionally beneficial, as decoders optimized to reconstruct the envelope

stimulus’ detailed timecourse are more robust to noise addition before feedback inactivation

(A) Schematic showing optimal decoding. Neural responses to the envelope are weighted and the weights are chosen

such as to minimize the mean-squared error between the weighted sum of neural activities (i.e., the predicted stimulus)

and the actual stimulus.

(B) Actual (green) and predicted stimulus waveforms when the weights are optimized before (blue, top left) and after (red,

top right) feedback inactivation. To test decoding robustness, independent normally distributed random numbers (i.e.,

noise) was added to each weight and the standard deviation of the distribution was progressively increased (see middle

column). Increasing noise intensity increased the error between predicted and actual stimulus waveforms to a lesser

extent before (blue, bottom left) than after (red, bottom right) feedback inactivation.

(C) Performance as a function of noise intensity before (blue) and after (red) feedback inactivation. It is seen that

performance is more greatly attenuated after feedback inactivation. Inset: The rate of increase of performance

attenuation was greater after feedback inactivation (Wilcoxon signed rank test; p = 0.047, N = 7).
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decoding robustness, they do not necessarily imply that the brain takes advantage of this benefit. This is

because the decoder considered above, which is optimal for reconstructing the stimulus’ detailed time-

course, may ormay not be representative of the decoding of ELL pyramidal cell activity that takes place within

the animal’s brain to generate behavior. To address this important question, we considered whether decod-

ing consisting of taking a weighted sum of neural activities can correctly predict the animal’s actual behav-

ioral responses to envelope stimuli (Figures 4A and S7A). Overall, we found that the optimal decoder consid-

ered above, while correctly predicting behavioral responses before feedback inactivation (Figure S7B,

compare light blue and brown traces), performed poorly at predicting the attenuated behavioral responses

observed after feedback inactivation (Figure S7C, compare purple and brown traces). However, when consid-

ering instead a global decoder for which the weights are optimized taking all conditions from control data

into account and are thus the same across control conditions (as opposed to being optimized for each con-

dition independently), we found that such a global decoder much better predicted the changes in behavior

that occur because of feedback inactivation (control: Figure S7B, compare dark blue and brown traces; after

feedback inactivation: Figure S7C, compare red and brown traces). Moreover, such behavioral changes were

similar to those observed previously (compare Figures S4B–S4E of35). As such, the overall performance across

conditions was significantly better for the global than for the optimal decoder (Figure S7D). It should be

furthermore noted that the weights obtained for the optimal decoder for a given condition generally per-

formed poorly at predicting other conditions (Figure S8), which is indicative that weights associated with

the optimal decoder before inactivation differed across stimulation conditions.

We took these results as indicative that the operation performed by the global decoder is representative of

the decoding that takes place within the fish’s brain to generate behavior, and accordingly henceforth refer

to this decoder as the ‘‘fish decoder’’. The weights obtained from the fish decoder were significantly nega-

tively correlated with firing rate (Figure S9A) and significantly positively correlated with those obtained from

the fish decoder (Figure S9B). However, weight magnitude was not significantly different between all six cell

types (Figure S9C).

We then compared the fish decoder’s performance at predicting behavioral responses before and after

feedback inactivation. It is important to note that, unlike the optimal decoder considered previously, the

weights are the same for both conditions as they are only derived from part of the control dataset (see

STAR Methods). Overall, the fish decoder performed similarly at predicting behavioral responses before

Figure 4. Downstream decoders take advantage of

the beneficial function of heterogeneities to

generate behavior

(A) Schematic showing decoding. Neural responses to

the envelope are weighted and the weights are chosen

such as to minimize the mean-squared error between

the weighted sum of neural activities (i.e., the predicted

behavior) and the actual behavior.

(B) Actual (brown) and predicted behavioral responses

before (blue, top left) and after (red, top right) feedback

inactivation. To test decoding robustness, independent

normally distributed random numbers (i.e., noise) was

added to each weight and the standard deviation of the

distribution was progressively increased (see middle

column). Increasing noise intensity increased the error

between predicted and actual stimulus waveforms to a

lesser extent before (blue, bottom left) than after (red,

bottom right) feedback inactivation.

