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Synergistic population coding

of natural communication stimuli
by hindbrain electrosensory
neurons

Ziqi Wang & Maurice J. Chacron™

Understanding how neural populations encode natural stimuli with complex spatiotemporal structure
to give rise to perception remains a central problem in neuroscience. Here we investigated population
coding of natural communication stimuli by hindbrain neurons within the electrosensory system of
weakly electric fish Apteronotus leptorhynchus. Overall, we found that simultaneously recorded neural
activities were correlated: signal but not noise correlations were variable depending on the stimulus
waveform as well as the distance between neurons. Combining the neural activities using an equal-
weight sum gave rise to discrimination performance between different stimulus waveforms that was
limited by redundancy introduced by noise correlations. However, using an evolutionary algorithm to
assign different weights to individual neurons before combining their activities (i.e., a weighted sum)
gave rise to increased discrimination performance by revealing synergistic interactions between neural
activities. Our results thus demonstrate that correlations between the neural activities of hindbrain
electrosensory neurons can enhance information about the structure of natural communication
stimuli that allow for reliable discrimination between different waveforms by downstream brain areas.

How neural populations encode sensory information (i.e., population coding) is one of the most intriguing
questions in neuroscience and has been extensively studied'. Understanding population coding is complicated
by the fact that neural activities are not independent of each other but are instead correlated***’. The effects of
correlations on coding remains under debate. Of particular interest are correlations between the trial-to-trial vari-
ability of neural activities (i.e. “noise correlations”) in relation to correlations between the mean neural responses
to a given stimulus (i.e., “signal correlations”)?. While noise correlations can limit information transmission by
introducing redundancy?, they can also introduce synergy and be beneficial to coding®~!'. However, as most
previous studies of population coding used artificial stimuli, the encoding of natural stimuli which often display
complex spatiotemporal characteristics is less understood'*">.

Here, we studied population coding of natural communication stimuli in the wave-type weakly electric fish
Apteronotus leptorhynchus. These fish emit a quasi-sinusoidal electric field through the electric organ discharge
(EOD) and can sense field perturbations to locate preys as well as communicate with conspecifics'*!>. These
perturbations are detected by electroreceptors on the animals’ skin, which synapse onto pyramidal cells within
the electrosensory lateral line lobe (ELL). ELL pyramidal cells can be categorized into ON cells and OFF cells,
which respond to increases and decreases of the EOD amplitude, respectively. Pyramidal cells constitute the
main output neurons of the ELL and project directly to the midbrain area torus semicircularis, and indirectly to
higher brain areas that generate perception and behavior'®. During social interactions, weakly electric fish com-
municate using brief changes in their EOD called “chirps” whose attributes vary over a wide range and thus give
rise to very heterogeneous stimulus waveforms'’-22. Previous studies have primarily focused on understanding
how single electrosensory neurons respond to chirp stimuli**** and used these recordings to study population
coding®?. However, a limitation is that, because the neural recordings were not performed simultaneously, the
effects of noise correlations were not considered. Importantly, ELL pyramidal cells display correlations between
their activities in the absence of stimulation?, which tend to give rise to noise correlations during stimulation®*?.
Here, to investigate how correlations affect population coding of chirps by ELL pyramidal cell populations, we
used multi-channel Neuropixels probes to record simultaneously the activities of multiple ELL pyramidal cells
in response to chirp stimuli.
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Figure 1. Neuropixels probes were used to record extracellular activities of ELL pyramidal cells responding to
chirps created using adobe illustrator CS6 v 16.0 (www.adobe.com). (a) Left: schematics demonstrating chirps
stimuli used in the experiments and experimental set up. Right: recorded activities from example channels
using Neuropixels probes with spikes of different neurons highlighted in colors. (b) Left: stimulus waveform
(top) consisting of a 5 Hz beat with a chirp (vertical red dashed line), raster plot of ON and OFF cells (middle),
and the mean and standard deviation (shaded areas) of normalized population PSTHs across different trials
(see “Materials and methods”) (bottom) for chirp with 30 Hz excursion frequency at 0° of beat phase. The grey
rectangle indicates the 40 ms chirp evaluation time window. Middle: same plots for chirp with 30 Hz excursion
frequency at 180° of beat phase. Right: same plots for chirp with 60 Hz excursion frequency at 180° of beat
phase.

Results

Here we investigated how ELL pyramidal cell populations encode chirps with different attributes. During social
interaction, interference between the EODs of two fish form a beat (i.e., a sinusoidal modulation in EOD ampli-
tude; Fig. 1a, top left). Chirps consist of transient increases in the EOD frequency of one fish (i.e., the emitter
fish) and will give rise to a transient modulation of the beat waveform as sensed by the receiver fish. Differences
in the duration of the frequency increase, its excursion, and the beat phase at which the chirp occurs will thus
give rise to different stimulus waveforms®. Figure 1b shows three example chirp stimulus waveforms (top) as
well as raster plots of ON and OFF cells (middle) and population peri-stimulus time histograms (population
PSTHs; bottom) in response to each stimulus. We recorded the activities of multiple ELL pyramidal cells simul-
taneously using Neuropixels probes (Fig. 1a, right) in response to chirp stimuli that were delivered to the fish
through a pair of electrodes located on either side of the fish (Fig. 1a, bottom left). We considered responses to
chirps within a 40 ms time window that started 8 ms after chirp onset to account for transmission delays (see
“Materials and methods”).

