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Abstract

Understanding how neural populations encode sensory stimuli remains a central problem in

neuroscience. Here we performed multi-unit recordings from sensory neural populations in

the electrosensory system of the weakly electric fish Apteronotus leptorhynchus in response

to stimuli located at different positions along the rostro-caudal axis. Our results reveal that

the spatial dependence of correlated activity along receptive fields can help mitigate the del-

eterious effects that these correlations would otherwise have if they were spatially indepen-

dent. Moreover, using mathematical modeling, we show that experimentally observed

heterogeneities in the receptive fields of neurons help optimize information transmission as

to object location. Taken together, our results have important implications for understanding

how sensory neurons whose receptive fields display antagonistic center-surround organiza-

tion encode location. Important similarities between the electrosensory system and other

sensory systems suggest that our results will be applicable elsewhere.

Author summary

Despite decades of research, the functional roles of neural heterogeneities towards under-

standing how sensory inputs are encoded by neural populations remains poorly under-

stood. Here we use multi-unit recordings from sensory neural populations using high-

density arrays (i.e., Neuropixels probes) and mathematical modeling to understand how a

heterogeneous neural population with antagonistic center-surround receptive field orga-

nization encodes object location. We recorded the activities of pyramidal cells within the

electrosensory lateral line lobe of weakly electric fish in response to a prey-like stimulus.

Overall, we found that the receptive fields were highly heterogeneous even when they

overlap considerably. We also found that correlated trial-to-trial variabilities of neural

responses (i.e., spike-count correlations) varied along the receptive field. Specifically, cor-

relation magnitude was highest towards the receptive field edges and dropped sharply

near the midpoint. Using Fisher information analysis, we determined that the spike-count

correlations introduced redundancy, but that the deleterious effect was in part mitigated

by their spatial dependence. To better understand how heterogeneities within the
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receptive field, as well as spatially dependent correlations, influence information transmis-

sion, we built a mathematical model. Overall, our model reproduced experimental data

and predicted that the level of heterogeneity in receptive field position seen experimentally

is optimal for information transmission. Given that there are important parallels between

the electrosensory system and other senses (e.g., vision), it is likely that our results will be

applicable elsewhere.

Introduction

Understanding how the activities of neural populations are combined in the brain remains an

important area of research in neuroscience. Indeed, population coding has been studied exten-

sively, both experimentally and theoretically [1–11]. Yet, despite decades of work, how popula-

tions of neurons represent sensory input remains poorly understood [2]. This is, on the one

hand, due to the fact that neurons display large heterogeneities in their responses to sensory

input [12–14], which can under some circumstances benefit information transmission by

increasing the coding range [1, 15–24]. On the other hand, correlations between neural activi-

ties in the form of signal correlations (i.e., correlations between the average responses of neu-

rons to stimuli) as well as spike-count correlations, also known as noise correlations (i.e.,

correlations between the trial-to-trial variabilities of neurons), can strongly influence informa-

tion transmission by neural populations [3, 6, 10, 11, 25]. Further complexity arises because

correlations are highly plastic and are regulated by attention [26, 27], single neuron firing

properties [28], and differential stimulus features corresponding to differential behavioral con-

texts [29–31] (see [32] for review). Here we investigated how sensory neural populations

encode information about prey location, which is crucial for informing behavior thereby

ensuring survival.

Gymnotiform wave-type weakly electric fish are a tractable model system for understanding

the effects of neural heterogeneities and correlations on population coding due to their well-

characterized anatomy [33] and physiology [34–37]. These fish generate a quasi-sinusoidal

electric field around the body through the electric organ discharge (EOD) and can sense

amplitude modulations of this field through an array of electroreceptors on the skin surface

that synapse onto pyramidal cells within the electrosensory lateral line lobe (ELL) [38]. ELL

pyramidal cells have antagonistic center-surround receptive field organization [39, 40] and dis-

play large heterogeneities in terms of cell morphology, distribution of ion channels, as well as

firing properties and responses to sensory input (see [41] for review). Behavioral studies have

shown that these fish can effectively detect and capture prey even though the electric signals

that prey generate are very faint and only impinge on a small fraction of the sensory epithelium

[42–45]. Previous studies have looked at the neural mechanisms mediating both prey detection

[46–49] and estimation of location [50, 51]. However, these studies were either conducted

using single unit recordings or used models that did not include the full characteristics of ELL

pyramidal cell receptive fields in that only the center portion was considered. Thus, the effects

of the full receptive field structure as well as how correlations between the activities of ELL

pyramidal cells influence their ability to transmit information as to prey location remains

unknown to date.

Here we used high-density electrode arrays to record the activities of ELL pyramidal cells

simultaneously in response to local stimuli located at different positions along the fish’s rostro-

caudal axis. Overall, we found that ELL pyramidal cells displayed heterogeneous receptive

fields and that spike-count correlations between their activities were highly spatially
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dependent. Specifically, correlation magnitude was highest at the edges and lowest at the mid-

dle of the region of receptive field overlap. Computing Fisher information revealed that suffi-

cient information as to stimulus location was contained in the activities of populations of ~19

neurons. While spike-count correlations introduced redundancy and lowered information

transmission, their spatial dependence helped offset such redundancy as compared to spatially

independent correlations. A mathematical model that included key aspects such as observed

heterogeneities in receptive fields and spatially dependent correlations reproduced experimen-

tal results. Varying the level of receptive field heterogeneity in the model revealed that infor-

mation is optimized for a given level that is similar to that observed experimentally. Taken

together, our results show that several mechanisms such as receptive field heterogeneity and

the spatial dependence of correlations help increase the information transmitted by ELL pyra-

midal cell populations about object position. Because of important similarities between the

electrosensory system and other systems (e.g., visual) [52], it is likely that our results will be

applicable elsewhere.

Results

Here we investigated how spike-count correlations and neural heterogeneities impact the cod-

ing of spatial position by ELL pyramidal cell populations. To mimic the electric image caused

by a prey stimulus, we delivered a 4 Hz sinusoidal amplitude modulation of the animal’s own

EOD through a small dipole located near the skin. The dipole was moved along the animal’s

rostro-caudal axis (Fig 1, upper right), only stimulating a small portion of the sensory

Fig 1. Experimental setup. The simultaneous activity of a population of neurons is recorded with a Neuropixels probe while the fish is stimulated locally with a

4 Hz prey-mimic amplitude modulation (upper right: EOD black, AM orange). Example raw voltage traces, with the spiking activity of each neuron labeled in a

different color, is shown on the left. The dipole delivering the stimulus is placed at positions along the length of the fish within the receptive fields of the

neurons being recorded (schematic receptive field on fish’s skin: center in dark blue, surround in lighter blue). The electric image of the stimulus delivered

through the dipole electrode projects onto the surface of the fish’s skin diffusely (white circle). The electrosensory circuitry of the brain (bottom right) is

composed of feedforward (black arrows) and feedback pathways (red arrows), with the ELL highlighted in yellow. EAs, electrosensory afferents; ELL,

electrosensory lateral line lobe; TS, torus semicircularis; nP, nucleus praeeminentialis; EGP, eminentia granularis posterior.

https://doi.org/10.1371/journal.pcbi.1010938.g001
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epithelium per stimulus position as done previously [39]. Simultaneous recordings from mul-

tiple ELL pyramidal cells were achieved by a high-density electrode array (Neuropixels probe;

Fig 1, left) that was oriented to record from ELL pyramidal cells whose receptive field centers

were tuned to approximately the same position on the fish’s rostro-caudal axis (see Materials

and Methods). The dipole was then moved at 0.5 cm intervals along the fish’s rostro-caudal

axis and the stimulus repeated, which allowed us to study how much information about spatial

location is carried by the spiking activities of a population of ELL pyramidal cells. As men-

tioned above, ELL pyramidal cells receive input from electroreceptor afferents and project to

higher brain areas that mediate perception and behavior (Fig 1, lower right; black arrows).

Additionally, ELL pyramidal cells receive large amounts of descending input from higher

brain areas [53] (Fig 1, lower right; red arrows).

ON and OFF-type ELL pyramidal cells display antagonistic center-

surround receptive fields

We first mapped the receptive fields of the recorded neurons as a function of spatial position

along the rostro-caudal axis (Fig 2A). Examples of spiking activity obtained during 4 consecu-

tive stimulus trials (orange) at three different spatial positions are shown for typical ON- and

OFF-type neurons (Fig 2B and 2C: left, middle and right; green and purple curves, respec-

tively). For the example ON-type neuron, spiking occurred primarily during the positive half-

cycle of the sinusoidal stimulus within the receptive field center, but occurred instead during

the negative half-cycle within the surround (Fig 2B). In contrast, for the example OFF-type

neuron, spiking occurred primarily during the negative half-cycle of the sinusoidal stimulus

within the receptive field center and during the positive half-cycle within the surround (Fig

2C). Note that we only considered responses during the positive half-cycle of the stimulus, as

these mimic the increase in EOD amplitude caused by prey stimuli [42]. As such, receptive

fields of ON and OFF-type neurons displayed opposite shapes (compare green curve in Fig 2B

to purple curve in Fig 2C). Fig 3 shows the receptive fields of 32 neurons recorded from simul-

taneously, grouped into ON-type (top) and OFF-type (bottom). While receptive fields were

located at more or less the same position and therefore largely overlapped, they still displayed

large heterogeneities even for cells of a given type (e.g., ON-type cells).

ELL pyramidal cells display spatially dependent spike-count correlations

Knowing the shape of the receptive field is not sufficient to quantify information transmission

by neural populations. This is because information also depends on correlations between neu-

ral responses as mentioned above. As such, we computed spike-count covariance matrices

between neural responses for each stimulus position (see Materials and Methods). Overall, we

found that covariance varied as a function of stimulus position (i.e., was spatially dependent)

in a consistent manner across recording sessions. Fig 4 shows three example covariance matri-

ces obtained for three different spatial positions. When the stimulus was delivered in the mid-

dle of the receptive field overlap, where there is primarily overlap between the receptive field

centers, we found weak covariation between neural responses (Fig 4, center). In contrast,

when the stimulus was delivered towards the edges of the receptive field overlap, where there

is primarily overlap between the receptive field surrounds, the covariation was larger in magni-

tude (Fig 4, left and right panels). As such, covariance magnitude was significantly lower when

stimulating near the overlap middle than at the overlap edges (Fig 4, inset of center panel;

Kruskal-Wallis: p = 1.4�10−52; left-center: p = 3.5 � 10−51; left-right p = 4.8 � 10−6; center-right

p = 1.7 � 10−24).
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Why are covariances between neural responses spatially dependent? In theory, changes in

covariance could be due to either changes in correlations between neural responses or changes

in the variances of the responses themselves, as the covariance is the product of the correlation

coefficient and the variance (see Materials and Methods). Thus, we computed correlations

Fig 2. Mapping the receptive fields of ON and OFF-type pyramidal cells. (A) Schematic of a receptive field with the

center (blue)—surround (red) organization and stimulation paradigm. A dipole delivering a local stimulus (white

circles) is systematically moved from rostral to caudal positions to map the receptive fields of the recorded neurons. (B)

Top: Neural responses from an example ON-type pyramidal cell to stimulation at different locations on the rostro-

caudal axis (spike train, green). The positive half-cycle of each repetition, or trial, of the stimulus (orange) was

analysed. The grey bands cover the negative half-cycle of the stimulus. Bottom: Trial-averaged firing rate (green) as a

function of stimulus position (i.e., the receptive field) for this example cell, with shaded error bars indicating the SEM.

The responses corresponding to the three positions shown in (A) are marked by arrows and black dots. The receptive

field center and surround were defined as the regions in space for which the firing rate was either greater or lesser than

the baseline firing rate (horizontal black line), respectively. (C) Same as (B), but for an example OFF-type pyramidal

cell (purple). In this case the receptive field center and surround were defined as the regions in space for which the

firing rate was either lesser or greater than the baseline firing rate, respectively.

https://doi.org/10.1371/journal.pcbi.1010938.g002
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between neural responses (i.e., spike-count correlations; S1 Fig). Further, because previous

studies have shown that correlations between neural responses are strongly influenced by cor-

relations between the baseline activities (i.e., in the absence of stimulation) [29, 54], we investi-

gated whether, and if so, how the spatial dependence of correlations under stimulation varies

as a function of baseline correlations. Overall, we found that baseline correlations varied over a

wide range and decayed in magnitude as a function of the distance between neurons (Fig 5A;

see S2 Fig for the raw baseline correlation values), which agrees with previous results [29, 54].