(C) Performance as a function of noise intensity before

(blue) and after (red) feedback inactivation. It is seen

that performance is more greatly attenuated after

feedback inactivation. Inset: The rate of increase of

performance attenuation was greater after feedback

inactivation. (Wilcoxon signed rank test; p = 0.016,

N = 7).

ll
OPEN ACCESS

iScience 26, 107139, July 21, 2023 7

iScience
Article



and after feedback inactivation (Figure 4B, compare top left and top right traces). We next quantified de-

coding robustness by adding noise in the same manner as that done above for the optimal decoder (Fig-

ure 4B, middle column, see STAR Methods). Overall, we found results that were qualitatively similar to

those described above for the optimal decoder, in that decoding performance decreased at a compara-

tively larger rate after feedback inactivation (Figure 4C, compare blue and red curves, Figure 4C, inset; Wil-

coxon signed rank test; p = 0.016, N = 7). Thus, we conclude that the decoding strategy used by the brain to

generate behavior takes advantage of increased robustness when decoding from heterogeneous neural

populations. Taken together, our results show that heterogeneity mediated by descending pathways

serves a beneficial function by increasing decoding robustness, which is used by the brain to generate

behavior. Below we discuss their implications.

DISCUSSION

Summary of results

We investigated how response heterogeneity (i.e., differences in the spiking responses elicited by stimulation)

influences information transmission by ELL pyramidal cell populations and how this information is decoded to

generate behavior. We found that response heterogeneity was strongly attenuated by pharmacological inac-

tivation of feedback pathways, but that other neural attributes such as stimulus sensitivity and firing rate were

not affected. Of interest, ON and OFF-type ELL pyramidal cells with low, medium, and high firing rates,

respectively, displayed similar heterogeneity levels before feedback inactivation, thereby providing strong ev-

idence that heterogeneity was not primarily because of differences across cell types. Further analysis revealed

that feedback inactivation primarily reduced heterogeneity withinON-type low firing rate cells, while having at

bestminimal effects on heterogeneity for the other types. By comparing the codingproperties of the sameELL

cell population before and after feedback inactivation, we showed that heterogeneity serves a beneficial func-

tion. Specifically, a decoder optimized to reconstruct the stimulus’ detailed timecourse was more robust to

noise addition before feedback inactivation. Importantly, we show that downstream decoders within the

fish brain that generate behavior are also more robust to noise addition before feedback inactivation. Taken

together, our results provide experimental demonstration that heterogeneity serves a beneficial function that

is used by the brain to generate behavior. Moreover, they provide evidence that response heterogeneity is

actively promoted by neural circuits within sensory systems, which strongly suggests that such heterogeneity

is not merely a by-product of noisy developmental processes.

Role of feedback toward mediating response heterogeneities

Our results demonstrate that descending pathways promote response heterogeneity amongst the ELL py-

ramidal cell population by specifically increasing heterogeneity amongst ON-type low firing rate cells. It

has previously been shown that ON-type cells correspond to the basilar pyramidal cells,44 whereas the

prominent negative correlation between baseline firing rate and apical dendritic length46,56 strongly sug-

gests that the low firing rate cell category considered here likely corresponds to the superficial type. If cor-

rect, then this implies that descending pathways actively enhance response heterogeneity to envelope

stimuli primarily amongst superficial basilar pyramidal cells. All pyramidal cells including the superficial

basilar type receive both direct and indirect sources of descending input.54,65 However, because of their

prominent apical dendritic trees, superficial cells receive larger amounts of indirect descending input

than their intermediate and deep counterparts.47 Indeed, previous studies have found that indirect de-

scending input has a larger effect on the response properties of superficial pyramidal cells with respect

to their intermediate and deep counterparts but used stimuli different than those used in the current

study.45,49,50,56 Our results show response heterogeneity was not altered across cell types, indicating

that ON-type low firing rate cell responses did not become more similar to that of other cell types overall

including deep cells that are thought to receive little to no descending input. Previous studies have shown

that both nP stellate cells projecting directly to ELL and nP multipolar cells projecting indirectly to ELL

respond strongly to the envelope stimuli used in this study.35 Moreover, inactivation of direct descending

input reduces whereas inactivation of indirect descending input instead tends to increase ELL pyramidal

cell responses to envelope stimuli.35,36

As such, both direct and indirect feedback pathways could in theory contribute to increasing response het-

erogeneity amongst ON-type low firing rate cells. One possibility is that, because connections between nP

stellate and ELL pyramidal cells are topographic,54 response heterogeneity to envelope stimuli in superfi-

cial basilar pyramidal cells is because of nP stellate cells displaying such heterogeneity in the first place.