Signal but not noise correlations vary with distance and stimuli.  As previous studies have shown
that the correlation structure (i.e., the relationship between signal and noise correlations) strongly impacts pop-
ulation coding?, including in ELL pyramidal cells but for stimuli other than those considered here?®*!, we first
investigated signal and noise correlations between ELL pyramidal cell pairs during chirp stimulation. Signal
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correlations represent similarities between the mean responses of two neurons to a given stimulus (Fig. 2a, left),
while noise correlations are instead correlations between the trial-to-trial variabilities of neural responses to
repeated presentations of a given stimulus and arise due to shared noisy synaptic input (Fig. 2a, right).

We found that ELL pyramidal cells displayed both signal and noise correlations in their activities in response
to chirp stimuli. Specifically, signal correlations of same-type (i.e., pairs containing either ON cells or OFF cells)
and opposite-type pairs (i.e., pairs containing both ON and OFF cells) were on average positive and negative
respectively (Fig. 2b, compare top and bottom panels). In contrast, noise correlations were similarly distributed
around 0 for both same-type and opposite-type pairs (Fig. 2¢c, compare top and bottom panels). Interestingly,
for same-type pairs, signal correlations first decreased and then increased with increasing distance between the
probe sites on which both neurons were recorded (Fig. 2b top, from 0 to 550 um: linear regression, r=— 0.74,
p=0.011; from 400 to 1000 pum: linear regression, r=0.91, p=4.2 x 107°). For opposite-type pairs, the oppo-
site trend was observed in that signal correlation first increased and then decreased with increasing distance
(Fig. 2b bottom, from 0 to 550 pm: linear regression, r=0.66, p =0.030; from 400 to 1000 pm: linear regression,
r=-0.81, p=8.3 x 10~). However, noise correlations were largely independent of distance for both same-type
and opposite-type pairs (Fig. 2¢, same-type pairs: linear regression, r=0.020, p = 0.96; opposite type pairs: linear
regression, r=0.42, p=0.10).

Next, we looked at whether and, if so, how signal and noise correlations varied as a function of the different
chirp stimulus waveforms used in this study. We found that for the population with only ON cells, the distribu-
tions of signal and noise correlations were significantly different from one another for different chirps (Fig. 3a left,
Friedman’s test, p=4.0 x 107*; Fig. 3b left, Friedman’s test, p=0.020). However, for the population with both ON
and OFF cells, while the distributions of signal correlation were significantly different (Fig. 3a right, Friedman’s
test, p=1.1 x 1071%), noise correlation distributions did not change significantly (Fig. 3b right, Friedman’s test,
p=0.17). Furthermore, we noticed that noise and signal correlations were not independent of each other. The
signal and noise correlations for both ON-ON pairs and for all pairs are shown in Fig. 3c. Overall, there were
positive but weak correlations between signal and noise correlations for both cases (Fig. 3c left, linear regression,
r=0.060, p=1.3 x 107 Fig. 3c right, linear regression, r=0.11, p=6.0 x 107'%). Thus, our results at this stage
show that, while signal correlations were strongly dependent on distance and chirp stimulus waveform, this was
generally not the case for noise correlations.

Decoding ELL pyramidal cells activities with equal-weight sum and weighted sum. We next
quantified the performance of a classifier at correctly discriminating between neural responses generated by a
given chirp stimulus waveforms (see “Materials and methods”). In short, neural activities of all neurons were
combined in different manners to obtain the population activity. The population activities obtained in response
to different chirp waveforms were then compared across different stimulus trials using the van Rossum metric®.
Thus, a given population activity was assigned as being generated by a certain stimulus i if the distance between
this activity and the chosen template for stimulus i was lower than all other distances computed using chosen
templates for other stimuli (see “Materials and methods”). In practice, the trial-averaged population activities
were chosen as templates. The performance of the classifier is represented by a confusion matrix where each
entry (i,f) is the probability that a response which was actually generated by stimulus i is classified as generated
by stimulus j. As such, the diagonal elements of the confusion matrix give the amount of correct classification
whereas the off-diagonal elements instead give the amount of incorrect classification.