By applying a threshold at |rBL| = 0.15 (Fig 5A, red line), we separated neural pairs into those

with high baseline correlation magnitude (i.e., “high |rBL| pairs”) and those with low baseline

correlation magnitude (i.e., “low |rBL| pairs”). We then found that the spatial dependence of

the correlation was greater for high |rBL| pairs than for low |rBL| pairs (Fig 5B and 5C; Wil-

coxon rank sum test for b: p = 2.1 � 10−128). Indeed, for high |rBL| pairs, spike-count

Fig 3. Example receptive fields from ON and OFF-type ELL pyramidal cell populations. Color plot showing the

receptive fields of 32 simultaneously recorded neurons (14 ON-type neurons listed first, followed by 17 OFF-type

neurons) visualized as the change (Δ) in normalized firing rate as a function of stimulus position.

https://doi.org/10.1371/journal.pcbi.1010938.g003

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 6 / 29

https://doi.org/10.1371/journal.pcbi.1010938.g003
https://doi.org/10.1371/journal.pcbi.1010938


correlations at the overlap edges approached the baseline value while those at the overlap mid-

dle were near zero, leading to a strong spatial dependence (Fig 5C, left). In contrast, for low |

rBL| pairs, spike-count correlations were near zero for all locations, leading to weak or no spa-

tial dependence (Fig 5C, right). Finally, we quantified spike-count correlation magnitude in

regions of center-center (i.e., overlap middle), center-surround, and surround-surround (i.e.,

overlap edges) overlap (blue, pink, and green, respectively) for all pairs across datasets. Overall,

the correlation distribution for center-center overlap had a significantly lower median than

that computed for center-surround which in turn was lower than that of surround-surround

overlap when considering high |rBL| pairs only (Fig 5D, left; Kruskal-Wallis: p = 1.8 � 10−131;

cc-cs: p = 9.7 � 10−10; cc-ss: p = 9.6 � 10−10; cs-ss: p = 9.6 � 10−10). In contrast, when considering

low |rBL| pairs only, all three distributions overlapped (Fig 5D, right; Kruskal-Wallis: p = 0.89;

cc-cs: p = 0.94; cc-ss: p = 0.89; cs-ss: p = 0.99). Thus, our results show that the spatial depen-

dence of the covariance is due to the spatial dependence of spike-count correlations and that

neural pairs with high baseline correlations display the greatest spatial dependence.

Information transmission by ELL pyramidal cell populations

We computed the Fisher information in order to quantify the accuracy by which an optimal

linear decoder can estimate the location of the stimulus given the recorded activities of ELL

pyramidal cells. The Fisher information is the inverse variance of the optimal linear estimator

and is calculated from the derivatives of the receptive fields as well as the covariance matrix for

Fig 4. ELL pyramidal cells display spatially dependent covariance. Covariance matrices (bottom panels) obtained for three different positions (top; receptive

field schematic for two overlapping neurons: centers in blue, surrounds in red). Pairwise covariances at stimulus positions near the edges of where the receptive

fields overlap (left and right panels), where the surrounds of most neurons are activated, are larger than in the middle of the receptive field overlap (center

panel), where the centers of most neurons are activated. (Note: the variances along the diagonal are not shown to emphasize the spatial dependence of the

covariances.) Center inset: The distribution of covariance magnitudes is significantly different across the three stimulus positions (Kruskal-Wallis:

p = 1.4�10−52; left-center: p = 3.5 � 10−51; left-right p = 4.8 � 10−6; center-right p = 1.7 � 10−24). “�” indicates statistical significance.

https://doi.org/10.1371/journal.pcbi.1010938.g004
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Fig 5. Spatial modulation of spike-count correlations depends on the level of baseline correlations. (A) Magnitude

of pairwise baseline correlations (|rBL|; black circles) as a function of the relative distance between neurons with a fitted

exponential curve (black line). A threshold of |rBL| = 0.15 (red line) was used to separate neural pairs into high and low

|rBL| pairs. (B) The spatial depth of modulation (max.-min.) of the spike-count correlations (|rSC|) is significantly

higher for high |rBL| pairs than for low |rBL| pairs across recording sessions (Wilcoxon rank sum test for b: p = 2.1 �

10−128; outliers were removed as detailed in the Materials and Methods section). (C) Spatial dependence of the |rSC| is

shown for four example pairs, two same-type pairs (OFF-OFF type pairs) and two opposite-type pairs (ON-OFF type

pairs) each with low and high |rBL|. For high |rBL| pairs (left column), the spatial dependence of the |rSC| (black) is

determined by the region of receptive field overlap (receptive field neuron 1 blue, receptive field neuron 2 purple): in

regions where the surrounds of both neurons overlap, the |rSC| approaches |rBL| (green background); in regions where

the surround of one neuron overlaps the center of the other, the |rSC| is intermediate (pink background); and in

regions where there is center-center overlap, the |rSC| approaches zero (blue background). In contrast, for low |rBL|

pairs of either type (right column), there is minimal or no spatial modulation and the magnitude hovers near zero. (D)

Distributions of |rSC| for regions of center-center (blue), center-surround (pink) and surround-surround overlap

(green) pooled over all pairs across all recording sessions: for high |rBL| pairs (left) the three distributions are

significantly different (Kruskal-Wallis: p = 1.8 � 10−131; cc-cs: p = 9.7 � 10−10; cc-ss: p = 9.6 � 10−10; cs-ss: p = 9.6 � 10−10);

however, they are not significantly different for low |rBL| pairs (right; Kruskal-Wallis: p = 0.89; cc-cs: p = 0.94; cc-ss:

p = 0.89; cs-ss: p = 0.99). “�” indicates statistical significance; ns, not significant; c, center; s, surround.

https://doi.org/10.1371/journal.pcbi.1010938.g005
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each spatial location (Fig 6A; see Materials and Methods). In order to investigate the role of

spatially dependent covariance on information transmission, we considered three different

scenarios shown in Fig 6B. In the first scenario, covariances were dependent on position as

observed in the data (i.e., spatially dependent; Fig 6B, left). In the second scenario, we set all

off-diagonal elements of the covariance matrix to zero, thereby effectively eliminating spike-

count correlations (i.e., independent; Fig 6B, middle). In the third scenario, we rendered the

spike-count correlations spatially independent by replacing the spatially dependent correla-

tions for each neural pair with the baseline correlation of that pair (Fig 6B, right) and then

recalculated the covariance matrices using these values. Our results show that the Fisher infor-

mation was greatest around the middle of the population of receptive fields (Fig 6C) for all sce-

narios considered. However, while Fisher information values were lower with spatially

dependent correlations than without correlations (Fig 6C, compare blue and red), Fisher infor-

mation values obtained with spatially independent correlations were even lower (Fig 6C, com-

pare blue and purple). Therefore, while spatially dependent spike-count correlations had an

overall detrimental effect on information transmission through increased redundancy, the spa-

tial dependence greatly attenuated this redundancy and was thus beneficial. The relationship

between Fisher information values computed with spatially dependent correlations, without

correlations (i.e., independent), and with spatially independent correlations were seen for all

neural population sizes (Fig 6D). Indeed, in all cases the Fisher information increased linearly

as a function of population size with values obtained for spatially dependent correlations

below those obtained for no correlations and above those obtained for spatially independent

correlations (Fig 6D inset; one-way ANOVA: df = 12, p = 3.8 � 10−6; SD—I: p = 6 � 10−4; SD—

SI: p = 6.3 � 10−3; I—SI: p = 2.8 � 10−6).

To estimate the precision of an optimal linear decoder at determining the stimulus’ location

along the fish’s rostro-caudal axis, we computed the square root of the Cramér-Rao bound and

compared this value to the size of a typical prey. Overall, the square root of the Cramér-Rao

bound was below the prey radius (Fig 6E), indicating that there is enough information to accu-

rately estimate the location of the prey. A plot of the root Cramér-Rao bound as a function of

population size revealed that a population of ~19 neurons is sufficient to accurately estimate

prey location (Fig 6F).

Modeling ELL population spiking activities

So far, we have shown that spatially dependent correlations can limit the detrimental effects

that would be observed had they been spatially independent, and that information as to stimu-

lus location is available from populations of ~19 neurons. In order to better understand how

different characteristics of ELL pyramidal cell responses affect information transmission, we

built a mathematical model that incorporated heterogeneities in receptive fields as well as spa-

tially dependent correlations (Fig 7A, see Materials and Methods). Specifically, we modeled a

population of neural receptive fields (N = 32, the mean population size across recording ses-

sions), each built as a difference of Gaussians with the receptive field position, width and

amplitude drawn from distributions fitted to the data (S3 Fig). We then fit the variance as a lin-

ear function of the firing rate and the baseline correlations as a function of relative distance

with an exponential function (S4 Fig). Finally, we modeled the spatially dependent spike-

count correlations as a function of receptive field center overlap and baseline correlations (S5

Fig). This generates spatially dependent covariance matrices similar to the data (compare S6

Fig with Fig 4). Overall, we found that this model could qualitatively reproduce the depen-

dency of the Fisher information on position and population size with values obtained for spa-

tially dependent correlations below those obtained for no correlations and above those

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 9 / 29

https://doi.org/10.1371/journal.pcbi.1010938


Fig 6. Redundancy reduction by spatially dependent spike-count correlations. (A) Schematic for calculating Fisher

information (FI) from the neural responses (i.e., the derivative of the neural receptive fields and the covariance

matrices). (B) Schematic of the different correlation scenarios used when calculating the Fisher information: the intact

data which includes spatially dependent rSC (SD: left, blue), the independent case where all correlations are set to zero

(I: middle, red) and the spatially independent case where the correlation values at all stimulus positions for a given pair

are set to the baseline correlation for that pair (SI: right, purple). (C) Fisher information as a function of stimulus

position for the three correlation scenarios, averaged over recording sessions with a population size of 28 neurons. The

dip in Fisher information at position zero is caused by the slopes of many neurons in the population approaching zero

as the firing rates reach their maximum. The light grey bar indicates the region of peak information and the stimulus

positions over which the mean Fisher information is calculated for (D). (D) Fisher information (<FI>) increases

linearly with population size for all three correlation scenarios over recording sessions. Inset: The boxplot of the Fisher

information at a population size of 28 neurons, normalized by the Fisher information at a population size of one

neuron for each recording session, shows that the three different correlation scenarios are significantly different (one-

way ANOVA: df = 12, p = 3.8 � 10−6; SD—I: p = 6 � 10−4; SD—SI: p = 6.3 � 10−3; I—SI: p = 2.8 � 10−6). (E) By

transforming the Fisher information to the root Cramér-Rao bound (
ffiffiffiffiffiffiffi
CR
p

, blue), the standard deviation of the prey

location estimate can be compared to the radius of the average prey captured by the fish (0.15 cm, green line). The grey

box indicates the range of positions over which averaging is done for (F). (F) The averaged root Cramér-Rao bound

(<
ffiffiffiffiffiffiffi
CR
p

>) vs neural population size decreases to below the average radius of prey at a population of ~19 neurons.

Shaded error bars indicate the SEM in (C-F).

https://doi.org/10.1371/journal.pcbi.1010938.g006
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obtained for spatially independent correlations (compare Figs 7B and 7C to 6C and 6D,

respectively; Kruskal-Wallis for 7c: p = 8 � 10−17; SD—I: p = 3.3 � 10−6; SD—SI: p = 6.2 � 10−4; I

—SI: p = 2.7 � 10−17).

We used the model to investigate the impact of neural heterogeneity on the Fisher informa-

tion by varying individual parameters (Fig 8). First, we varied the heterogeneity of receptive

field position, starting with the receptive fields completely overlapping and gradually increas-

ing the spread so that the receptive fields became more evenly distributed (Fig 8A left and mid-

dle panels, respectively). To do so, the standard deviation of the distribution from which the

receptive field position is drawn from was increased (see Materials and Methods). Given a

fixed population size, the Fisher information increases to a maximum before decaying as the

position heterogeneity increases (Fig 8A right panel). Interestingly, the maximum is located

close to the level of heterogeneity seen experimentally (black vertical line). This result can be

explained by the contribution of individual neurons to the Fisher information as receptive

field position is varied (S7A Fig). The rate code assumes that a change in the stimulus will be

reflected in a change in firing rate, therefore, a neuron is most informative in the stimulus

space where a small change in the stimulus causes a relatively large change in firing rate, in

other words where the derivative of the receptive field is largest. For the neurons studied here,

the derivative of the receptive field peaks twice on either side of the receptive field center

Fig 7. Modeling receptive field heterogeneities and spatially dependent spike-count correlations. (A) Schematic of

the model in which modeled neural receptive fields (left, colored curves) and spatially dependent pairwise spike-count

correlations (right, grey curves) are used to calculate the spatially dependent Fisher information. (B) Fisher

information visualized as a function of stimulus position for spatially dependent (SD: blue), independent (I: red) and

spatially independent correlation scenarios (SI: purple). (C) Fisher information (<FI>) as a function of neural

population size (averaged between -0.5 and 0.5 cm). Though quite small, the shaded error bars indicate the SEM in (B

& C). Inset: Fisher information at the neural population size of 28 neurons, normalized by the Fisher information at a

population size of one neuron, is significantly different for the three correlation scenarios: spatially dependent,

independent, and spatially independent (Kruskal-Wallis: p = 8 � 10−17; SD—I: p = 3.3 � 10−6; SD—SI: p = 6.2 � 10−4; I—

SI: p = 2.7 � 10−17). “�” indicates statistical significance.

https://doi.org/10.1371/journal.pcbi.1010938.g007
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position. This means that the Fisher information of a single neuron calculated as a function of

the receptive field position parameter will peak twice when the steepest portion of either the

rostral or caudal side of the receptive field aligns with the 0 cm position. Therefore, the optimal

receptive field position parameter space includes a spread of receptive fields that takes advan-

tage of this property.