Another not necessarily mutually exclusive possibility is that superficial basilar ELL pyramidal cell response
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heterogeneities to envelope stimuli originate from differences in how they integrate feedback input from

stellate cells. Supporting the latter possibility is the fact that ELL tuning to envelopes is mediated in part by

small conductance calcium-activated potassium (SK) channels34 and that differences in expression of SK

channels across ELL pyramidal cells can explain differences in their responses to envelopes.41,53 Although

both basilar and non-basilar pyramidal cells express the SK1 channel subtype,66 only basilar pyramidal cells

express the SK2 channel subtype.66,67 Because our results show that feedback inactivation reduced hetero-

geneity primarily for low firing rate ON-type cells, this suggests that envelope response heterogeneities

might be because of differences in SK2 channel expression. SK2 channels tend to be located close to

the soma,66 which is close to the proximal apical dendrites where direct descending input terminates.47

Yet another possibility is that indirect descending input causes increased envelope response heterogene-

ity amongst superficial basilar pyramidal cells. Previous studies have shown that this feedback is diffuse and

thus is activated by stimuli impinging on a large fraction of the sensory epithelium,47,54,57 which is the case

for the envelope stimuli used in this study. However, the fact that inactivation of indirect descending input

tends to have overall similar effects on basilar and non-basilar pyramidal cells49,50,56 is at odds with our re-

sults although it should be noted that these previous studies used different stimuli.

Moreover, our results strongly suggest that feedback inactivation had at best minimal effects on envelope

response heterogeneity amongst all other five ELL pyramidal cell types including OFF-type low firing rate

cells. This suggests that response heterogeneity amongst these cell types is instead regulated by

ascending processes. Such could include differences in ion channel expression such as aforementioned

SK2 channels as well as differential input from local inhibitory interneurons. Overall, further studies are

needed to understand the mechanisms by which descending pathways increase envelope response het-

erogeneity within superficial basilar ELL cells, as well as understanding the nature of the mechanisms by

which ascending pathways regulate such heterogeneity for other ELL pyramidal cell types.

Decoding information transmitted by ELL pyramidal cell populations

Our results show that a decoding operation consisting of taking a weighted sum of neural activities could

accurately predict either the stimulus’ detailed timecourse or the animal’s behavioral responses. Moreover,

they demonstrate that, in both cases, response heterogeneity was beneficial as the decoder was more

robust to noise addition. However, there were important differences between the weights obtained

when optimizing to reconstruct the stimulus’ detailed timecourse, or the animal’s behavioral responses

independently across different stimulation conditions (i.e., the weights can change across conditions).

Indeed, such ‘‘local’’ decoders performed poorly at predicting the changes in behavior that result from

feedback inactivation, whereas a ‘‘global’’ decoder (i.e., the fish decoder) for which the weights are the

same across conditions instead correctly predicted these. As such, it is likely that the decoding that is tak-

ing place within the fish brain is better represented by the fish decoder. This is because the changes in

response properties and behavior that result from feedback inactivation occur on a timescale that is

much smaller than those at which the system can adapt.33 A recent study has shown that a ‘‘global’’ decoder

similar to that considered here is more representative of the strategies used by monkeys to discriminate

between different stimuli,68 suggesting that this is a general strategy by which the brain decodes informa-

tion transmitted by sensory neural populations.

Decoders consisting of taking weighted sums of neural activity are advantageous as they can convey much

more information than the simple summation of neural activities.15,69–74 Such decoders have furthermore

been used to either place a lower bound on the amount of information transmitted by neural populations or

used to predict behavior.68,75–77 However, a major issue concerns how these can be implemented within

the brain. First, because each neuron is assigned its own weight, these decoders must retain neural identity.

Second, it is clear that the brain does not actually perform a weighted sum of neural activities to generate

behavior, which implies that these are at best equivalent rather than actually equal to decoding by down-

stream brain areas. What operations are performed by the brain to decode ELL pyramidal cell activities to

generate behavior? A potential solution to this problem has been proposed recently by having the weights

proportional to response reliability.78 Our results suggest that the electrosensory system takes advantage

of this solution, as we found that weight magnitude was negatively correlated with firing rate. As such, one

possibility is that synaptic plasticity in downstream brain areas help regulate the weight assigned to each

ELL pyramidal cell based on its firing activity. Indeed, previous studies have found that synapses from ELL

neurons within the torus semicircularis display strong synaptic depression,79–82 which would attenuate syn-

aptic strength more for neurons with higher firing activities. Our results showing that weights are more
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robust to noise addition when activities are heterogeneous provide further evidence that learning pro-

cesses need not be fully accurate to reach an acceptable decoding performance. It is important to note

that such a decoding scheme assumes that the firing activities of all six ELL pyramidal cell types are

used to generate behavior. Such a scheme is physiologically realistic as all ELL pyramidal cells project to

the downstream TS.56 The exact connectivity pattern between ELL and TS is not known although

the fact that most TS neurons are ON-type,83 as opposed to there being equal numbers of ON- and

OFF-type ELL pyramidal cells,47 suggests that it is asymmetric. Further studies are needed to verify these

predictions and to understand how information carried by ELL pyramidal cell populations is decoded by

downstream brain areas to generate behavior.