First, we combined the neural activities by performing a linear sum giving the same weight to each neuron
(Fig. 4a). To quantify the effects of noise correlations, the performance of the classifier was evaluated on the
neural responses as well as neural responses that were randomly shuffled with respect to trial order (see “Materi-
als and methods”). Performances obtained with and without noise correlations were significantly above chance
level (with noise correlations, one-sample t-test, p=3.9 x 107°% without noise correlations, one-sample t-test,
p=1.5x 107*). We quantified the effect of timescale of encoding used in the van Rossum metric on the perfor-
mance. This is important as small timescales put more emphasis on precise spike timing whereas larger timescales
instead place more emphasis on slower variations in the firing rate*>. We found that maximal performance was
observed using a timescale of ~ 3 ms (Fig. 4b left), indicating that precise spike timing can be used to reliably dis-
criminate between different chirp stimulus waveforms. The performance when noise correlations were removed
was higher than that obtained for the raw data (Fig. 4b right, one-way ANOVA, p=1.3 x 10™*), indicating that
noise correlations have a detrimental effect on discrimination performance. Next, we analyzed how discrimina-
tion performance varied as a function of population size. We separated the entire population into ON cells and
OFF cells and increased the population size by adding either ON cells or OFF cells first. We found that when
increasing population size by first adding the ON cells, the performance increased when ON cells only were first
considered and actually decreased when OFF cells were added to the pool (Fig. 4c). Interestingly, when increasing
population size by first adding the OFF cells, the performance started with low values and increased slowly, but
later increased drastically when ON cells were added (Fig. 4d). We found that ON cell populations had much
better performance than OFF cell populations (Fig. 4d inset, one-way ANOVA, p=1.0 x 107%). These results were
consistent with the previous findings that single ON cells instead of single OFF cells better respond to chirps®.

Next, we combined the neural activities of all neurons using a weighted sum (i.e., a sum with unequal weights)
(Fig. 5a). To find the weights that give rise to the best discrimination performance, we used an evolutionary
algorithm (see “Materials and methods”; Fig. 5a). The effect of timescale of encoding on performance was
similar as in the case of the equal-weight sum (Fig. 5b left). Overall, the performance improved significantly
when performing a weighted sum as compared to that obtained with equal-weight sum with and without noise
correlations (Fig. 5b right top, equal-weight with noise correlations vs. weighted with noise correlations, one-
way ANOVA, p=1.1 x 107%; equal-weight without noise correlations vs. weighted without noise correlations,
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«Figure 2. Signal but not noise correlations varied with distance. (a) Schematics showing how signal and noise
correlations arise created using adobe illustrator CS6 v 16.0 (www.adobe.com). While signal correlation arises
from similarity in mean responses to stimuli (left), noise correlation instead arises from shared noisy synaptic
inputs (right). (b) Top: signal correlations of same-type pairs (i.e., pairs of either ON or OFF cells) as a function
of distance (blue dots). Distance was discretized into 20 bins (50 microns per bin) and signal correlations for
pairs that fall within the same bin were averaged (black dots, error bars indicate standard deviation). Signal
correlations first decreased and then increased with distance (from 0 to 550 microns: linear regression, r=—
0.74, p=0.011; from 400 to 1000 microns: linear regression, r=0.91, p=4.2 x 10~°). Bottom: signal correlations
of opposite-type pairs (i.e., pairs containing one ON and one OFF cell) as a function of distance (red dots).
Signal correlations first increased and then decreased with distance when the data was averaged within bins
(from 0 to 550 microns: linear regression, r =0.66, p=0.030; from 400 to 1000 microns: linear regression, r=—
0.81, p=8.3 x 107%). We note that qualitatively similar results were obtained when performing a linear regression
on the data without averaging (same type: from 0 to 550 microns: linear regression, r=— 0.26, p=4.7 x 10~%/;
from 400 to 1000 microns: linear regression, r=0.34, p=2.8 x 107%; opposite type: from 0 to 550 microns: linear
regression, r=0.18, p=2.2 x 10713 from 400 to 1000 microns: linear regression, r=—0.32, p=2.0 x 107%). (c)
Top: same as (b), but for noise correlations. There was no significant correlation between noise correlations
and distance for both same-type pairs and opposite-type pairs (same-type pairs: linear regression, r=0.020,
p=0.96; opposite type pairs: linear regression, r=0.42, p=0.10). When performing a linear regression on
the data without averaging, we found a negligible but significant relationship between noise correlations
and distance both for same type pairs (slope=— 1.3 x 10~°, r=— 0.045, p=0.014) and for opposite type pairs
(slope=2.5x 107%, r=0.096, p=2.2 x 107°). However, note that the slopes are infinitesimally small in magnitude
in both cases. In panels b and ¢, correlation coefficient values that were deemed non-significant at the p=0.05
level using the function “corrcoeff” in Matlab are plotted in green.

one-way ANOVA, p=8.7 x 107"°). Weight distributions for ON and OFF cells were largely mirror images of
one-another (Fig. 5b right bottom, ON cells: mean=0.12, std =0.16; OFF cells: mean=— 0.19, std=0.15) and
were significantly different (two-sample Kolmogorov-Smirnov test, p=9.0 x 107?). Further, we noticed that,
unlike the equal-weight case, noise correlations were actually beneficial as removing them significantly reduced
performance (Fig. 5b right, weighted with noise correlations vs. weighted without noise correlations, one-way
ANOVA, p=5.3 x 107). For the effect of population size on performance, adding OFF cells to the ON cells
population did not decrease the performance (Fig. 5¢), in contrast to the equal-weight case (Fig. 4c); however,
a population with only OFF cells still had a poor performance in the weighted case (Fig. 5d). It is important to
note that population consisting of only ON cells displayed much better performance in the weighted case than
in the equal-weighted case (compare Figs. 5¢ and 4c). As such, the improvement in performance is not due to
considering both ON and OFF cells with opposite weights. Rather, such improvement is largely due to hetero-
geneities within the ON cell population.