Next, we fixed the position heterogeneity at the optimal value and kept the amplitude con-

stant but varied the heterogeneity of the receptive field widths by increasing the standard devi-

ation of the distribution from which they are drawn (see Materials and Methods). Examples of

populations with low and high width heterogeneity can be seen in the left and middle panels of

Fig 8B. There is a gradual trend of increased Fisher information with increased width hetero-

geneity. This trend can be explained by the differential contributions of narrow receptive fields

vs wide receptive fields to Fisher information. The Fisher information increases when the

derivative of the receptive field is larger, therefore, given a fixed amplitude, the derivative of a

Fig 8. Receptive field heterogeneities can optimize information transmission. (A) The level of heterogeneity in terms of the receptive field position was

varied from low (left) to high (middle), emphasized by the black arrows. The right panel shows the Fisher information as a function of receptive field position

heterogeneity with (blue) and without (red) spatially dependent spike-count correlations, as well as with spatially independent spike-count correlations

(purple). Heterogeneity was quantified as the standard deviation of the distribution from which the receptive field position for each neuron is drawn. Though

small, the shaded error bars indicate the SEM. In all three correlation scenarios, the Fisher information clearly goes through a maximum as the level of receptive

field position heterogeneity is increased. (B) Same as (A) but varying the level of receptive field width heterogeneity. In this case the Fisher information

increases in a monotonic fashion with increasing receptive field width heterogeneity. (C) Same as (A) but varying the level of receptive field amplitude

heterogeneity. In this case the Fisher information was largely independent of the level of receptive field amplitude heterogeneity.

https://doi.org/10.1371/journal.pcbi.1010938.g008
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narrow receptive field is larger than that of a wide receptive field. This relationship turns out to

be nonlinear as can be seen for single neurons as width is systematically varied (S7B Fig); with

narrow receptive fields contributing significantly more to object localization than wider recep-

tive fields. Therefore, as the population is composed of progressively narrower and wider

receptive fields, the increase in Fisher information due to the narrow receptive fields is larger

than the loss of information due to the addition of wider receptive fields.

Finally, we fixed the width for the receptive fields and used the position heterogeneity at the

optimal value to investigate the change in Fisher information as a function of amplitude het-

erogeneity which was varied by changing the standard deviation of the distribution from

which the receptive field position is drawn (see Materials and Methods). Increasing the hetero-

geneity of the amplitudes in the population does not change the Fisher information (Fig 8C).

This is because the relationship between amplitude and Fisher information for single neurons

increases linearly (S7C Fig), meaning that if low and high amplitude receptive fields are added

to the population symmetrically, the Fisher information remains flat with increased

heterogeneity.

Discussion

Summary of results

We investigated how populations of electrosensory neurons in the hindbrain encode prey loca-

tion. To do this, we recorded the activities of multiple ELL neurons simultaneously in response

to a local prey-mimic stimulus located at different positions on the animal’s rostro-caudal axis.

After having mapped the spatial tuning curves (i.e., receptive fields) of these populations, we

analyzed spike train covariations and found strong spatial dependence. Specifically, covaria-

tion magnitude was weakest within the overlap middle and strongest at the overlap edges. Fur-

ther analysis revealed that the spatial dependence of covariation could be explained by changes

in correlations between neural activities, as opposed to changes in their variances. Importantly,

we found that the spatial dependence of correlations helped offset the overall redundancy that

would have been introduced had they been spatially independent, such that accurate informa-

tion as to prey localisation was available from as few as 19 neurons. Finally, to better under-

stand how different features of spatial tuning curves affected information transmission, we

built a mathematical model that incorporated essential aspects of the data. Importantly, our

model predicts that heterogeneities in receptive field position seen experimentally play an

important functional role towards optimizing information transmission about prey location

by ELL pyramidal cell populations. Overall, our results show that accurate information about

prey location is contained within the spiking activities of small ELL pyramidal cell populations,

which is likely due to spatially dependent covariation as well as heterogeneities in spatial

tuning.

Mechanisms mediating response heterogeneities in ELL pyramidal cell

populations

Overall, our results show that ELL pyramidal cell populations display spatially dependent

covariance between their activities that help mitigate deleterious effects of redundancy. Addi-

tionally, our model predicts that the level of heterogeneity seen experimentally in the spatial

tuning functions optimizes information transmission. What is the nature of the mechanisms

that mediate heterogeneities in spatial tuning as well as spatially dependent covariation?

It is well known that ELL pyramidal cells display large heterogeneities in their receptive

fields [39, 40]. Such heterogeneities are in part due to anatomical differences [55]. For example,
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deep ON-type pyramidal cells receive far less feedforward inhibition from local interneurons

than their superficial counterparts (see [41] for review), which is thought to underlie the obser-

vation that they lack a surround component [39]. Other sources of heterogeneity likely origi-

nate from feedback inputs that dominate over feedforward. Indeed, previous studies have

shown that ELL pyramidal cells receive large amounts of feedback [56, 57]. One source of feed-

back, termed indirect, which is diffuse in nature and is activated primarily by global stimula-

tion [58, 59], is unlikely to mediate responses to the spatially localized stimuli considered here.

However, another source of feedback, termed direct, which is topographic in nature [53], is

more likely to be activated by the stimuli considered here. It has been proposed that the direct

feedback pathway has the required properties to act like a sensory searchlight thereby enhanc-

ing the sensitivity of the neurons to prey stimuli [53, 60]. A comparison of the predicted spatial

extent of the receptive field center of ELL pyramidal cells based solely on feedforward projec-

tions [41] versus those measured in vivo [39] consistently gave rise to larger estimates in vivo,

most likely due to the direct feedback pathway. Recent studies have determined novel func-

tions for the direct feedback including synthesizing neural responses to moving objects [61] as

well as to envelope stimuli [62]. While these studies were conducted using stimuli that differ

from those considered in the current study, it is likely that the direct feedback pathway influ-

ences receptive field heterogeneities. Further studies are needed to test this prediction.

In the case of spatially dependent correlations, recent studies have shown that correlations

between the trial-to-trial variabilities of neural responses can arise due to feedforward, feed-

back, and collateral connectivity [32, 63, 64]. In particular, the balance of excitatory and inhibi-

tory input can affect correlation magnitude [54, 65, 66]. Based on the arguments above, it is

conceivable that the feedback pathway mediates the spatial dependence of correlations

observed here. However, a more likely possibility is that the spatial dependence of correlations

is mediated by feedforward input. The fact that previous studies have found that correlation

magnitude in ELL pyramidal cells increases with receptive field overlap [29], suggesting that

they are primarily due to shared input from electroreceptor afferents that do not display corre-

lations between their trial-to-trial variabilities [67], supports this hypothesis. An interesting

possibility is that the decrease in correlation seen in the receptive field center could occur due

to “correlation transfer”, a mechanism by which increases in signal correlations due to

increased stimulus amplitude are accompanied by decreases in noise correlations [68]. This is

plausible since the weakest correlations were seen in the center of the pyramidal cell receptive

fields, where the sensitivity and, thus, signal correlations should be greatest in magnitude. Fur-

ther studies are however needed to investigate the contributions of feedforward and feedback

processes towards mediating the spatially dependent correlations observed here.

Functional role of spike-count correlations on population coding of

location

Our results show that, while the spike-count correlations between ELL pyramidal cells lead to

redundancy overall and thus decrease the amount of information available about location,

their spatial dependence helps reduce this redundancy. As such, an important question is, why

have spike-count correlations at all? One possibility is that such correlations are an unavoid-

able consequence of connections between neurons in the brain but are otherwise unimportant.

This is because it is possible to construct downstream decoders that ignore the effects of corre-

lations [63, 69–72]. However, the fact that “detrimental noise correlations” have been observed

ubiquitously across systems and species [26] and can actually be enhanced during a perceptual

task [73] suggests that they serve a beneficial function rather than solely limiting information

transmission through increased redundancy. Indeed, while it has been known for some time
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that correlations can increase signal propagation [74], recent evidence shows that correlations

can enhance the behavioral readout of population activity [75]. Moreover, a recent modeling

study predicts that such noise correlations are beneficial by increasing the learning rate and

robustness [76]. As such, we propose that the spatially dependent spike-count correlations

seen here serve important functions towards adapting to changes in the statistics of natural sti-

muli. While such adaptation has been observed experimentally [77], this study was conducted

using single-unit recordings and, as such, could not assess spike-count correlations. Further

investigation is needed to test whether spike-count correlations mediate adaptation and

learning.

Our conclusion that the spatial dependence of correlations amongst ELL pyramidal cells

can help mitigate their otherwise detrimental effects furthermore agree with theoretical and

experimental evidence showing increased information transmission with stimulus dependent

correlations [4, 78–81]. It is however necessary to note important differences between these

and our current study. For example, one study showed that neurons with high degrees of tun-

ing curve overlap benefit from higher magnitude correlations near the preferred stimulus to

reduce redundancy [78]. While other studies, both experimental and theoretical, focus on the

sign of the correlated noise, such that correlations are beneficial when they shape the noise in a

direction that is orthogonal to that in which the signal varies [3, 4]. The current study adds to

the literature in two interesting and possibly related ways. The first is that we focused on a pop-

ulation of neurons whose tuning functions consisted of an antagonistic center-surround orga-

nization, as modeled by a difference of Gaussians, whereas most of the studies mentioned

above have focused on neurons with bell-shaped tuning curves. The second is that we show

that a decrease in the correlation magnitude near the middle of receptive field overlap helps

mitigate the otherwise deleterious effects by reducing redundancy, which agrees qualitatively

with behavioral studies showing that reduced correlations lead to increased behavioral perfor-

mance [27, 82–84].

Functional role of neural heterogeneities in population coding of location

Our results show that there is an optimal value for receptive field position heterogeneity but

not for receptive field amplitude or width. As mentioned above, theoretical studies have

shown that heterogeneities in neural populations are beneficial for information transmission

[1, 15–20, 22, 23]. It is however important to note that previous studies investigating the effects

of heterogeneities on coding of spatially varying stimulus attributes such as location have

assumed bell-shaped tuning functions (e.g., Gaussian, von Mises, etc. . .) [4, 24, 25]. In con-

trast, we have considered spatially realistic tuning functions consisting of antagonistic center-

surround organization. Our results suggest that the addition of a surround can qualitatively

alter the effects of tuning heterogeneities. For example, it was found previously that increasing

heterogeneities in the amplitude of the tuning function increased information transmission

[24], whereas we found no effect (Fig 8C). These differences are expected as previous studies

have shown that Fisher information can display qualitatively different dependencies on popu-

lation size depending on the assumptions made [21, 25, 85, 86]. Further studies are needed to

test the modeling prediction that the effect of tuning function heterogeneities on information

will highly depend on their nature as well as the form of the tuning function.

Implications for other systems

Previous studies have highlighted important anatomical and physiological similarities between

the electrosensory and other systems. Specifically, ELL pyramidal cells display antagonistic

center-surround organization that is similar to that seen for neurons in early visual pathways
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(see [52] for review), including a non-classical portion of the receptive field that serves to

enhance responses to high-frequency stimuli [87] as seen in the visual system [88, 89]. Addi-

tionally, recent work has shown remarkable similarities in processing strategies between ELL

pyramidal cells and central vestibular neurons in macaque monkeys [90–92]. While previous

studies in visual areas have considered the effect of spatially dependent noise correlations [4,

7], these did not consider receptive fields consisting of both center and surround. As such, it is

likely that our results will be applicable to other systems.

Materials and methods

Ethics statement

All animal care and experimental procedures were approved by McGill University’s animal

care committee (protocol #5285) and were in accordance with the Canadian Council on Ani-

mal Care guidelines.

Animal care

Specimens of either sex of the wave-type weakly electric fish Apteronotus leptorhynchus
(N = 5) were exclusively used in this study. Fish were obtained from tropical fish dealers and

were housed in tanks in groups of up to 10 with the water temperature and conductivity main-

tained at appropriate levels (26–29˚ C and 100–800 μS/cm, respectively) as per published

guidelines [93].

Surgery

The surgical techniques used in this study have been previously described in detail [29, 39]. In

brief, the experimental tank (30 × 30 × 10cm) was filled with water from the animal’s home

tank. The water was heated and oxygenated in a reservoir tank and continuously recirculated.

The animal was immobilized with an intramuscular injection of 0.1–0.5 mg of tubocurarine

(Sigma Aldrich). Upon cessation of gilling, the animal was positioned in the experimental tank

and respirated with a constant flow of water through a tube placed in the mouth at a flow rate

of ~10 ml/min. Topical lidocaine ointment (5%; AstraZeneca) was applied to anesthetize the

skin over the skull and the skull was partly exposed. A head post was then glued to the anterior

part of the skull for stabilization and a small window (~5 mm2) was opened to expose the hind-

brain over the ELL for electrophysiology. Saline solution was regularly applied to the exposed

brain to avoid tissue dehydration.