Function of response heterogeneity

Our results demonstrate a novel function for descending pathways as they promote response heterogene-

ity within a specific ELL pyramidal cell type. As such, they provide evidence against the hypothesis that het-

erogeneity is merely the by-product of noisy developmental processes.22 For example, it is conceivable

that such processes would cause heterogeneity in the level of expression of various membrane conduc-

tances that would in turn causes heterogeneity in responses to sensory input. Our results, however,

show that this is not the case here, as response heterogeneities were strongly reduced after feedback inac-

tivation. Moreover, the fact that such reduction was only seen for a specific cell type provides strong evi-

dence that response heterogeneities amongst the ELL pyramidal cell populations are not ‘‘trivially’’

because of different cell types receiving differential amounts of descending input. This is because all six

cell types displayed levels of heterogeneity similar not only to each other but also similar to that of the

entire population. Rather, the fact that feedback inactivation specifically alters response heterogeneity

amongst ON-type low firing rate cells suggests that this cell type serves a specific function. One intriguing

possibility that sensory systems can regulate response heterogeneity to maximally take advantage of their

beneficial function. Indeed, previous studies have shown that feedback pathways are highly plastic.33,54,57

As such, it is conceivable that an important function of descending pathways is to adjust response hetero-

geneity in ON-type low firing rate cells based on stimulus statistics and behavioral context to maximize

their beneficial effects. Indeed, theoretical studies have shown that response heterogeneity is advanta-

geous by giving rise to more robust learning.21,22 Moreover, a recent study has shown that ELL pyramidal

cells can dynamically adapt their response properties such as to optimally encode stimuli with different sta-

tistics based on descending input.33 As such, one possibility is that descending pathways could regulate

heterogeneity level depending on coding range, such that a higher level of heterogeneity would be

observed for stimuli whose statistics require an increased coding range. Although theoretical studies pre-

dict that heterogeneity increases coding range,84 there is to our knowledge no experimental verification of

this prediction to date. Further studies using stimuli with different statistics that require different coding

ranges and investigating whether sensory adaptation gives rise to different levels of heterogeneity within

a given sensory neural population are needed to test this prediction.

Implication for other systems

It is likely that our results will be applicable to other systems. This is because, as mentioned above,

response heterogeneity within a given cell type is observed ubiquitously across systems and species. More-

over, the envelope stimuli considered here are behaviorally relevant across sensory modalities

(somatosensory:85; visual:86; vestibular:87,88; auditory:89). For example, envelopes found in natural auditory

stimuli (e.g., speech) are particularly necessary for perception.90,91 In addition, descending pathways are

found ubiquitously across systems and species and vastly outweigh feedforward input from the periph-

ery.92–95 Although such descending input has important functional roles such as predictive coding96 or

regulating how neural responsiveness to the stimulus,97,98 we provide here experimental evidence that

feedback regulates response heterogeneity, which serves a beneficial function by increasing decoding

robustness that is used by the electrosensory system. Our results are thus timely in that they show how de-

scending pathways mediate sensory neural responses to and perception of behaviorally relevant stimulus

features at the population level. Important commonalities between the electrosensory system and the vi-

sual, auditory, and vestibular systems of mammals (see99,100 for review) suggest that similar functions will be

found in these systems as well.

Limitations of the study

This study was carried out in the electrosensory system of weakly electric fish and, as such, the results may

not be applicable to other systems and species.
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97. Hupé, J.M., James, A.C., Payne, B.R.,
Lomber, S.G., Girard, P., and Bullier, J.
(1998). Cortical feedback improves
discrimination between figure and
background by V1, V2 and V3 neurons.
Nature 394, 784–787. https://doi.org/10.
1038/29537.

98. Chance, F.S., Abbott, L.F., and Reyes, A.D.
(2002). Gain Modulation from Background
Synaptic Input. Neuron 35, 773–782.

99. Clarke, S.E., Longtin, A., andMaler, L. (2015).
Contrast coding in the electrosensory
system: parallels with visual computation.
Nat. Rev. Neurosci. 16, 733–744. https://doi.
org/10.1038/nrn4037.

100. Bullock, T.H., Hopkins, C.D., Popper, A.N.,
and Fay, R.R. (2005). Electroreception
(Springer).

101. Hitschfeld, E.M., Stamper, S.A.,
Vonderschen, K., Fortune, E.S., and
Chacron, M.J. (2009). Effects of restraint and
immobilization on electrosensory behaviors
of weakly electric fish. Lab. Anim. Res. 50,
361–372.

102. Maler, L., Sas, E., Johnston, S., and Ellis, W.
(1991). An atlas of the brain of the weakly
electric fish Apteronotus Leptorhynchus.
J. Chem. Neuroanat. 4, 1–38.