Why is there an overall performance increase when using a weighted sum vs. an unweighted sum? Intuitively,
increases in performance can occur when the set of responses elicited by different stimuli become more distant
from one another and thus more discriminable. However, increases in performance can also occur if the size of
these sets decreases (Fig. 6a). Figure 6b shows three example stimulus waveforms (left top panel) as well as popu-
lation PSTHs when taking equal-weight (left middle panel) and weighted (left bottom panel) sums. It was seen
that the population activities were more different from each other (see dashed rectangle) when taking weighted
sums, partly because a weighted sum with both positive and negative weights can lead to negative population
activities while population activities obtained with equal-weight sum can only be positive by definition. Quan-
tification of the distance between responses (see “Materials and methods”) confirmed that greater values were
obtained when considering weighted sums than equal-weight sums (Fig. 6¢, one-way ANOVA, p=4.5 x 107%).
We next tested whether weighted neural responses were less variable than their equal-weight counterparts. To
do so, we quantified the variability in the response using both weighted and equal-weight sums, as well as before
and after removing noise correlations (see “Materials and methods”). We found that weighted sums reduced
overall variability of neural activities, both with and without noise correlations (Fig. 6d, equal-weight with noise
correlations vs weighted with noise correlations, one-way ANOVA, p=3.9 x 10-%; equal-weight without noise
correlations vs weighted without noise correlations, one-way ANOVA, p=3.4 x 10°'7). We also noticed that
removing noise correlations reduced overall variability in the equal-weight case and increased overall variability
in the weighted case (Fig. 6d, equal-weight with noise correlations vs equal-weight without noise correlations,
one-way ANOVA, p=3.1 x 107%; weighted with noise correlations vs weighted without noise correlations, one-
way ANOVA, p =0.040).

Weighted sums of ELL pyramidal cells activities eliminate redundancy and introduce syn-
ergy. Why is the performance greater for weighted sums before removing noise correlations? Previous theo-
retical studies have shown that noise correlations can be beneficial to information transmission when their sign
is opposite to that of signal correlations?. In order to study the correlation structures at a population level beyond
two neurons, we combined the activities of subsets of neurons. Specifically, we divided our dataset into two
subpopulations and considered correlations between the summed (either equal-weight or weighted) activities
of both subpopulations® (see “Materials and methods”). We found that, for equal-weight, signal and noise cor-
relations were both predominantly positive (Fig. 7a, 78.3% of points in upper-right quadrant). However, this was
much less the case for weighted sums, as more data points with signal and noise correlations having the opposite
signs were observed (Fig. 7b, number of points in upper-left quadrant increased from 18.4 to 34.5%, while num-
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Figure 3. Correlation structure during chirp stimulation. (a) The probability distribution of signal correlations
for each chirp stimulus waveform used. There were significant differences between the distributions for the
population with only ON cells (left) and the population with both ON and OFF cells (right) (ON cells only:
Friedmanss test, p=4.0 x 10*; ON and OFF cells: Friedman test, p=1.1 x 107!¢). (b) Same as (a) but for

noise correlations. There were significant differences between the distributions for the population with ON
cells only (Friedmanss test, p=0.020), while there were no significant differences between the distributions

for the population with both ON and OFF cells (Friedman test, p=0.17). (¢) Noise correlations of ON-ON
pairs only (left) and of all pairs (right) plotted against signal correlations of the same pairs. There were positive
relationships between signal and noise correlations for ON-ON pairs and for all pairs (ON-ON pairs: linear
regression, r=0.060, p=1.3 x 107%; all pairs: linear regression, r=0.11, p=6.0 x 107%%).
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Figure 4. Discrimination performances of population activities when using an equal-weight sum to combine
neural activities. (a) Schematics showing how the responses of ELL pyramidal cells were summed with equal
weights. (b) Left top: confusion matrices where each entry is the probability of a stimulus i predicted as stimulus
j (prediction based on distance between neural responses quantified by van Rossum metric with timescale T, see
“Materials and methods” for details) for a population of 21 neurons consisting of 16 ON cells and 5 OFF cells
with t=1, 3 and 100 ms. Left bottom: discrimination performance as a function of t. The shaded areas represent
standard deviation when using 30 different sub-trials (60% of all trials), and same for (c) and (d). The range of