Stimulation

The EOD of A. leptorhynchus is neurogenic, thus the animal continues to emit its EOD after

immobilization with tubocurarine. To record the EOD, electrodes were positioned at the ros-

tral and caudal ends of the fish. Using a function generator (33220 A LXI arbitrary waveform

generator, Agilent, Santa Clara, CA USA), a sinusoidal waveform was triggered when the EOD

signal crossed zero from below (121 Window discriminator, World Precision Instruments

WPI, Sarasota, FL USA), with a frequency approximately 30 Hz higher than that of the EOD

to remain synchronized with the EOD. The desired amplitude modulation was generated by

multiplying the stimulus waveform with the EOD-triggered waveform (MT3 analog Multi-

plier, Tucker-Davis Technologies, Alachua, FL USA). The stimulus was isolated from ground

(A395 Linear Stimulus Isolator, World Precision Instruments) and delivered to the fish

through electrodes. Two steel wire electrodes were positioned approximately 15 cm lateral to

either side of the animal and used to deliver spatially extensive (global) stimuli. A dipole was
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built from two insulated stainless steel wires with tip spacing ~2 mm and was positioned 1–2

mm lateral from the fish’s skin perpendicular to the fish’s rostro-caudal axis on the horizontal

plane and used to deliver the spatially localized stimuli, as done previously [29, 39].

To study prey localization, we used an amplitude modulation mimicking the timecourse of

that caused by prey which consisted of a 4 Hz sinusoidal waveform delivered locally with 15–

25% contrast to activate electroreceptors imbedded in the skin within a limited area. The stim-

ulus frequency was chosen because its frequency corresponds to the timecourse of the electric

image at a given location on the skin experienced when a foraging fish scans past prey [42].

Prior to beginning the stimulus protocol, the approximate center of the receptive fields of the

neurons being recorded was assessed, the dipole was then positioned at the dorso-ventral loca-

tion that gave rise to the strongest responses and near the rostral edge of the receptive fields,

after which the stimulus protocol was started. The stimulus was repeated for 200 trials, with a

trial defined as the duration of one full cycle (0.25 s). After completion of each 200-trial stimu-

lus, the dipole was repositioned caudally at 0.5 cm increments and the stimulus was repeated.

We collected data at a total of 10 to 15 stimulus positions depending on the recording session

such that the majority of the centers and surrounds of the recorded neurons were captured

along the rostro-caudal axis. We focused on the rostro-caudal axis because this is the primary

axis of motion during the prey detection-to-capture behavior sequence and because the recep-

tive fields are elongated in the rostro-caudal axis compared to the dorso-ventral axis [39, 42,

94]. A zero-mean global Gaussian white noise stimulus that was low-pass filtered (8th order

Butterworth, 120 Hz cut-off frequency) was also played globally to characterize neuron type as

described below.

Recordings

Extracellular recordings were collected from ELL pyramidal neurons with Neuropixels probes

(Imec, Leuven, Belgium), which allow for simultaneous recording of neural populations [95,

96]. The probe was angled in the ELL to record from pyramidal neurons that are spatially

tuned to the same region of the skin, guided by anatomical landmarks and physiological

responses. Using spikeGLX (Janelia Research Campus, Howard Hughes Medical Institute), the

recordings were digitized at 30 kHz and stored on a hard drive for offline analysis. An auto-

matic spike sorting algorithm followed by manual curation was performed to sort spikes, iden-

tify single units, and extract spike times from the recordings. The spike sorting algorithm

Kilosort2 (https://github.com/MouseLand/Kilosort2), developed for electrophysiological data

with high-channel counts, was used to initially identify and sort single neuron spiking activity.

Manual curation of the output of Kilosort2 was done using Phy2 (https://github.com/cortex-

lab/phy), a graphical interface for visualization and manual curation of multielectrode data.

Well-isolated ELL pyramidal cells, that were stable across the recording session, were identified

using firing rate, inter-spike-interval, spike waveform, and autocorrelograms, with clusters

merged or split as needed. The sorted neural response activity was then imported into

MATLAB (MathWorks Inc., Natick, MA USA) where custom code was used to analyse the

data as described below. A total of N = 158 neurons were analyzed over 5 recording sessions

(N = 31, 34, 30, 34, 29, respectively). The neuron numbers for each recording session were sim-

ilar to those obtained in previous studies using Neuropixels probes in the electrosensory sys-

tem [96, 97].

Data analysis

Spike times for each neuron were imported into MATLAB and converted to a “binary” time-

series (1 when a spike occurs, and 0 otherwise) with a sampling rate of 2 kHz. Note that,
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because the inverse of the sampling rate is less than the refractory period of ELL pyramidal

cells [98], at most one spike can occur during the corresponding time interval.

Baseline activity

A recording of 100 s of neural activity in the absence of stimulation was used to calculate the

baseline firing rate of each neuron by filtering the binary time-series (2nd order Butterworth

filter with a 0.01 Hz cut-off) and averaging the filtered firing rate. Pairwise baseline correla-

tions (rBL) were calculated as the Pearson correlation coefficient between all possible pairs at

timescales ranging from 2 ms to 2 s. The baseline correlations were similar to those found in

previous studies [54]. The baseline correlations (timescale = 0.125 s, to match the prey-mimic

stimulus, see below) where then visualized as a function of relative distance between neuron

pairs, where the relative distance is the Euclidean distance between the electrode sites on the

Neuropixels probe with the largest amplitude spikes for each neuron in a given pair [95, 96].

For pairs composed of the same type of neurons (ON-ON or OFF-OFF, see Noise stimulus

section below) the data decayed as a function of distance and was fit with the exponential func-

tion rBLðxÞ ¼ aebx þ c, using the MATLAB function “fitnlm” (best-fit parameters a = 0.3722, b

= -0.0109 and c = 0.0407). For pairs containing opposite types of neurons (ON-OFF), the data

approached zero from the negative side, again showing an exponential relationship with rela-

tive distance (best-fit parameters: a = -0.3331, b = -0.0109 and c = -0.0302). In the case of oppo-

site-type pairs it is important to note that the receptive fields (see Prey-mimic stimulus section

below) are also opposite because ON and OFF type pairs fire out of phase of each other, there-

fore the relationship between the correlations and receptive fields are qualitatively similar for

all pair types. Due to this conserved relationship across pair types, we visualized the magnitude

of the baseline correlations pooled over same and opposite type pairs and again fitted with an

exponential curve (i.e., jrBLðxÞj ¼ aebx þ c; best-fit parameters: a = -0.3360, b = -0.0112 and

c = 0.0463).

Noise stimulus

The neural responses to the 0–120 Hz Gaussian noise stimulus were used to determine if a

neuron was ON- or OFF-type by means of a spike triggered average (STA) stimulus analysis,

as done previously [99]. Briefly, the stimulus preceding each spike was averaged over all spikes

within a time window starting 12 ms and finishing 4 ms before the spike. If the slope of the

STA stimulus was positive within this time window, indicating that the neuron responded on

average to the increasing phase of the stimulus, the neuron was classified as ON-type. If, in

contrast, the slope of the STA stimulus within the same time window was negative because the

neuron responded preferentially to the decreasing phase of the stimulus, the neuron was classi-

fied as OFF-type. This classification scheme was used to further confirm classification obtained

using the receptive field described below.

Prey-mimic stimulus

In this study, we focused on the firing rate-based receptive field, which was calculated as the

sum of spikes over the positive half-cycle of the sinusoidal stimulus (0.125 s) and averaged

over trials as a function of stimulus location (see Stimulation section for details). Previously,

research has shown that these neurons have receptive fields with antagonistic center-surround

organization [39, 40], with ON-type neurons increasing their firing rate above baseline in the

center and decreasing their firing rate below baseline in the surround. OFF-type neurons show

the reverse response, with decreased firing rate in the center and increased firing rate in the

surround relative to baseline. For visualizing the population activity across all recorded
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neurons, the normalized change in firing rate (Δ firing rate) was calculated by subtracting the

baseline firing rate and then normalizing by the maximum firing rate. In order to align the

results across experiments, an ON-type population receptive field and an OFF-type population

receptive field were calculated by summing all ON-type responses and OFF-type responses

respectively and the center of weight of the two was used as the center position (0 cm).

Next, covariance matrices were calculated for each stimulus location. To understand the

spatial modulation of the covariance matrices, the pairwise spike-count correlations (rSC) were

calculated as a function of stimulus location. Briefly, the mean firing rate of a neuron at a given

location was subtracted from each trial leaving the residual spike count series. The Pearson

correlation coefficient was then calculated on these residuals for each possible pairwise neural

combination. Note that because the population is composed of two different pyramidal cell

types, ON- and OFF-type, there are two possible pairwise combinations: same-type pairs

(ON-ON and OFF-OFF) and opposite type pairs (ON-OFF). Due to our sampling method,

which allowed us to collect data from neurons with high degrees of receptive field overlap, for

most stimulus positions same-type pairs are positively correlated whereas opposite-type pairs

are negatively correlated. The spatial dependence of the correlations is mirrored around zero

for these two groups, therefore we used the magnitude of the correlations and pooled the

same- and opposite-type pairs. For pairs with high baseline correlation magnitudes, the spike-

count correlations were spatially modulated, dipping from baseline values at the edges of

receptive field overlap towards zero in regions where the centers of both receptive fields over-

lap. To characterize this spatial dependence, a baseline correlation threshold of |rBL| = 0.15 was

used to group the pairs into high and low |rBL| pairs. The depth of modulation of the spike-

count correlations was calculated for these two groups as the difference between the maximum

and minimum magnitude for each pair, pooled over recording sessions. Finally, the regions of

pairwise receptive field overlap were defined as center-center, center-surround, and surround-

surround overlap. To test if the spatial modulation of the spike-count correlations was signifi-

cant for high and low |rBL| pairs, the spike-count correlations were pooled based on the recep-

tive field overlap region and the distributions were tested for significant differences.

Coding

To quantify the precision with which a population of neurons can estimate the location of

prey, the linear Fisher information was calculated [4, 8, 85]. The Fisher information (FI) is a

quantification of the inverse variance of the optimal estimator of a variable and is calculated as

a function of the slope of the receptive fields and covariance matrices as follows:

FIðxÞ ¼ RF0ðxÞTS� 1ðxÞRF0ðxÞ;

where x is the stimulus position, RF0ðxÞ ¼ ½f 0
1
ðxÞ; . . . ; f 0nðxÞ� is the matrix whose elements are

the slope of the receptive fields, fi(x), with i = 1,. . .,n, for n neurons in a given recording session

with the superscript T indicating the transpose operation, and S−1(x) is the inverse covariance

matrix at position x. Each neuron’s receptive field was fit with a smoothing spline function and

then the slope of each receptive field fit was calculated using the MATLAB function “differenti-

ate”. The slope of the receptive fields and covariance matrices were calculated as the average of

these same variables between two locations in order to reduce the variability due to a finite

number of trials as done previously [100].

In order to investigate the effect of the spatially dependent spike-count correlations on the

Fisher information, two alternatives to this quantification were performed: an independent

scenario and a spatially independent scenario. For the former, we rendered the neurons inde-

pendent from one another within a given population by setting all of the off-diagonal values of
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the covariance matrices to zero and recalculating the Fisher information as done previously

[4]. Randomly shuffling the trials using the function “randperm” in MATLAB prior to com-

puting the covariance matrix and averaging over 20 different permutations led to qualitatively

similar results as expected. For the latter, we decomposed the covariances into variances and

correlations and replaced the stimulus dependent correlations with the baseline correlation

(timescale = 0.125 s) for all stimulus positions. The covariances were then recalculated using

these values, thereby building spatially independent correlations. Note that in both scenarios,

the Fisher information calculation still includes the spatially dependent receptive fields and

variances.

We also considered how the Fisher information grows as a function of population size for

all correlation scenarios (i.e., spatially dependent, independent, and spatially independent). To

do so, we averaged the Fisher information between locations x = -0.5 and 0.5 cm (<FI>),

which was the spatial region to which the majority of the recorded neurons were maximally

sensitive. We then subsampled the data by bootstrapping 250 times for neural population sizes

of 1 to 28 neurons (limited by the experiment with the fewest simultaneously recorded neu-

rons). To compare the three cases at the maximum population size across experiments, we

normalized by the Fisher information at a population size of one neuron for each experiment.

To compare the accuracy of the location estimate with the size of the prey, we converted the

Fisher information to the Cramér-Rao bound. The Cramér-Rao bound is greater than or equal

to the inverse Fisher information and is the lower bound on the variance of the estimate:

CR xð Þ ¼ var xestð Þ �
1

FIðxÞ
:

By taking the square root of the Cramér-Rao bound we were able to compare the standard

deviation of the estimate of prey location with the radius of the average prey item, ~0.15 cm,

found in the digestive tract [42]. Using the same spatial averaging and bootstrapping described

above for Fisher information vs population size, we calculated the Cramér-Rao bound vs pop-

ulation size to determine how many neurons are required to estimate the location of a prey

item within the size of the prey.