103. Steinmetz, N.A., Aydin, C., Lebedeva, A.,
Okun, M., Pachitariu, M., Bauza, M., Beau,
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal procedures were approved by McGill University’s animal care committee and were performed in

accordance with the guidelines of the Canadian Council on Animal Care. Specimens of either sex of the

wave-type weakly electric fish Apteronotus leptorhynchus (N = 7) were used exclusively in this study. Ani-

mals were purchased from tropical fish suppliers and were housed in groups (2–10 individuals) at controlled

water temperatures (26–29�C) and conductivities (100–800 mS*cm�1) according to published guidelines.101

It was not possible to determine the age of the specimens used.

METHOD DETAILS

Surgery

Surgical procedures have been described in detail previously.35,36 Briefly, 0.1–0.5 mg of tubocurarine

(Sigma) was injected intramuscularly to immobilize the animals for electrophysiology experiments. The an-

imals were then transferred to an experimental tank (30 cm 3 30 cm x 10 cm) containing water from the

animal’s home tank and respired by a constant flow of oxygenated water through their mouth at a flow

REAGENT or RESOURCE SOURCE IDENTIFIER
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tubocurarine Sigma-Aldrich 93750

lidocaine AstraZeneca N/A

Deposited data

Datasets and analysis files this paper https://doi.org/10.6084/m9.figshare.19700185
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Experimental models: Organisms/strains

Apteronotus leptorhynchus local suppliers N/A

Software

Spike2 Cambridge Electronic Designs https://ced.co.uk

SpikeGLX Janelia Research Campus http://billkarsh.github.io/SpikeGLX

Phy2 CortexLab https://github.com/cortex-lab/phy

MATLAB Mathworks https://www.mathworks.com
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rate of 10 mL*min�1. Subsequently, the animal’s head was locally anesthetized with lidocaine ointment (5%;

AstraZeneca), the skull was partly exposed, and a small window (�5mm2) was opened over the hindbrain as

well as bilaterally over both midbrains in order to access nucleus praeeminentialis (nP) for drug application

as described below.35,36

Stimulation

The electric organ discharge of Apteronotus leptorhynchus is neurogenic, and therefore is not affected by

injection of curare. All stimuli consisted of amplitudemodulations (AMs) of the animal’s own EOD and were

produced by triggering a function generator to emit one cycle of a sine wave for each zero crossing of the

EOD as done previously.45 The frequency of the emitted sine wave was set slightly higher (�30 Hz) than that

of the EOD, which allowed the output of the function generator to be synchronized to the animal’s

discharge. The emitted sine wave was subsequently multiplied with the desired AM waveform (MT3 multi-

plier; Tucker Davis Technologies), and the resulting signal was isolated from the ground (A395 linear stim-

ulus isolator; World Precision Instruments). The isolated signal was then delivered through a pair of chlori-

dized silver wire electrodes placed 15 cm away from the animal on either side of the recording tank

perpendicular to the fish’s rostro-caudal axis at three different intensities (i.e., weak, intermediate, strong)

and, as such, impinged upon most if not all of the sensory epithelium. As such, it is expected that these

stimuli also impinged upon most if not the entire receptive field of each cell recorded from.45 This stimu-

lation protocol has been used by multiple previous studies (see, e.g.,52,58). We used stimuli consisting of a

5–15 Hz noise (4th order Butterworth) carrier waveform (i.e., AM) whose amplitude (i.e., envelope) was

further modulated sinusoidally at 0.1 Hz, 0.5 Hz, and 1 Hz. This constitutes a behaviorally relevant range

of frequencies which mimicked the envelope signals due to relative movement between two fish.28,29,31

We used a total of 9 different stimuli (3 envelope frequencies for each of weak, intermediate, and strong

contrasts, respectively) with each stimulus lasting one envelope period (i.e., 10 s, 2 s, and 1 s for 0.1 Hz,

0.5 Hz, and 1 Hz, respectively). To measure contrast, a small dipole was placed close to the animal’s skin

as done previously.45 Stimulus intensity was adjusted to produce changes in EOD amplitude that were

<15% (i.e., weak contrast; 9.1 G 2.9%), between 15% and 30% (i.e., intermediate contrast; 23.2 G 2.9%),

and >30% (i.e., strong contrast; 49.7G 20.3%) of the baseline level. It is important to realize that these con-

trasts are within the range that is routinely experienced by these fish under natural conditions.30 Each stim-

ulus (i.e., the carrier waveform and its envelope) was presented 20 times (i.e., there are 20 trials in total each

lasting one envelope period for each stimulus).