T values for which performance was higher than 90% of the maximum is 6 ms. Right: boxplots showing that
equal-weight sum of neural activities without noise correlations (right) had better performance than that with
noise correlations (left; one-way ANOVA, p=1.3 x 10™). (c) The effect of population size on discrimination
performance. ON cells were first considered before OFF cells. Top: confusion matrices for populations of 1 ON
cell, 11 ON cells, and all cells (16 ON cells and 5 OFF cells) with T=3 ms. Bottom: discrimination performance
as a function of population size. (d) Same as (c) but OFF cells were first considered before ON cells. Top:
confusion matrices for populations of 1 OFF cell, 5 OFF cells, and all cells (16 ON cells and 5 OFF cells) with
T=3 ms. Bottom: discrimination performance as a function of population size. Inset: boxplot showing that 5 ON
cells had better performance than 5 OFF cells (one-way ANOVA, p=1.0 x 107).

ber of points in upper-right quadrant decreased from 78.3 to 61.0%). These findings thus confirm our hypothesis
and explain why removing noise correlations led to lower performance when considering equal-weight sums but
instead led to increased performance when considering weighted sums.

Discussion

Summary of results. In this study, we investigated for the first time how ELL pyramidal cell populations
encode natural electro-communication stimuli by simultaneously recording the activities of multiple neurons.
We first demonstrated that the activities of ELL pyramidal cells were correlated pairwise under chirp stimulation.
Specifically, while signal correlations varied as a function of the physical distance between recording probe sites
as well as stimulus waveform, noise correlations were instead largely independent of both distance and stimulus
waveform. There was furthermore a positive relationship between signal and noise correlations. We next quanti-
fied the performance of a classifier at correctly discriminating which stimulus waveform was presented based on
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Figure 5. Discrimination performances of population activities when taking the weighted population sum. (a)
Schematics showing how the responses of ELL pyramidal cells were summed with different weights assigned
for different neurons. The weights were generated by an evolutionary algorithm. If the weights generated

gave a better performance, they replaced the previous weights; if the weights generated did not improve the
performance for 10 iterations (performance maximized), the evolutionary algorithm was terminated (see
“Materials and methods” for details). (b) Left top: confusion matrices where each entry is the probability of

a stimulus i predicted as stimulus j (prediction based on the distance between neural responses quantified by
van Rossum metric with timescale T, see “Materials and methods” for details) for a population of 21 neurons
consisting of 16 ON and 5 OFF cells with t=1, 3 and 100 ms. Left bottom: discrimination performance as a
function of t. The shaded areas represent standard deviation of performance from different simulations of the
evolutionary algorithm (30 in total), and same for (c) and (d). The range of t values for which performance
was higher than 90% of the maximum is 5.3 ms, which is similar to that obtained in the equal-weighted case
(Fig. 4b). Right top: boxplots showing that weighted sums of neural activities improved performance for both
with and without noise correlations (with noise correlations, one-way ANOVA, p=1.1 x 107%; without noise
correlations, one-way ANOVA, p=8.7 x 107"); also, equal-weight sum of neural activities without noise
correlations had better performance than those with noise correlations (one-way ANOVA, p=1.3 x 107),
while weighted sum of neural activities with noise correlations had better performance than those without
noise correlations (one-way ANOVA, p=5.3 x 107"°). Right bottom: the probability distributions of weights
assigned to ON cells and OFF cells over 30 runs of the evolutionary algorithm. (c) The effect of population
size on discrimination performance. ON cells were first considered before OFF cells. Top: confusion matrices
for populations of 1 ON cell, 11 ON cells, and all cells (16 ON cells and 5 OFF cells) with t=3 ms. Bottom:
discrimination performance as a function of population size. (d) Same as (c) but now OFF cells were first
considered before ON cells. Top: confusion matrices for populations of 1 OFF cell, 5 OFF cells, and all cells (16
ON cells and 5 OFF cells) with T=3 ms. Bottom: discrimination performance as a function of population size.

the combined neural activities of ELL pyramidal cells. When the activities were combined using an equal-weight
sum, we found that ON cells have better discrimination performance than OFF cells with a combined (ON
and OFF cells) correct discrimination performance around 75%. Noise correlations were overall detrimental

Scientific Reports|  (2021) 11:10840 | https://doi.org/10.1038/s41598-021-90413-1 nature portfolio



www.nature.com/scientificreports/

a response space res_ponse space
equal-weight weighted
maximize g
performance =
f=4
inter-response distancet 1S
variability}
b C
1 —~ 07
E *
o
» £
E g —
S o
E o s L -
- [
@ T 0.55 %’
]
c
o
1 | 2
2
[
£
s 0.4
= a equal-weight weighted
D0 d
[ - E *
s 0t
'é 52 0.8 *
s>~ *
g8 _ -
:
-0.25 c T
>
=
2 105 % e
o] -
)
G
E >
»
3z
£5¢
3 ’ & & o &
a & \© & \°
S N > 3
) )
O & & @
-0.25 | 1 N ,;x"”\ O &
8 30 50 th\ & 4‘0‘
time (ms) & 00?