Model

A mathematical model was built to better understand how specific features of the data (e.g.,

receptive field size) influence results seen experimentally. As discussed above, the Fisher infor-

mation calculation requires both the spatial receptive fields and the covariance matrices, which

were decomposed into the spatially dependent variances and correlations per the relationship:

rðx; yÞ ¼ covðx; yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ � varðyÞ

p
:

The receptive fields of the model neurons were determined by first fitting each recorded

neuron across sessions with a difference of Gaussians:

RF xð Þ ¼ ace
:5

x� m
scð Þ

2

� ase
:5

x� m
ssð Þ

2

;

where RF(x) is the receptive field as a function of position x, μ is the position of the center of

both Gaussians, αi is the amplitude, σi is the width and subscripts c and s refer to the center

and surround Gaussian respectively. The fitted parameters (position (μ), amplitude (α) and

width (σ)) were pooled across all 158 recorded neurons. The resulting parameter distributions

were then fitted, and numbers drawn from these randomly to generate model neural receptive

fields. Specifically, the distribution of receptive field positions relative to the center position at
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0 cm was fitted with a normal distribution (μ = 0, σ = 0.58). The position of each model recep-

tive field was drawn from this distribution. Next, the widths of the center Gaussians were

drawn from a gamma distribution (α = 2.28, β = 0.28) fitted to center widths from the data.

The surround widths were considered relative to the center widths because they are necessarily

larger: when the center widths are plotted against the surround widths all data points fall on or

above the unity line. The surround widths were built from the center width plus a number

drawn from the gamma distribution (α = 0.61, β = 2.14) fitted to the difference in width

between surround and center. Finally, to model the amplitude of the receptive fields, we

started by comparing the fitted center and surround amplitudes which show a strong negative

correlation (r = -0.9998), with the surround amplitude necessarily smaller in magnitude than

the center amplitude. Therefore, amplitudes of the receptive field centers were drawn from a

fitted t-distribution (μ = 4.34, σ = 2.48, ν = 0.51). The amplitudes of the surrounds were set

equal to the center amplitude plus a value drawn randomly from a gamma distribution (α =

2.28, β = 0.96) fitted to the distribution of differences between center and surround ampli-

tudes. Once the parameter space for a given neuron was determined as explained above, the

receptive field was calculated as a function of space. For OFF-type neurons only, the receptive

field was multiplied by -1. Finally, because firing rate is necessarily positive, the receptive fields

were shifted upward. Some neural receptive fields from the data show a flat section or rectifica-

tion as the firing rate approaches zero (in the center of OFF-type neurons and in the surrounds

of ON-type neurons). Including this rectification improved the model significantly, therefore

we incorporated it by adding noise to how much we shifted the receptive field upwards and

then setting the minimum firing rate to 0.1 spikes/trial.

As the average number of neurons per recording session was N = 31.6, populations of 32

neurons were modeled (16 ON-type, and 16 OFF-type). The neurons were ordered by their

center position and randomly assigned channel numbers used to calculate a relative distance

as done for the data. This caused the neuronal pairs with smaller relative distances to show

more receptive field overlap than pairs with larger relative distances, allowing there to be a

relationship between receptive field overlap and neural distance.

We found experimentally that the variance in neural activity increases with firing rate. To

model this dependency, we graphed the variance vs firing rate for all recorded neurons at all

locations, binned and averaged the data in increments of 0.2 spikes/trial and fit the results with

a linear function (varðxÞ ¼ A � firing rateðxÞ þ B). We obtained A = 1.17 and B = 0.24 using a

linear least-squares fit. This function was then used to model the variance of each neuron at

each position.

The spike-count correlations (rSC) were modeled using baseline correlations (rBL) and the

amount of receptive field overlap. To begin, the baseline correlations were modeled by fitting a

sum of exponentials to the |rBL| vs relative distance data. To do so, the data was binned in

10 μm increments and averaged. These averaged data were then fit with a sum of two exponen-

tials to which random normally distributed noise (μ = 0, σ = 0.05) was added. Next, to model

the spatial dependence of the rSC, the geometric mean of the center Gaussians of each pairwise

combination of neurons was calculated and subtracted from 1, such that the curve dips to zero

in regions where the centers overlap. For same-type pairs this curve ranges between 0 and 1,

and for opposite-type pairs it was flipped around the zero axis to range between -1 and 0.

Finally these curves were multiplied by the modeled rBL so that the curve approaches rBL at the

edges of receptive field overlap as seen in the data.

The modeled population of spatially dependent receptive fields, variances and correlations

were then used to calculate the spatially dependent Fisher information and the Fisher informa-

tion as a function of population size, as described in the Data analysis section. The indepen-

dent and spatially independent cases were also calculated as described previously. Each
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iteration of this process was treated as a single experiment, a total of 1000 experiments were

performed to reproduce the results from the data, as well as to investigate the different model

parameters described below.

After reproducing the results given the parameter space found in the data, we extended the

model to investigate lower and higher degrees of heterogeneity in the position, width, and

amplitude parameter spaces for all three correlation cases. To begin, we calculated the Fisher

information contained in the activity of a single neuron as we varied each parameter while fix-

ing the other two parameters. We then turned to populations of neurons, again fixing two of

the parameters across all neurons, while gradually increasing the heterogeneity of the third to

establish the impact of that parameter on information. First, we varied the heterogeneity of

spatial position while holding the amplitude and width of the receptive fields constant across

all populations. Initially, all receptive fields in the population were centered at 0 cm, such that

the receptive fields were completely overlapped, and then the spread of the receptive field posi-

tions were gradually increased by increasing the standard deviation of the normal distribution

from which the receptive field positions were drawn (standard deviations: 0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.58, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 2.5, 3, where the data has an average stan-

dard deviation of ~0.58). Next, we held the amplitudes constant, allowed the position to vary

per the normal distribution from the data, and gradually increased the standard deviation of

the distribution from which the receptive field widths was drawn. In the data the widths were

drawn from a gamma distribution, but because it is not symmetric, we replaced it with a nor-

mal distribution so that the inclusion of narrower and wider receptive fields occurred symmet-

rically (standard deviations: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,

where the data has an average standard deviation of ~0.28). Finally, we held the receptive field

widths constant, allowed the position to vary per the normal distribution from the data, and

varied the amplitude heterogeneity. Again, because the distribution of amplitudes in the data

is not symmetric, we were not able to simply use the same distribution and increase the distri-

bution spread. Instead, we used a normal distribution centered at the center of weight of the

original distribution and gradually increased the standard deviation (standard deviations: 0.1,

0.5, 1, 1.5, 2, 2.48, 3, 3.5, 4, 4.5, 5, where the data has an average standard deviation of ~2.48).

Statistics

Values are reported as mean ± SEM. Unless otherwise indicated, statistical tests were per-

formed using a one-way ANOVA or Kruskal-Wallis, depending on the normality of the data

per the Lilliefors test, with Bonferroni test correction. Where indicated, outliers were removed

using the generalized extreme Studentized deviate test for outliers in MATLAB (i.e., the

“rmoutliers” function) which defines an outlier as a value greater than three scaled median

absolute deviations from the median. We note that this constitutes a small percentage of the

data (<2.3%) and that removing these outliers does not affect the qualitative nature of our

results.

Supporting information

S1 Fig. Calculation of spike-count correlations. (A) The spike train of an example neuron

(n1) is shown, with each trial indicated by alternating grey and white bars and the trial number

above. The spike counts for each trial are indicated below. (B) The spike counts, or firing rate,

of 3 example neurons (n1 left, n2 middle and n3 right) are shown for 30 trials each. The trial-

averaged firing rate over all 200 trials in the data is also shown (black horizontal line) for each

neuron. (C) The residual spike counts (the spike counts for each trial minus the trial-averaged

firing rate) vary around zero. (D) The color plot shows the residuals of one neuron vs another.
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The color shows the number of trials in each square. There is a strong positive spike-count cor-

relation for the pair on the left and no significant correlation for the pair on the right (red fitted

line: left pair: n1 and n2, rSC = 0.51, p = 1.1 � 10−27; right pair: n2 and n3, rSC = - 0.03,

p = 0.54). Showing that for the pair on the left, when one neuron tends to fire above its mean,

the other does as well, whereas the pair on the right tend to vary around their respective trial-

averaged firing rate independent from each other.

(TIF)

S2 Fig. Distance dependence of raw spike-count correlations by pair type. Pairwise baseline

correlation (rBL) values approach zero as a function of increasing relative distance between

neurons. The baseline correlation values of same-type pairs (ON-ON and OFF-OFF; blue cir-

cles) follow an exponentially decreasing trend as a function of distance (blue fitted line) and

the opposite-type pairs (ON-OFF; green triangles) show the same exponential trend approach-

ing zero but from the negative direction (green fitted line). In the case of opposite-type pairs it

is important to note that the receptive fields are opposite as well because ON and OFF type

pairs fire out of phase of each other, therefore the relationship between the correlations and

receptive fields are qualitatively similar for all pair types.

(TIF)

S3 Fig. Model receptive fields. (A) Example ON-type receptive field (black) is shown with the

fitted difference of Gaussians curve (purple). (B) Schematic showing the parameters of the dif-

ference of Gaussians fit: the left and middle curves (black) show the center and surround Gaus-

sians and the right curve (black) shows the fitted receptive field. The blue circles mark the

center position of the receptive field. The dark green horizontal bracket is the width of the cen-

ter, the light green bracket is the difference between the widths of the center and surround.

The vertical dark orange bracket is the center amplitude, and the light orange bracket is the

difference between the center and surround amplitude. (C) Receptive field positions: The dis-

tribution of the positions of all neurons pooled across sessions (blue) was fitted with a normal

distribution (black). (D) Receptive field widths: For all fitted neurons, the width of the sur-

round Gaussian is larger than the width of the center as the data (left panel; green dots) falls

above the unity line (dashed grey line). Therefore, the distribution of the center Gaussian

widths was fitted with a Gamma distribution as was the distribution of the difference between

the two (surround-center). After drawing randomly from both distributions, the surround was

modeled as the sum of the two. (E) Receptive field amplitudes: The surround amplitude vs cen-

ter amplitude (left panel) demonstrates that the center amplitude is always larger than the sur-

round amplitude (orange dots lie above the dashed grey unity line). The distribution of center

amplitudes (middle panel; dark orange) was fitted with a t-distribution and the difference dis-

tribution (center–surround) was fitted with a Gamma distribution (right panel; light orange).

After drawing randomly from both distributions, the first was used as the center amplitude

and the second was subtracted from the first to model the surround amplitude. (For all distri-

bution parameters see Materials and Methods.)

(TIF)

S4 Fig. Model variances and correlations. (A) The variances of the neural firing rates in the

data increase with the average firing rate. Prior to fitting, the data was binned and averaged

(black dots) then fit with a linear function (red line). (B) To fit the |rBL| as a function of relative

distance, the data was binned and averaged, and a sum of exponentials was fitted (red curve).

(C) To confirm that as the stimulus approaches the edge of the population of receptive fields,

the rSC approach rBL, the spike-count correlations at the stimulus positions at the rostral and

caudal edges of the recording positions were visualized vs the rBL, which shows a strong linear
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relationship (see Materials and Methods for details.)

(TIF)

S5 Fig. Model correlations. The spatially dependent correlations are modeled as a function of

the overlap of the pair of receptive fields (top row; neuron 1 blue, neuron 2 purple). The geo-

metric mean (3rd row; grey) of the absolute value of the receptive field centers (2nd row) is

normalized to range between the baseline correlation assigned to that pair and zero (bottom

row; black). Three examples are provided: a high rBL, opposite-type pair (left), a low rBL,

opposite-type pair (middle), and a moderate rBL, same-type pair (right).

(TIF)

S6 Fig. Model covariance matrices. The model covariances are shown for three different stim-

ulus positions: at the center of the population of receptive fields where there is primarily cen-

ter-center overlap (center panel) and near the edges of the population of receptive fields where

there is surround-surround overlap (right panel) or minimal to no overlap (left panel). These

results demonstrate that the covariances calculated from the modeled variances and correla-

tions reproduce trends seen in the data. Inset: the distributions of the covariance magnitudes

are significantly different across these three stimulus positions (Kruskal Wallis: p = 1.5 � 10

−190). “�” indicates statistical significance.

(TIF)

S7 Fig. The contribution of single neurons to information transmission varies as a function

of different model parameters. The left column shows example receptive fields, and the right

column shows the Fisher information (<FI>) averaged between -0.5 and 0.5 cm (grey region

in left panels). (A) The receptive field position parameter is varied, while holding the receptive

field width and amplitude parameters constant. (B) The receptive field width parameter is var-

ied, while hold position and amplitude constant. (C) The receptive field amplitude parameter

is varied while hold position and width constant.

(TIF)

Author Contributions

Conceptualization: Myriah Haggard, Maurice J. Chacron.

Data curation: Myriah Haggard.

Formal analysis: Myriah Haggard.

Funding acquisition: Maurice J. Chacron.

Investigation: Myriah Haggard.

Methodology: Myriah Haggard.

Project administration: Maurice J. Chacron.

Resources: Maurice J. Chacron.

Software: Maurice J. Chacron.

Supervision: Maurice J. Chacron.

Validation: Myriah Haggard, Maurice J. Chacron.

Visualization: Myriah Haggard, Maurice J. Chacron.

Writing – original draft: Myriah Haggard, Maurice J. Chacron.

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 24 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010938.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010938.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010938.s007
https://doi.org/10.1371/journal.pcbi.1010938


Writing – review & editing: Myriah Haggard, Maurice J. Chacron.