Recordings

Simultaneous extracellular recordings from ELL pyramidal cells weremade using Neuropixels probes (Imec

Inc.). We focused on pyramidal cells because these constitute the sole output neurons of the ELL.42 The

probe was angled at approximately 15 deg with respect to vertical and advanced between 1500 and

2000 mm into the ELL with reference to the probe tip. Neurons were recorded at depths between 200

and 1400 mm from the brain surface and as such most likely included neurons within the lateral and centro-

lateral segments.102 Recordings were digitized at 30 kHz using spikeGLX (Janelia Research Campus) and

stored on a hard drive for further analysis. Spikes were sorted using Kilosort103 and subsequently curated

using the phy application (https://github.com/cortex-lab/phy).104,105 Overall, we recorded and sorted from

a total of N = 134 ELL pyramidal cells across seven recording sessions. We note that not all neurons

recorded from were stable over the entire stimulation protocol, such that data for a given set of

stimuli was only available for a subpopulation (3 envelope frequencies at one contrast for session 1; 3 en-

velope frequencies at one contrast for session 2, 3 envelope frequencies for 3 contrasts for session 3, 3

envelope frequencies for 3 contrasts for session 4, 3 envelope frequencies for 2 contrasts for session 5, 3

envelope frequencies for 2 contrasts for session 6, and 3 envelope frequencies for 3 contrasts for session 7).

The average baseline firing rate was 20.5G 11.1 spks/s (4.1–64.7 spks/s), which is similar to that reported in

previous studies.56,104,106,107 We note that other cell types within the ELL (e.g., interneurons) typically

display firing rates higher than those of ELL pyramidal cells.108

Pharmacological inactivation

To study the effects of descending pathways, we recorded ELL pyramidal cells and behavior for control in

conjunction with their responses after bilateral lidocaine (1 mM) injection into nP. Drug application pipettes

were made using single-barrel borosilicate capillary glass tubes (OD 1.5 mm, ID 0.86 mm, A-M Systems)
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and pulled by a vertical micropipette puller (Stoelting) to a fine tip that was subsequently broken to attain a

tip diameter of approximately 5 mm. All pharmacological injections were performed approximately 1250–

1750 mmbelow the surface where the nP is located using a duration of 130 ms at�20 psi using a Picospritzer

(General Valve) as done previously.35,36,59 It is important to note that the effects of such inactivation start

within at most 30 s after injection and last throughout the experiment. Since the induction timescale is

much smaller than those associated with adaptation (e.g., sensory adaptation) in the electrosensory sys-

tem,33 it is very unlikely that the electrosensory can adapt to this procedure.

Behavior

Previous studies have shown that the animal’s EOD frequency follows the detailed timecourse of the enve-

lope stimulus.31,33 This behavioral response can easily be measured through a pair of electrodes located

near the animal’s head and tail. Specifically, the time-varying EOD frequency was obtained from the

zero crossings of the recorded EOD signal that were used to generate a binary sequence as described

above that was then low pass filtered to obtain the time-varying EOD frequency as done previously.33

Data analysis

All data analysis was performed offline using custom written codes in Matlab software (MathWorks). Sorted

and curated spike times for each neuron were converted into ‘‘binary’’ sequences sampled at 2 kHz. Spe-

cifically, the content of a given bin of width 0.5 ms was set to 1 if a spike occurred within it and 0 otherwise.

We note that, as the binwidth (0.5 ms) used is smaller than the refractory period of ELL pyramidal cells,47,109

there can be at most one spike occurring during any given bin.

To quantify neural responses and relate them to the stimulus envelope, we used linear systems identifica-

tions techniques to compute the sensitivity and preferred phase to each envelope frequency as done pre-

viously.34,35 We first averaged over the cycles of the stimulus and fitted a sinewave to the resultant cycle

histogram to determine the firing rate modulation. We then divided the amplitude of the firing rate mod-

ulation to the stimulus envelope amplitude observed in the dipole to obtain the gain to any given envelope

frequency. Our filtered firing rates were obtained using a first-order Butterworth filter with cut-off fre-

quencies of 0.15, 0.3, and 1.5 Hz for envelope frequencies 0.1, 0.5, and 1 Hz, respectively, as done in pre-

vious studies.53 The preferred phase was calculated from the sinusoidal fit to the phase histogram. Sensi-

tivity and preferred phase values for behavior (i.e., the time-varying EOD frequency) were calculated using

similar methods.31 We computed correlation coefficients between the filtered firing rates using the ‘‘corr-

coef’’ function in Matlab, which were used to quantify similarity between them. The distributions of corre-

lation coefficients obtained over all possible pairings were then obtained. Cells with sensitivity greater than

5 spks/s/(mV/cm) for the lowest envelope frequency (i.e., 0.1 Hz) under control conditions were deemed to

clearly respond to the envelope stimulus.

For visualization purposes, we used a Kaiser filter as done previously110 to filter the binary sequence and the

behavior to obtain estimates of the time dependent firing rate and time-varying EOD frequency, respec-

tively. The cut-off frequency was set to be 20% higher than the stimulus frequency.