Figure 6. Weighted sums maximized the performance by increasing distances between trials-averaged
responses to different stimuli and reducing trial-to-trial variability. (a) Schematics showing that weighted sums
of neural activities maximize the performance by increasing the inter-response distance (i.e., distances between
trials-averaged responses to different stimuli) and reducing response variability. These were created using adobe
illustrator CS6 v 16.0 (www.adobe.com). (b) Top: three example chirp stimuli. The waveforms are shifted to

the right by 8 ms to account for the common synaptic delay of chirp responses. Middle and bottom: the means
and standard deviations (shaded areas) of normalized population PSTHs across different trials of the example
chirp stimuli under equal-weight and weighted sum. Horizontal dashed line indicates zero. Dashed squares
indicate that responses to different stimuli under weighted sum are more different from each other compared
to responses under equal-weight sum. (c) Boxplots showing that weighted sums of neural activities had higher
inter-response distance than equal-weight sums of neural activities (one-way ANOVA, p=4.5 x 107). (d)
Boxplots showing that weighted sums of neural activities had lower response variability than equal-weight sums
of neural activities (with noise correlations, one-way ANOVA, p=3.9 x 10~%; without noise correlations, one-
way ANOVA, p=3.4 x 107); also, equal-weight sums of neural activities without noise correlations had lower
response variability than equal-weight sums with noise correlations (one-way ANOVA, p=3.1 x 10~%) while
weighted sums of neural activities without noise correlations had higher response variability than weighted
sums with noise correlations (one-way ANOVA, p=0.040).

to discrimination performance as their removal increased performance. When instead considering weighted
sums and using an evolutionary algorithm to optimize the weights, we found increased performance up to 85%.
Interestingly, noise correlations were then beneficial as removing them decreased performance. Further analysis
revealed that the improved performance by weighted sum was the result of maximizing distance between trial-
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Figure 7. Weighted sums of neural activities eliminated redundancy and introduced synergy by yielding
beneficial correlation structure. (a) Noise and signal correlations between two subpopulations, which were
formed by partially summing the activities of entire population with equal weights (see “Materials and
methods”). Different data points correspond to different bootstrap samples of partial sums. Percentages of data
points in each quadrant are shown. (b) Same as (a) but the subpopulations were formed using weighted sums.

averaged responses to different chirp stimuli and minimizing overall variability. By considering correlations
between the summed activities of subpopulations, we found that signal and noise correlations tended to have
the same sign when considering equal-weight sums, which is detrimental to discrimination. In contrast, signal
and noise correlations with opposite signs became relatively more dominant when considering weighted sums,
which is beneficial to discrimination. Our results thus show that ELL pyramidal cells display significant correla-
tions in their activities during chirp stimulation that can be either beneficial or detrimental to discriminability
depending on how these activities are decoded by downstream brain areas.

Origins of signal and noise correlations.  Our results have shown that signal correlation magnitude first
decreased with distance then increased. While the decrease can be explained by increasing dissimilarity in the
receptive fields of neurons with increasing distance, the increase of signal correlations as the distance further
increased is more puzzling. One possible explanation is that descending input from higher brain areas (i.e., feed-
back) modulate chirp responses to increase signal correlations. Indeed, ELL pyramidal cells receive abundant
feedback consisting of both topographic and diffuse sources®. In particular, diffuse feedback was shown to affect
signal correlations in ELL pyramidal cells to beat stimuli*® and enhance single neuron responses to chirps®.
Such feedback originates from cerebellar granule cells, which make the ELL a cerebellum-like structure®. As
such feedback originates from afferent input located far away from the cell within the non-classical receptive
field*®*, we hypothesize that this might explain the increase in signal correlations observed for larger distances.
Alternatively, the decrease and increase in signal correlations could be due to the fact that the recording probe
went across different maps of ELL, from the lateral segment (LS) into the central lateral segment (CLS) thereby
recording from cells in different segments that receive similar feedforward inputs from electroreceptor afferents.
Further studies are needed to test these predictions.

In contrast, our results showed that noise correlations were invariant as the physical distance between neurons
increased. These observations agree with previous findings in the visual cortex that noise correlations do not
depend on the contact distance*. In general, noise correlations can arise from both bottom-up and top-down
inputs as well as recurrent connections*'. The amount of common input from electrosensory afferents to ELL
pyramidal cells decreases as the distance between neurons increases”?. Thus, if noise correlations were caused
by common feedforward input, they would likely decay as distance between neurons increases. Therefore, it is
likely that the descending input from cerebellar granule cells mentioned above strongly contribute to shaping
noise correlations during chirp stimulation. Indeed, previous studies have shown that feedback can modulate
noise correlations in response to beat stimuli®’. The fact that a previous study of cerebellum found that parallel
fibers can synchronize neural activities and no difference in correlations was found across pairs with different
distance® is consistent with our hypothesis.
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Optimized decoding of ELL pyramidal cells activities. Our results showed that a weighted sum of
neural activities can improve discrimination performance, which was due in part to synergistic effects of noise
correlations. These findings agreed with the previous studies showing that, rather than averaging neuronal
responses by weighting them equally, weighting neurons differently can provide more information**~*. In this
case, the weights were generated using an evolutionary algorithm to maximize the discrimination performance
of electro-communication stimuli. We note that such “combinatorial codes” can recover much more informa-
tion about the stimulus and are thus advantageous*~2 In general, the amount of information extracted by
the algorithm was an upper-bound. However, it is unclear how such weights can be assigned physiologically.
Possible biological implementations of neural decoding with weighted sums have been investigated in previ-
ous studies®**. For example, a model of population decoding with weights determined by the activity levels of
upstream neurons can capture the experimentally observed behaviours®. In the electrosensory system, mid-
brain neurons of forus semicircularis in general integrate synaptic inputs from both ON- and OFF-type ELL
pyramidal cells although the relative proportion varies greatly across individual neurons®. While a recent study
showing that some midbrain neurons can reliably discriminate between different chirp stimulus waveforms pro-
vides support for the hypothesis that TS neurons respond to a weighted sum of ELL inputs®, further investiga-
tion is needed to fully test this hypothesis, and, if true, determine how the weights are assigned.