References
1. Perez-Nieves N, Leung VCH, Dragotti PL, Goodman DFM. Neural heterogeneity promotes robust

learning. Nature communications. 2021; 12(1):5791. https://doi.org/10.1038/s41467-021-26022-3

PMID: 34608134

2. Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to

link brain and behavior. Nature Neuroscience. 2022; 25(1):11–9. https://doi.org/10.1038/s41593-021-

00980-9 PMID: 34980926

3. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nature

Reviews Neuroscience. 2006; 7:358–66. https://doi.org/10.1038/nrn1888 PMID: 16760916.

4. Franke F, Fiscella M, Sevelev M, Roska B, Hierlemann A, Azeredo da Silveira R. Structures of Neural

Correlation and How They Favor Coding. Neuron. 2016; 89(2):409–22. https://doi.org/10.1016/j.

neuron.2015.12.037 PMID: 26796692.

5. Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS. Decorrelated neuronal firing in

cortical microcircuits. Science. 2010; 327(5965):584–7. Epub 2010/01/30. https://doi.org/10.1126/

science.1179867 PMID: 20110506.

6. Averbeck BB, Lee D. Effects of noise correlations on information encoding and decoding. Journal of

Neurophysiology. 2006; 95(6):3633–44. https://doi.org/10.1152/jn.00919.2005 PMID: 16554512

7. Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F. Direction-Selective Circuits Shape Noise

to Ensure a Precise Population Code. Neuron. 2016; 89:369–83. https://doi.org/10.1016/j.neuron.

2015.11.019 PMID: 26796691.

8. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correla-

tions. Nature Neuroscience. 2014; 17:1410. https://doi.org/10.1038/nn.3807 PMID: 25195105

9. Lin IC, Okun M, Carandini M, Harris KD. The Nature of Shared Cortical Variability. Neuron. 2015; 87

(3):644–56. Epub 2015/07/28. https://doi.org/10.1016/j.neuron.2015.06.035 PMID: 26212710;

PubMed Central PMCID: PMC4534383.

10. Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. Correlations and Neuronal Population Information.

Annual Review of Neuroscience. 2016; 39(1):237–56. https://doi.org/10.1146/annurev-neuro-070815-

013851 PMID: 27145916.

11. Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of correlations in neural pop-

ulation codes. Nature Reviews Neuroscience. 2022; 23(9):551–67. https://doi.org/10.1038/s41583-

022-00606-4 PMID: 35732917

12. Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocam-

pus: II. Spine distributions. Journal of Comparative Neurology. 1995; 360(1):161–71. https://doi.org/

10.1002/cne.903600112 PMID: 7499561

13. Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocam-

pus: I. Branching patterns. Journal of Comparative Neurology. 1995; 360(1):150–60. https://doi.org/

10.1002/cne.903600111 PMID: 7499560

14. Gjorgjieva J, Drion G, Marder E. Computational implications of biophysical diversity and multiple time-

scales in neurons and synapses for circuit performance. Current Opinion in Neurobiology. 2016;

37:44–52. https://doi.org/10.1016/j.conb.2015.12.008 PMID: 26774694

15. Hunsberger E, Scott M, Eliasmith C. The Competing Benefits of Noise and Heterogeneity in Neural

Coding. Neural Computation. 2014; 26(8):1600–23. https://doi.org/10.1162/NECO_a_00621

WOS:000338596100003. PMID: 24877735

16. Marsat G, Maler L. Neural heterogeneity and efficient population codes for communication signals.

Journal of Neurophysiology. 2010; 104(5):2543–55. Epub 2010/07/16. https://doi.org/10.1152/jn.

00256.2010 PMID: 20631220.

17. Montijn JS, Goltstein PM, Pennartz CMA. Mouse V1 population correlates of visual detection rely on

heterogeneity within neuronal response patterns. Elife. 2015; 4:e10163. https://doi.org/10.7554/eLife.

10163 WOS:000373901100001. PMID: 26646184

18. Berry MJ, Lebois F, Ziskind A, da Silveira RA. Functional Diversity in the Retina Improves the Popula-

tion Code. Neural Computation. 2019; 31(2):270–311. https://doi.org/10.1162/neco_a_01158

WOS:000457387500002. PMID: 30576618

19. Osborne LC, Palmer SE, Lisberger SG, Bialek W. The neural basis for combinatorial coding in a corti-

cal population response. Journal of Neuroscience. 2008; 28(50):13522–31. Epub 2008/12/17. https://

doi.org/10.1523/JNEUROSCI.4390-08.2008 PMID: 19074026; PubMed Central PMCID:

PMC2693376.

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 25 / 29

https://doi.org/10.1038/s41467-021-26022-3
http://www.ncbi.nlm.nih.gov/pubmed/34608134
https://doi.org/10.1038/s41593-021-00980-9
https://doi.org/10.1038/s41593-021-00980-9
http://www.ncbi.nlm.nih.gov/pubmed/34980926
https://doi.org/10.1038/nrn1888
http://www.ncbi.nlm.nih.gov/pubmed/16760916
https://doi.org/10.1016/j.neuron.2015.12.037
https://doi.org/10.1016/j.neuron.2015.12.037
http://www.ncbi.nlm.nih.gov/pubmed/26796692
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
http://www.ncbi.nlm.nih.gov/pubmed/20110506
https://doi.org/10.1152/jn.00919.2005
http://www.ncbi.nlm.nih.gov/pubmed/16554512
https://doi.org/10.1016/j.neuron.2015.11.019
https://doi.org/10.1016/j.neuron.2015.11.019
http://www.ncbi.nlm.nih.gov/pubmed/26796691
https://doi.org/10.1038/nn.3807
http://www.ncbi.nlm.nih.gov/pubmed/25195105
https://doi.org/10.1016/j.neuron.2015.06.035
http://www.ncbi.nlm.nih.gov/pubmed/26212710
https://doi.org/10.1146/annurev-neuro-070815-013851
https://doi.org/10.1146/annurev-neuro-070815-013851
http://www.ncbi.nlm.nih.gov/pubmed/27145916
https://doi.org/10.1038/s41583-022-00606-4
https://doi.org/10.1038/s41583-022-00606-4
http://www.ncbi.nlm.nih.gov/pubmed/35732917
https://doi.org/10.1002/cne.903600112
https://doi.org/10.1002/cne.903600112
http://www.ncbi.nlm.nih.gov/pubmed/7499561
https://doi.org/10.1002/cne.903600111
https://doi.org/10.1002/cne.903600111
http://www.ncbi.nlm.nih.gov/pubmed/7499560
https://doi.org/10.1016/j.conb.2015.12.008
http://www.ncbi.nlm.nih.gov/pubmed/26774694
https://doi.org/10.1162/NECO%5Fa%5F00621
http://www.ncbi.nlm.nih.gov/pubmed/24877735
https://doi.org/10.1152/jn.00256.2010
https://doi.org/10.1152/jn.00256.2010
http://www.ncbi.nlm.nih.gov/pubmed/20631220
https://doi.org/10.7554/eLife.10163
https://doi.org/10.7554/eLife.10163
http://www.ncbi.nlm.nih.gov/pubmed/26646184
https://doi.org/10.1162/neco%5Fa%5F01158
http://www.ncbi.nlm.nih.gov/pubmed/30576618
https://doi.org/10.1523/JNEUROSCI.4390-08.2008
https://doi.org/10.1523/JNEUROSCI.4390-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19074026
https://doi.org/10.1371/journal.pcbi.1010938


20. Zeldenrust F, Gutkin B, Deneve S. Efficient and robust coding in heterogeneous recurrent networks.

PLoS Computational Biology. 2021; 17(4):e1008673. Epub 20210430. https://doi.org/10.1371/journal.

pcbi.1008673 PMID: 33930016; PubMed Central PMCID: PMC8115785.

21. Shamir M, Sompolinsky H. Implications of Neuronal Diversity on Population Coding. Neural Computa-

tion. 2006; 18(8):1951–86. https://doi.org/10.1162/neco.2006.18.8.1951 PMID: 16771659

22. Mejias JF, Longtin A. Optimal heterogeneity for coding in spiking neural networks. Physical Review

Letters. 2012; 108(22):228102. Epub 2012/09/26. https://doi.org/10.1103/PhysRevLett.108.228102

PMID: 23003656.

23. Tripathy SJ, Padmanabhan K, Gerkin RC, Urban NN. Intermediate intrinsic diversity enhances neural

population coding. PNAS. 2013; 110(20):8248–53. Epub 2013/05/01. https://doi.org/10.1073/pnas.

1221214110 PMID: 23630284; PubMed Central PMCID: PMC3657795.

24. Ecker AS, Berens P, Tolias AS, Bethge M. The effect of noise correlations in populations of diversely

tuned neurons. J Neurosci. 2011; 31(40):14272–83. https://doi.org/10.1523/JNEUROSCI.2539-11.

2011 PMID: 21976512; PubMed Central PMCID: PMC3221941.

25. Wilke SD, Eurich CW. Representational accuracy of stochastic neural populations. Neural Comput.

2002; 14(1):155–89. https://doi.org/10.1162/089976602753284482 PMID: 11747537

26. Cohen MR, Kohn A. Measuring and interpreting neuronal correlations. Nature Neuroscience. 2011; 14

(7):811–9. https://doi.org/10.1038/nn.2842 PMID: 21709677.

27. Cohen MR, Maunsell JH. Attention improves performance primarily by reducing interneuronal correla-

tions. Nature Neuroscience. 2009; 12(12):1594–600. https://doi.org/10.1038/nn.2439 PMID:

19915566.

28. Hong S, Ratte S, Prescott SA, De Schutter E. Single neuron firing properties impact correlation-based

population coding. Journal of Neuroscience. 2012; 32(4):1413–28. https://doi.org/10.1523/

JNEUROSCI.3735-11.2012 PMID: 22279226.

29. Chacron MJ, Bastian J. Population Coding by Electrosensory Neurons. Journal of Neurophysiology.

2008; 99:1825–35. https://doi.org/10.1152/jn.01266.2007 PMID: 18256161.

30. deCharms RC, Merzenich MM. Primary cortical representation of sounds by the coordination of

action-potential timing. Nature. 1996; 381:610–3. https://doi.org/10.1038/381610a0 PMID: 8637597

31. Usrey WM, Reid RC. Synchronous activity in the visual system. Annual review of physiology. 1999;

61:435–56. Epub 1999/04/01. https://doi.org/10.1146/annurev.physiol.61.1.435 PMID: 10099696.

32. Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josic K. The mechanics of state-dependent neu-

ral correlations. Nature Neuroscience. 2016; 19(3):383–93. Epub 2016/02/26. https://doi.org/10.1038/

nn.4242 PMID: 26906505; PubMed Central PMCID: PMC5477791.

33. Maler L, Sas E, Johnston S, Ellis W. An atlas of the brain of the weakly electric fish Apteronotus Leptor-

hynchus. Journal of Chemical Neuroanatomy. 1991; 4:1–38.

34. Metzen MG, Chacron MJ. Envelope Coding and Processing: Implications for Perception and Behavior.

Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Audi-

tory Research. Cham: Springer; 2019. p. 251–77.

35. Bell C, Maler L. Central neuroanatomy of electrosensory systems in fish. In: Bullock TH, Hopkins CD,

Popper AN, Fay RR, editors. Electroreception. New York: Springer; 2005. p. 68–111.

36. Chacron MJ, Longtin A, Maler L. Efficient computation via sparse coding in electrosensory neural net-

works. Current Opinion in Neurobiology. 2011; 21:752–60. https://doi.org/10.1016/j.conb.2011.05.016

PMID: 21683574.

37. Krahe R, Maler L. Neural maps in the electrosensory system of weakly electric fish. Current Opinion in

Neurobiology. 2014; 24:13–21. https://doi.org/10.1016/j.conb.2013.08.013 PMID: 24492073.

38. Turner RW, Maler L, Burrows M. Electroreception and electrocommunication. Journal of Experimental

Biology. 1999; 202:1167–458.

39. Bastian J, Chacron MJ, Maler L. Receptive field organization determines pyramidal cell stimulus-

encoding capability and spatial stimulus selectivity. Journal of Neuroscience. 2002; 22:4577–90.

https://doi.org/10.1523/JNEUROSCI.22-11-04577.2002 PMID: 12040065.

40. Shumway C. Multiple electrosensory maps in the medulla of weakly electric Gymnotiform fish. I. Physi-

ological differences. Journal of Neuroscience. 1989; 9:4388–99. https://doi.org/10.1523/JNEUROSCI.