We classified each cell as being either ON-type or OFF-type based on the spike triggered-average (STA) to

the 5-15 Hz carrier waveform as done previously.107,111,112 Specifically, ON- and OFF-type cells fire action

potentials during carrier up- and downstrokes, respectively (see Figure S1). As such, the slope of the STA

preceding the action potential will be positive for ON-type cells and negative for OFF-type cells. Analysis of

our data shows that ON- and OFF-type cells have opposite phase preferences with respect to the carrier

waveform (Figures S1A and S1B), which is expected based on previous studies.45 However, this is not the

case when the envelope stimuli considered here are concerned. Indeed, it is possible to find both ON- and

OFF-type cells that fire during carrier up- and downstrokes, respectively, but whose activities are both in

phase with respect to the envelope (Figure S1A). As such, the labels ON- and OFF-type solely refer to re-

sponses to the carrier and not to the envelope.

Moreover, we used the fact that there is a strong correlation between dendritic morphology and baseline

firing rate in vivo46,56 to distinguish between deep, intermediate, and superficial pyramidal cells. Specif-

ically, we classified cells whose baseline firing rates were less than 15 spks/s as ‘‘low firing rate’’ (nON: 29;
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nOFF: 21), cells whose baseline firing rates were greater than 25 spks/s as ‘‘high firing rate’’ (nON: 15; nOFF:

20), and the rest as ‘‘medium firing rate’’ (nON: 25; nOFF: 24). We note that these thresholds are similar to

those used in previous studies.47–50,106,113 Because of the strong negative correlation between dendritic

length and baseline firing rate, low firing rate cells will tend to have larger apical dendrites and thus likely

correspond to the ‘‘superficial’’ class, while high firing rate cells will tend to have larger apical dendrites and

thus likely correspond to the ‘‘deep’’ class. Finally, medium firing rate cells will tend to have apical dendrites

whose length will be between that of the other two and thus likely correspond to the ‘‘intermediate’’ class.

Optimal decoder

We used a weighted sum of filtered firing rates to predict either the envelope stimulus or behavioral

response from the activities of M neurons. Specifically, in each case, weights were chosen such as to mini-

mize the root-mean-square error (RMSE) between the predicted and actual waveforms. For each condition

(i.e., one envelope frequency delivered at a given contrast), an analytical formula for the weights can be

obtained using the calculus of variations114:

w! = Cov� 1ðfRÞ CfR SD
���!

(Equation 1)

where w! = ðw1 . wMÞT and wi is the weight of neuron i. Here Cov� 1ðfRÞ is the inverse of the filtered firing

rate covariance matrix, while CfR SD
���!

= ðCfR1SD . CfRNSDÞT is the vector of cross-correlations between the trial-

averaged filtered firing rate of neuron i, fRi, and S which is either the trial-averaged envelope stimulus wave-

form or the behavioral response (i.e., the time-varying EOD frequency). Note that the superscript ‘‘T’’ de-

notes transposition, while C.D denotes averaging over time. In practice, the mean of each trial-averaged

filtered firing rate, as well as those of the trial-averaged envelope stimuli and behavioral responses were

subtracted to compute weights and evaluate decoding performance. This decoder is considered ‘‘local’’

because the weights are optimized (and thus can be different) for each of the nine conditions (i.e., three

different envelope frequencies at three different contrasts). Moreover, the weights were computed using

the first 50% (i.e., the first ten trials) and performance was evaluated on the other 50% (i.e., the other ten

trials) of the dataset. The performance of the decoder was estimated from the inverse of the RMSE. It is

important to note that this optimal decoder can correctly predict behavioral responses when the weights

are obtained for each condition. However, using the weights obtained for a given condition (e.g., 0.5 Hz

envelope frequency at intermediate contrast) to predict behavioral responses for a different stimulation

condition gave poor results overall (Figure S8).

Fish decoder

Because the optimal decoder described above could not successfully predict changes in behavioral re-

sponses following feedback inactivation (Figure S7), we instead considered a ‘‘global’’ decoder for which

the weights are the same for all nine conditions to predict behavior. In this case, the weights were chosen

such as to minimize the sum of the RMSEs obtained for each condition. Because it is no longer possible to

obtain an analytical formula for the weights in this case, we used a differential evolution algorithm that is

described below in order to find the weights numerically.105,115 The weights were otherwise obtained simi-

larly to what is described above. In particular, the evolution algorithm was trained using the first 50% of tri-

als using control (i.e., before feedback inactivation) only. The performance of the decoder was then tested

on the other 50% of trials before feedback inactivation and all trials obtained after feedback inactivation.