Our results show that ELL pyramidal cell populations can discriminate between chirps occurring at dif-
ferent phases of the beat. This is consistent with previous results showing good discriminability in peripheral
electroreceptor afferents®” as these faithfully follow the detailed time course of the chirp stimulus?**®. Our results
show that considering correlations between ELL pyramidal neuron activity can improve discriminability in the
unequal-weighted case and we note that previous studies have shown other types of synergistic neural codes
based on synchrony in both afferents*** and ELL pyramidal cells®*. While behavioral studies have shown that fish
can detect chirps with different attributes***>¢!, whether fish can discriminate between different chirp stimulus
waveforms remains unknown as the behavioral responses were mostly invariant (i.e., the same) when varying
chirp attributes such as amplitude, duration, and the phase of the beat at which the chirp occurs at**®,

It is also important to note that our study focused on natural electrocommunication signals termed “small
chirps” that tend to occur on top of low frequency beats'>®% There are other types of electrocommunication
signals with different characteristics, e.g. “big chirps” that instead tend to occur on top of high frequency beats".
Interestingly, recent studies have shown that small chirps can also occur on top of high frequency beats®.
Moreover, a previous study that considered population coding of both small and big chirps but did not consider
the effects of noise correlations has found results qualitatively similar to our own when varying the timescale of
encoding®. Further studies are needed in order to understand how correlations influence coding of big chirps
as well as small chirps occurring on top of higher frequency beats by ELL pyramidal cell populations. Moreover,
future studies should consider other behaviorally relevant stimulus classes (e.g., prey). We also note that the
stimulation protocol using two electrodes on each side of the animal gives rise to stimulation patterns that are
more homogeneous than those typically encountered during social interactions®®. Future studies should take
into account such patterns of stimulation when studying sensory processing by neural populations.

Implications for other systems. Previous studies have shown that the electrosensory system processes
information similarly to other sensory systems (e.g. contrast coding®, sensory adaptation®). Sensory processing
of natural communication stimuli has been widely studied in other animals (e.g. songbirds®®®’, grasshoppers®®,
the grassfrog’®). We note that there are also similarities between the electrosensory system and other systems
in terms of sensory processing of communication stimuli: for example, the midbrain torus semicircularis in the
grassfrog contains neurons that selectively respond to natural mating calls’’, while in the torus semicircularis
of weakly electric fish A. leptorhynchus, neurons selectively respond to chirps were also found®*. Therefore, we
predict that our results are applicable to population coding of communication stimuli in other systems.

Our results further demonstrated the ON-OFF asymmetry of ELL pyramidal cells in terms of chirp discrimi-
nation. Previous studies showed symmetry between ON and OFF pyramidal cells in terms of their responses to
different chirps (i.e., ON cells increase their firing rates while OFF cells decrease their firing rates in response
to increases in stimulus amplitude)**¢*. While the chirp stimuli we delivered contained equally phases that ON
cells prefer and those that OFF cells prefer, ON cells still perform much better than OFF cells in discriminating
different chirps, which is in agreement with previous studies®. Since we only used chirps with four different
phases, future studies of chirp stimuli with more phases used can be done to further confirm an asymmetry in
coding of chirp stimuli by ON and OFF type cells. ON and OFF type cells are found in other sensory modalities
(e.g. visual’"2, auditory’?, olfactory’*). Other types of ON-OFF asymmetries have also been found previously
in the visual system’>~’%. Our results thus add further evidence supporting the hypothesis that ON-OFF asym-
metries are general property across different sensory modalities.