09-12-04388.1989 PMID: 2593005

41. Marsat G, Proville RD, Maler L. Transient Signals Trigger Synchronous Bursts in an Identified Popula-

tion of Neurons. J Neuro-physiol. 2009; 102:714–23. https://doi.org/10.1152/jn.91366.2008 PMID:

19474165

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 26 / 29

https://doi.org/10.1371/journal.pcbi.1008673
https://doi.org/10.1371/journal.pcbi.1008673
http://www.ncbi.nlm.nih.gov/pubmed/33930016
https://doi.org/10.1162/neco.2006.18.8.1951
http://www.ncbi.nlm.nih.gov/pubmed/16771659
https://doi.org/10.1103/PhysRevLett.108.228102
http://www.ncbi.nlm.nih.gov/pubmed/23003656
https://doi.org/10.1073/pnas.1221214110
https://doi.org/10.1073/pnas.1221214110
http://www.ncbi.nlm.nih.gov/pubmed/23630284
https://doi.org/10.1523/JNEUROSCI.2539-11.2011
https://doi.org/10.1523/JNEUROSCI.2539-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21976512
https://doi.org/10.1162/089976602753284482
http://www.ncbi.nlm.nih.gov/pubmed/11747537
https://doi.org/10.1038/nn.2842
http://www.ncbi.nlm.nih.gov/pubmed/21709677
https://doi.org/10.1038/nn.2439
http://www.ncbi.nlm.nih.gov/pubmed/19915566
https://doi.org/10.1523/JNEUROSCI.3735-11.2012
https://doi.org/10.1523/JNEUROSCI.3735-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22279226
https://doi.org/10.1152/jn.01266.2007
http://www.ncbi.nlm.nih.gov/pubmed/18256161
https://doi.org/10.1038/381610a0
http://www.ncbi.nlm.nih.gov/pubmed/8637597
https://doi.org/10.1146/annurev.physiol.61.1.435
http://www.ncbi.nlm.nih.gov/pubmed/10099696
https://doi.org/10.1038/nn.4242
https://doi.org/10.1038/nn.4242
http://www.ncbi.nlm.nih.gov/pubmed/26906505
https://doi.org/10.1016/j.conb.2011.05.016
http://www.ncbi.nlm.nih.gov/pubmed/21683574
https://doi.org/10.1016/j.conb.2013.08.013
http://www.ncbi.nlm.nih.gov/pubmed/24492073
https://doi.org/10.1523/JNEUROSCI.22-11-04577.2002
http://www.ncbi.nlm.nih.gov/pubmed/12040065
https://doi.org/10.1523/JNEUROSCI.09-12-04388.1989
https://doi.org/10.1523/JNEUROSCI.09-12-04388.1989
http://www.ncbi.nlm.nih.gov/pubmed/2593005
https://doi.org/10.1152/jn.91366.2008
http://www.ncbi.nlm.nih.gov/pubmed/19474165
https://doi.org/10.1371/journal.pcbi.1010938


42. Nelson ME, Maciver MA. Prey capture in the weakly electric fish Apteronotus albifrons: sensory acqui-

sition strategies and electrosensory consequences. The Journal of experimental biology. 1999;

202:1195–203. https://doi.org/10.1242/jeb.202.10.1195 PMID: 10210661.

43. Nelson ME, MacIver MA, Coombs S. Modeling Electrosensory and Mechanosensory Images during

the Predatory Behavior of Weakly Electric Fish. Brain, Behavior and Evolution. 2002; 59:199–210.

https://doi.org/10.1159/000064907 PMID: 12138340

44. Snyder JB, Nelson ME, Burdick JW, Maciver MA. Omnidirectional sensory and motor volumes in elec-

tric fish. PLoS Biology. 2007; 5(11):e301. Epub 2007/11/16. https://doi.org/10.1371/journal.pbio.

0050301 [pii] PMID: 18001151; PubMed Central PMCID: PMC2071945.

45. Babineau D, Lewis JE, Longtin A. Spatial Acuity and Prey Detection in Weakly Electric Fish. PLoS

Computational Biology. 2007; 3:e38. https://doi.org/10.1371/journal.pcbi.0030038 PMID: 17335346

46. Brandman R, Nelson ME. A simple model of long-term spike train regularization. Neural Computation.

2002; 14(7):1575–97. Epub 2002/06/25. https://doi.org/10.1162/08997660260028629 PMID:

12079547.

47. Nesse W, Maler L, Longtin A. Biophysical information representation in temporally correlated spike

trains. PNAS. 2010; 107:21973–8. https://doi.org/10.1073/pnas.1008587107 PMID: 21131567

48. Chacron MJ, Longtin A, Maler L. Negative interspike interval correlations increase the neuronal capac-

ity for encoding time-varying stimuli. Journal of Neuroscience. 2001; 21(14):5328–43.

49. Jung SN, Longtin A, Maler L. Weak signal amplification and detection by higher-order sensory neu-

rons. Journal of Neurophysiology. 2016; 115:2158–75. https://doi.org/10.1152/jn.00811.2015 PMID:

26843601

50. Lewis JE, Maler L. Neuronal Population Codes and the Perception of Object Distance in Weakly Elec-

tric Fish. Journal of Neuroscience. 2001; 21(8):2842–50. https://doi.org/10.1523/JNEUROSCI.21-08-

02842.2001 PMID: 11306636

51. Maler L. Receptive field organization across multiple electrosensory maps. II. Computational analysis

of the effects of receptive field size on prey localization. Journal of Comparative Neurology. 2009; 516

(5):394–422. Epub 2009/08/06. https://doi.org/10.1002/cne.22120 PMID: 19655388.

52. Clarke SE, Longtin A, Maler L. Contrast coding in the electrosensory system: parallels with visual com-

putation. Nature Reviews Neuroscience. 2015; 16:733–44. https://doi.org/10.1038/nrn4037 PMID:

26558527

53. Berman NJ, Maler L. Neural architecture of the electrosensory lateral line lobe: adaptations for coinci-

dence detection, a sensory searchlight and frequency-dependent adaptive filtering. The Journal of

Experimental Biology. 1999; 202(10):1243–53. Epub 1999/04/22. https://doi.org/10.1242/jeb.202.10.

1243 PMID: 10210665.

54. Hofmann V, Chacron MJ. Differential receptive field organizations give rise to nearly identical neural

correlations across three parallel sensory maps in weakly electric fish. PLoS Computational Biology.

2017; 13(9):e1005716. https://doi.org/10.1371/journal.pcbi.1005716 PMID: 28863136

55. Shumway C. Multiple electrosensory maps in the medulla of weakly electric Gymnotiform fish. II. Ana-

tomical differences. Journal of Neuroscience. 1989; 9:4400–15. https://doi.org/10.1523/JNEUROSCI.

09-12-04400.1989 PMID: 2556508

56. Sas E, Maler L. The nucleus praeeminentialis: A golgi study of a feedback center in the electrosensory

system of gymnotid fish. Journal of Comparative Neurology. 1983; 221:127–44. https://doi.org/10.

1002/cne.902210202 PMID: 6655077

57. Sas E, Maler L. The organization of afferent input to the caudal lobe of the cerebellum of the gymnotid

fish Apteronotus leptorhynchus. Anatomy and Embryology. 1987; 177:55–79.

58. Bastian J, Chacron MJ, Maler L. Plastic and Nonplastic Pyramidal Cells Perform Unique Roles in a

Network Capable of Adaptive Redundancy Reduction. Neuron. 2004; 41:767–79. https://doi.org/10.

1016/s0896-6273(04)00071-6 PMID: 15003176

59. Chacron MJ, Longtin A, Maler L. Delayed excitatory and inhibitory feedback shape neural information

transmission. Phys Rev E Stat Nonlin Soft Matter Phys. 2005; 72(5 Pt 1):051917. Epub 20051114.

https://doi.org/10.1103/PhysRevE.72.051917 PMID: 16383655; PubMed Central PMCID:

PMC5283875.

60. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the

National Academy of Sciences of the United States of America. 1984; 81:4586–90. https://doi.org/10.

1073/pnas.81.14.4586 PMID: 6589612.

61. Clarke SE, Maler L. Feedback Synthesizes Neural Codes for Motion. Current Biology. 2017; 27:1356–

61. https://doi.org/10.1016/j.cub.2017.03.068 PMID: 28457872

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 27 / 29

https://doi.org/10.1242/jeb.202.10.1195
http://www.ncbi.nlm.nih.gov/pubmed/10210661
https://doi.org/10.1159/000064907
http://www.ncbi.nlm.nih.gov/pubmed/12138340
https://doi.org/10.1371/journal.pbio.0050301
https://doi.org/10.1371/journal.pbio.0050301
http://www.ncbi.nlm.nih.gov/pubmed/18001151
https://doi.org/10.1371/journal.pcbi.0030038
http://www.ncbi.nlm.nih.gov/pubmed/17335346
https://doi.org/10.1162/08997660260028629
http://www.ncbi.nlm.nih.gov/pubmed/12079547
https://doi.org/10.1073/pnas.1008587107
http://www.ncbi.nlm.nih.gov/pubmed/21131567
https://doi.org/10.1152/jn.00811.2015
http://www.ncbi.nlm.nih.gov/pubmed/26843601
https://doi.org/10.1523/JNEUROSCI.21-08-02842.2001
https://doi.org/10.1523/JNEUROSCI.21-08-02842.2001
http://www.ncbi.nlm.nih.gov/pubmed/11306636
https://doi.org/10.1002/cne.22120
http://www.ncbi.nlm.nih.gov/pubmed/19655388
https://doi.org/10.1038/nrn4037
http://www.ncbi.nlm.nih.gov/pubmed/26558527
https://doi.org/10.1242/jeb.202.10.1243
https://doi.org/10.1242/jeb.202.10.1243
http://www.ncbi.nlm.nih.gov/pubmed/10210665
https://doi.org/10.1371/journal.pcbi.1005716
http://www.ncbi.nlm.nih.gov/pubmed/28863136
https://doi.org/10.1523/JNEUROSCI.09-12-04400.1989
https://doi.org/10.1523/JNEUROSCI.09-12-04400.1989
http://www.ncbi.nlm.nih.gov/pubmed/2556508
https://doi.org/10.1002/cne.902210202
https://doi.org/10.1002/cne.902210202
http://www.ncbi.nlm.nih.gov/pubmed/6655077
https://doi.org/10.1016/s0896-6273%2804%2900071-6
https://doi.org/10.1016/s0896-6273%2804%2900071-6
http://www.ncbi.nlm.nih.gov/pubmed/15003176
https://doi.org/10.1103/PhysRevE.72.051917
http://www.ncbi.nlm.nih.gov/pubmed/16383655
https://doi.org/10.1073/pnas.81.14.4586
https://doi.org/10.1073/pnas.81.14.4586
http://www.ncbi.nlm.nih.gov/pubmed/6589612
https://doi.org/10.1016/j.cub.2017.03.068
http://www.ncbi.nlm.nih.gov/pubmed/28457872
https://doi.org/10.1371/journal.pcbi.1010938


62. Metzen MG, Huang CG, Chacron MJ. Descending pathways generate perception of and neural

responses to weak sensory input. PLoS Biology. 2018; 16:e2005239. https://doi.org/10.1371/journal.

pbio.2005239 PMID: 29939982

63. Kanitscheider I, Coen-Cagli R, Pouget A. Origin of information-limiting noise correlations. PNAS.

2015; 112(50):E6973–82. Epub 2015/12/02. https://doi.org/10.1073/pnas.1508738112 PMID:

26621747; PubMed Central PMCID: PMC4687541.

64. Bondy AG, Haefner RM, Cumming BG. Feedback determines the structure of correlated variability in

primary visual cortex. Nature Neuroscience. 2018; 21(4):598–606. https://doi.org/10.1038/s41593-

018-0089-1 PMID: 29483663

65. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, et al. The asynchronous state in

cortical circuits. Science. 2010; 327(5965):587–90. Epub 2010/01/30. https://doi.org/10.1126/science.

1179850 PMID: 20110507; PubMed Central PMCID: PMC2861483.

66. Litwin-Kumar A, Oswald AMM, Urban N, Doiron B. Balanced Synaptic Input Shapes the Correlation

between Neural Spike Trains. PLoS Computational Biology. 2011; 7:e1002305. https://doi.org/10.

1371/journal.pcbi.1002305 PMID: 22215995

67. Chacron MJ, Maler L, Bastian J. Electroreceptor neuron dynamics shape information transmission.

Nature Neuroscience. 2005; 8:673–8. https://doi.org/10.1038/nn1433 PMID: 15806098

68. Lyamzin DR, Barnes SJ, Donato R, Garcia-Lazaro JA, Keck T, Lesica NA. Nonlinear transfer of signal

and noise correlations in cortical networks. Journal of Neuroscience. 2015; 35:8065–80. https://doi.

org/10.1523/JNEUROSCI.4738-14.2015 PMID: 26019325.

69. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correla-

tions. Nat Neurosci. 2014; 17(10):1410–7. Epub 2014/09/10. https://doi.org/10.1038/nn.3807 PMID:

25195105; PubMed Central PMCID: PMC4486057.

70. Kafashan M, Jaffe AW, Chettih SN, Nogueira R, Arandia-Romero I, Harvey CD, et al. Scaling of sen-

sory information in large neural populations shows signatures of information-limiting correlations. Nat

Commun. 2021; 12(1):473. Epub 20210120. https://doi.org/10.1038/s41467-020-20722-y PMID:

33473113; PubMed Central PMCID: PMC7817840.

71. Pitkow X, Liu S, Angelaki DE, DeAngelis GC, Pouget A. How Can Single Sensory Neurons Predict

Behavior? Neuron. 2015; 87(2):411–23. Epub 2015/07/17. https://doi.org/10.1016/j.neuron.2015.06.

033 PMID: 26182422; PubMed Central PMCID: PMC4683594.

72. Rumyantsev OI, Lecoq JA, Hernandez O, Zhang Y, Savall J, Chrapkiewicz R, et al. Fundamental

bounds on the fidelity of sensory cortical coding. Nature. 2020; 580(7801):100–5. Epub 20200318.

https://doi.org/10.1038/s41586-020-2130-2 PMID: 32238928.