We found that this ‘‘global’’ decoder could correctly predict the changes in behavior resulting from feed-

back inactivation (Figure S7), indicating that this decoding operation is representative of what occurs in the

fish brain. We thus refer to this decoder as the ‘‘fish decoder’’ in the text.

Differential evolution algorithm

The evolution algorithm consists of having the weights ‘‘evolve’’ over a series of iterations (i.e., ‘‘genera-

tions’’) in order to minimize the sum of RMSEs for all nine conditions. In keeping with the notation used

in previous studies,105,115 we denote Xr
k as the weight of neuron r for generation k. First, the population

of weights is randomly initialized with values that are uniformly distributed with zeromean. For each neuron

at every generation, a new weight is constructed by two operations consisting of "differentiation" and

"recombination". In differentiation, the new weight of neuron r vector Xr
k;trial is built by combining the

weights of three other neurons Xr1
k , X

r2
k , and Xr3

k , where r1 s r2 s r3:

Xr
k;trial = Xr1

k +
�
Xr2
k � Xr3

k

�
Fcr = 1;.;M (Equation 2)
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where the differential weight F = 0.5, and the three other neurons are chosen based on a probability dis-

tribution that is preferentially weighted for more fit (i.e., lower fitness score) individuals:

pr
k = l exp

0
B@ � Ffit

�
Xr
k

�
max
cj

�
1 � Ffit

�
Xj
k

��
1
CAcr = 1;.;M (Equation 3)

where l is a normalization constant such that the sum of probability values is equal to one. Recombination is

then performed as follows:

Xr
mut =

(
Xr
k;trial; if u <CR

Xr
k ;otherwise

cr = 1;.;N (Equation 4)

where u is a random variable generated from a uniform distribution U(0,1) and with crossover probability

CR = 0.9. Selection is finally performed to produce the next generation via:

Xr
k+1 =

(
Xr
mut ; if Ffit

�
Xr
mut

�
<Ffit

�
Xr
k

�
Xr
k ;otherwise

cr = 1;.;N (Equation 5)

In this study, the fitness function was defined as:

Ffit

�
Xr
k

�
=

X9

i = 1

RMSEi (Equation 6)

where RMSEi is the mean square error based on the actual behavioral responses and those predicted from

the weights Xr
k for condition i. The evolution algorithm was terminated if the change in population discrim-

ination performance for the previous 20 iterations was on average below a threshold value of 0.001, and the

weights were taken as those obtained for the last generation.

Noise and decoding performance

To quantify the robustness of the decoders described above, we added noise to the weights and quan-

tified the change in decoding performance. Specifically, independent and normally distributed random

variables with zero mean and standard deviation s (i.e., the noise intensity) were added to the weights

(i.e., the optimal weights) that minimized either the RMSE (in the case of the optimal decoder) and the

sum of RMSEs over all conditions (in the case of the fish decoder). The RMSEs or the sum of RMSEs were

then recomputed using the weights with noise added, and the effect on performance was quantified

using:

1003

�
1
=RMSE

�
s�

1
=RMSE

�
s = 0

(Equation 7)

where ‘‘RMSE’’ is either the individual RMSE or the sum of RMSEs. The numerator corresponds to the per-

formance obtained with the addition of noise with noise intensity s, while the denominator corresponds to

the performance obtained with no noise added (i.e., s = 0). In practice, performance with noise added was

averaged over 30 realizations of the noise for each intensity. Because the weights obtained after noise addi-

tion are no longer optimized, the performance of the resulting decoder will be less than that obtained when

no noise is added, implying that the ratio in Equation 7 is always less than one. It is also expected that, as

noise intensity increases, RMSE will increase and thus performance will decrease. Thus, we computed the

rate at which performance decreases by fitting a straight line to log-transformed performance as a function

of noise intensity obtained before and after feedback inactivation in the case of the fish decoder. In the case

of the optimal decoder, the rate at which performance decreases was obtained by fitting a straight line to

the performance as a function of the log-transformed noise intensity obtained before and after feedback

inactivation. Note that, for either of the fish or optimal decoders, the data obtained before and after feed-

back inactivation were processed in the same manner. The difference in the rate of decrease obtained

before and after feedback inactivation was computed for each dataset, and statistical significance was as-

sessed using a Wilcoxon signed rank test.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Values are reported as mean G SEM throughout. Differences between distributions were assessed using

Kolmogorov-Smirnov tests unless otherwise stated. In general, since data was obtained from the same ELL

pyramidal cells before and after inactivation, a paired t-test was used when data was normally distributed as

assessed from a Lilliefors test using the function ‘‘lillietest’’ in MATLAB. Otherwise, a Wilcoxon signed rank

test was performed on the differences (i.e., that between values obtained before and after feedback inac-

tivation). Pearson’s correlation coefficient values were computed using the function ‘‘corrcoef’’ in MATLAB.
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