73. Cohen MR, Newsome WT. Context-dependent changes in functional circuitry in visual area MT. Neu-

ron. 2008; 60(1):162–73. Epub 2008/10/23. https://doi.org/10.1016/j.neuron.2008.08.007 PMID:

18940596; PubMed Central PMCID: PMC2652654.

74. Salinas E, Sejnowski TJ. Impact of correlated synaptic input on output firing rates and variability in sim-

ple neuronal models. Journal of Neuroscience. 2000; 20:6193–209.

75. Valente M, Pica G, Bondanelli G, Moroni M, Runyan CA, Morcos AS, et al. Correlations enhance the

behavioral readout of neural population activity in association cortex. Nature Neuroscience. 2021; 24

(7):975–86. https://doi.org/10.1038/s41593-021-00845-1 PMID: 33986549

76. Nassar MR, Scott D, Bhandari A. Noise Correlations for Faster and More Robust Learning. The Jour-

nal of Neuroscience. 2021; 41(31):6740–52. https://doi.org/10.1523/JNEUROSCI.3045-20.2021

PMID: 34193556

77. Huang CG, Metzen MG, Chacron MJ. Descending pathways mediate adaptive optimized coding of

natural stimuli in weakly electric fish. Science Advances. 2019; 5(10):eaax2211. https://doi.org/10.

1126/sciadv.aax2211 PMID: 31693006

78. Josić K, Shea-Brown E, Doiron B, de la Rocha J. Stimulus-Dependent Correlations and Population

Codes. Neural Computation. 2009; 21(10):2774–804. https://doi.org/10.1162/neco.2009.10-08-879

PMID: 19635014

79. Curreli S, Bonato J, Romanzi S, Panzeri S, Fellin T. Complementary encoding of spatial information in

hippocampal astrocytes. PLOS Biology. 2022; 20(3):e3001530. https://doi.org/10.1371/journal.pbio.

3001530 PMID: 35239646

80. Pola G, Thiele A, Hoffmann KP, Panzeri S. An exact method to quantify the information transmitted by

different mechanisms of correlational coding. Network: Computation in Neural Systems. 2003; 14

(1):35. https://doi.org/10.1088/0954-898x/14/1/303 PMID: 12613551

81. Azeredo da Silveira R, Rieke F. The Geometry of Information Coding in Correlated Neural Popula-

tions. Annu Rev Neurosci. 2021; 44:403–24. Epub 20210416. https://doi.org/10.1146/annurev-neuro-

120320-082744 PMID: 33863252.

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 28 / 29

https://doi.org/10.1371/journal.pbio.2005239
https://doi.org/10.1371/journal.pbio.2005239
http://www.ncbi.nlm.nih.gov/pubmed/29939982
https://doi.org/10.1073/pnas.1508738112
http://www.ncbi.nlm.nih.gov/pubmed/26621747
https://doi.org/10.1038/s41593-018-0089-1
https://doi.org/10.1038/s41593-018-0089-1
http://www.ncbi.nlm.nih.gov/pubmed/29483663
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
https://doi.org/10.1371/journal.pcbi.1002305
https://doi.org/10.1371/journal.pcbi.1002305
http://www.ncbi.nlm.nih.gov/pubmed/22215995
https://doi.org/10.1038/nn1433
http://www.ncbi.nlm.nih.gov/pubmed/15806098
https://doi.org/10.1523/JNEUROSCI.4738-14.2015
https://doi.org/10.1523/JNEUROSCI.4738-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26019325
https://doi.org/10.1038/nn.3807
http://www.ncbi.nlm.nih.gov/pubmed/25195105
https://doi.org/10.1038/s41467-020-20722-y
http://www.ncbi.nlm.nih.gov/pubmed/33473113
https://doi.org/10.1016/j.neuron.2015.06.033
https://doi.org/10.1016/j.neuron.2015.06.033
http://www.ncbi.nlm.nih.gov/pubmed/26182422
https://doi.org/10.1038/s41586-020-2130-2
http://www.ncbi.nlm.nih.gov/pubmed/32238928
https://doi.org/10.1016/j.neuron.2008.08.007
http://www.ncbi.nlm.nih.gov/pubmed/18940596
https://doi.org/10.1038/s41593-021-00845-1
http://www.ncbi.nlm.nih.gov/pubmed/33986549
https://doi.org/10.1523/JNEUROSCI.3045-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/34193556
https://doi.org/10.1126/sciadv.aax2211
https://doi.org/10.1126/sciadv.aax2211
http://www.ncbi.nlm.nih.gov/pubmed/31693006
https://doi.org/10.1162/neco.2009.10-08-879
http://www.ncbi.nlm.nih.gov/pubmed/19635014
https://doi.org/10.1371/journal.pbio.3001530
https://doi.org/10.1371/journal.pbio.3001530
http://www.ncbi.nlm.nih.gov/pubmed/35239646
https://doi.org/10.1088/0954-898x/14/1/303
http://www.ncbi.nlm.nih.gov/pubmed/12613551
https://doi.org/10.1146/annurev-neuro-120320-082744
https://doi.org/10.1146/annurev-neuro-120320-082744
http://www.ncbi.nlm.nih.gov/pubmed/33863252
https://doi.org/10.1371/journal.pcbi.1010938


82. Luo TZ, Maunsell JH. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple

Components of Attention. Neuron. 2015; 86(5):1182–8. https://doi.org/10.1016/j.neuron.2015.05.007

PMID: 26050038; PubMed Central PMCID: PMC4458699.

83. Mayo JP, Maunsell JH. Graded Neuronal Modulations Related to Visual Spatial Attention. J Neurosci.

2016; 36(19):5353–61. https://doi.org/10.1523/JNEUROSCI.0192-16.2016 PMID: 27170131;

PubMed Central PMCID: PMC4863062.

84. Ruff DA, Cohen MR. Simultaneous multi-area recordings suggest that attention improves performance

by reshaping stimulus representations. Nat Neurosci. 2019; 22(10):1669–76. Epub 20190902. https://

doi.org/10.1038/s41593-019-0477-1 PMID: 31477898; PubMed Central PMCID: PMC6760994.

85. Abbott LF, Dayan P. The effect of correlated variability on the accuracy of a population code. The Jour-

nal of experimental biology. 1999; 11:91–101. https://doi.org/10.1162/089976699300016827 PMID:

9950724.

86. Sompolinsky H, Yoon H, Kang K, Shamir M. Population coding in neuronal systems with correlated

noise. Physical Review E. 2001; 64:051904. https://doi.org/10.1103/PhysRevE.64.051904 PMID:

11735965

87. Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J. Non-classical receptive field mediates switch in

a sensory neuron’s frequency tuning. Nature. 2003; 423(6935):77–81. Epub 2003/05/02. https://doi.

org/10.1038/nature01590 PMID: 12721628.

88. Vinje WE, Gallant JL. Sparse Coding and Decorrelation in Primary Visual Cortex During Natural

Vision. Science. 2000; 287:1273–6. https://doi.org/10.1126/science.287.5456.1273 PMID: 10678835

89. Vinje WE, Gallant JL. Natural stimulation of the nonclassical receptive field increases information

transmission efficiency in V1. Journal of Neuroscience. 2002; 22:2904–15. https://doi.org/10.1523/

JNEUROSCI.22-07-02904.2002 PMID: 11923455

90. Mitchell DE, Kwan A, Carriot J, Chacron MJ, Cullen KE. Neuronal variability and tuning are balanced

to optimize naturalistic self-motion coding in primate vestibular pathways. Elife. 2018; 7:e43019. Epub

2018/12/19. https://doi.org/10.7554/eLife.43019 PMID: 30561328; PubMed Central PMCID:

PMC6312400.

91. Mackrous I, Carriot J, Cullen KE, Chacron MJ. Neural variability determines coding strategies for natu-

ral self-motion in macaque monkeys. Elife. 2020; 9:e57484. Epub 2020/09/12. https://doi.org/10.7554/

eLife.57484 PMID: 32915134.

92. Huang CG, Zhang ZD, Chacron MJ. Temporal decorrelation by SK channels enables efficient neural

coding and perception of natural stimuli. Nature communications. 2016; 7:11353. Epub 2016/04/19.

https://doi.org/10.1038/ncomms11353 PMID: 27088670; PubMed Central PMCID: PMC4837484.

93. Hitschfeld EM, Stamper SA, Vonderschen K, Fortune ES, Chacron MJ. Effects of restraint and immo-

bilization on electrosensory behaviors of weakly electric fish. ILAR Journal. 2009; 50:361–72. https://

doi.org/10.1093/ilar.50.4.361 PMID: 19949252.

94. MacIver MA, Sharabash NM, Nelson ME. Prey-capture behavior in gymnotid electric fish: motion anal-

ysis and effects of water conductivity. The Journal of experimental biology. 2001; 204:543–57. https://

doi.org/10.1242/jeb.204.3.543 PMID: 11171305.

95. Wang Z, Chacron MJ. Synergistic population coding of natural communication stimuli by hindbrain

electrosensory neurons. Scientific Reports. 2021; 11(1):1–17.

96. Metzen MG, Chacron MJ. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.

The Journal of Neuroscience. 2021; 41(17):3822–41. https://doi.org/10.1523/JNEUROSCI.2232-20.

2021 PMID: 33687962

97. Wang Z, Chacron MJ. Synergistic population coding of natural communication stimuli by hindbrain

electrosensory neurons. Sci Rep. 2021; 11(1):10840. Epub 2021/05/27. https://doi.org/10.1038/

s41598-021-90413-1 PMID: 34035395; PubMed Central PMCID: PMC8149419.

98. Toporikova N, Chacron MJ. Dendritic SK channels gate information processing in vivo by regulating

an intrinsic bursting mechanism seen in vitro. Journal of Neurophysiology. 2009; 102:2273–87.

99. Martinez D, Metzen MG, Chacron MJ. Electrosensory processing in Apteronotus albifrons: implica-

tions for general and specific neural coding strategies across wave-type weakly electric fish species.

Journal of Neurophysiology. 2016; 116(6):2909–21. Epub 2016/09/30. https://doi.org/10.1152/jn.

00594.2016 PMID: 27683890; PubMed Central PMCID: PMC5224934.

100. Kanitscheider I, Coen-Cagli R, Kohn A, Pouget A. Measuring Fisher Information Accurately in Corre-

lated Neural Populations. PLoS Computational Biology. 2015; 11(6):e1004218. https://doi.org/10.

1371/journal.pcbi.1004218 PMID: 26030735

PLOS COMPUTATIONAL BIOLOGY Coding by heterogenous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010938 March 3, 2023 29 / 29

https://doi.org/10.1016/j.neuron.2015.05.007
http://www.ncbi.nlm.nih.gov/pubmed/26050038
https://doi.org/10.1523/JNEUROSCI.0192-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27170131
https://doi.org/10.1038/s41593-019-0477-1
https://doi.org/10.1038/s41593-019-0477-1
http://www.ncbi.nlm.nih.gov/pubmed/31477898
https://doi.org/10.1162/089976699300016827
http://www.ncbi.nlm.nih.gov/pubmed/9950724
https://doi.org/10.1103/PhysRevE.64.051904
http://www.ncbi.nlm.nih.gov/pubmed/11735965
https://doi.org/10.1038/nature01590
https://doi.org/10.1038/nature01590
http://www.ncbi.nlm.nih.gov/pubmed/12721628
https://doi.org/10.1126/science.287.5456.1273
http://www.ncbi.nlm.nih.gov/pubmed/10678835
https://doi.org/10.1523/JNEUROSCI.22-07-02904.2002
https://doi.org/10.1523/JNEUROSCI.22-07-02904.2002
http://www.ncbi.nlm.nih.gov/pubmed/11923455
https://doi.org/10.7554/eLife.43019
http://www.ncbi.nlm.nih.gov/pubmed/30561328
https://doi.org/10.7554/eLife.57484
https://doi.org/10.7554/eLife.57484
http://www.ncbi.nlm.nih.gov/pubmed/32915134
https://doi.org/10.1038/ncomms11353
http://www.ncbi.nlm.nih.gov/pubmed/27088670
https://doi.org/10.1093/ilar.50.4.361
https://doi.org/10.1093/ilar.50.4.361
http://www.ncbi.nlm.nih.gov/pubmed/19949252
https://doi.org/10.1242/jeb.204.3.543
https://doi.org/10.1242/jeb.204.3.543
http://www.ncbi.nlm.nih.gov/pubmed/11171305
https://doi.org/10.1523/JNEUROSCI.2232-20.2021
https://doi.org/10.1523/JNEUROSCI.2232-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/33687962
https://doi.org/10.1038/s41598-021-90413-1
https://doi.org/10.1038/s41598-021-90413-1
http://www.ncbi.nlm.nih.gov/pubmed/34035395
https://doi.org/10.1152/jn.00594.2016
https://doi.org/10.1152/jn.00594.2016
http://www.ncbi.nlm.nih.gov/pubmed/27683890
https://doi.org/10.1371/journal.pcbi.1004218
https://doi.org/10.1371/journal.pcbi.1004218
http://www.ncbi.nlm.nih.gov/pubmed/26030735
https://doi.org/10.1371/journal.pcbi.1010938