Methodologically, we used an evolutionary algorithm that runs iteratively to find weights that maximize dis-
crimination performance, as was done recently for midbrain neurons®®. The same algorithm was used previously
to optimize model parameters”. The algorithm takes both spike timing and firing rate into account, therefore
extracts information in not only the spike counts but the structures of spike trains. This algorithm can be easily
adapted to analyze activities of neurons in other systems and help determine the upper-bound of information
that the spiking activities of neurons can carry. We note that a similar approach was also used to optimize weights
to maximize discriminability**.
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Materials and methods

Animals. The South American wave-type weakly electric fish Apteronotus leptorhynchus (N =2) was used in
this study. Animals were purchased from tropical fish suppliers and were housed in groups (2-10) at controlled
water temperatures (26-29 °C) and conductivities (300-800 pS cm™) according to published guidelines®. All
animal procedures were approved by McGill University’s animal care committee and were conducted according
to the ARRIVE guidelines.

Surgery and recording. Surgical procedures have been described in details previously®. Briefly, animals
were immobilized by injection of 0.1-0.5 mg of tubocurarine (Sigma) intramuscularly. The animals were then
transferred to an experimental tank (30 cm x 30 cm x 10 cm) containing water from the animal’s home tank and
respirated by a mouth tube providing constant flow of oxygenated water at a flow rate of 10 mL min™'. Before
surgery, the animal’s head was locally anesthetized with lidocaine ointment (5%; AstraZeneca, Mississauga, ON,
Canada). Craniotomy (a ~ 5 mm? window) was performed to partially expose the hindbrain. Neuropixel probes
(Imec inc., Leuven, Belgium) were inserted into the brain along the rostral-caudal axis and a 45° angle with
respect to the sagittal plane at transverse slice T-4 of the brain atlas (see®!) laterally near the praeeminentialis
efferent tract (labeled “tP-Cb” on the atlas), and the tip moved 1500 pm into the brain as measured from the
surface. We waited at least one hour after probe insertion before starting recordings to allow brain tissue to
settle following probe insertion and to improve recording stability. Accounting for the fact that the first record-
ing site is located 175 pm away from the tip along the probe shaft, as well as the fact that recordings were typi-
cally obtained on recording sites ranging between 13 and 97, this gives approximate recording between 355 and
1195 um from the brain surface along, which are within the range reported from a previous study where location
within LS was confirmed by histological post-processing®>®. Thus, based on probe geometry, anatomy®!, and our
experience recording from ELL pyramidal cells®6>828485 it is likely that most of our recordings were from LS.
However, we cannot reject the hypothesis that some of our recordings were from the centrolateral segment. The
distance between recorded units was computed as the physical distance between the recording sites on which the
spikes shapes of both units displayed the largest amplitude, which is approximate. However, since a given unit
was most often recorded from the nearest neighbours to the primary recording site, the error is at most 40 um
based on probe geometry. We note that this is much smaller than the range of distances over which recordings
were obtained.

Stimulation. The electric organ discharge (EOD) of A. leptorhynchus is neurogenic, and therefore is not
affected by injection of curare. Stimuli consisted of amplitude modulations (AM) of the animal’s own EOD were
produced by triggering a function generator to emit one cycle of a sine wave for each zero crossing of the EOD as
done previously®. The frequency of the emitted sine wave was set slightly higher (30 Hz) than that of the EOD,
which allowed the output of the function generator to be synchronized with the EOD. The emitted sine wave was
subsequently multiplied with the desired AM waveform (MT3 multiplier; Tucker Davis Technologies, Alachua,
FL, USA), and the resulting signal was isolated from the ground (A395 linear stimulus isolator; World Precision
Instruments, Sarasota, FL, USA). The isolated signal was then delivered through a pair of chloridized silver wire
electrodes located 15 cm away from the animal on each side of the recording tank perpendicular to the fish’s
rostro-caudal axis. In this study, a 5 Hz beat frequency and 14 ms chirp duration were used. Chirps were gener-
ated with different attributes by systematically varying the excursion frequency (30, 60, 90 and 120 Hz) and the
phase (0, 90, 180 and 270°) of the underlying beat cycle at which the chirp occurs. As such, a total of 16 chirps
were used (4 different chirp amplitudes, 4 different chirp phases). Parameter ranges were chosen to contain those
observed in previous studies!”¥”. To measure the stimulus intensity, a dipole was placed near the animal’s skin.
Stimulus intensity was adjusted to produce changes in EOD amplitude that were ~20% of the baseline level, as
done previously**®. Each type of chirp stimulus was presented 40 times (i.e., 40 trials).

Dataanalysis. Spike times for each individual neuron were sorted using Kilosort and manually curated using
Phy 2. The spike times were converted into binary sequences X;(t) sampled at 2 kHz (i.e., 1 if a spike occurred
during a given binwidth of 0.5 ms and 0 otherwise). Neurons were classified into either ON- or OFF-type based
on spike-triggered average (STA) of a low-pass filtered (0-120 Hz) noise stimulus as done previously®. The
strength of the neural response was quantified by the STA amplitude (i.e., the distance between the maximum
and minimum values)®.

We quantified correlations between neuronal activities using spike count sequences N; that were obtained
from each spike train by counting the number of spikes occurring during 4 successive and non-overlapping
10 ms time windows that were always aligned with respect to 8 ms after the onset of the chirp stimulus in order
to account for transmission delays. We then computed the correlation coefficient between pairs of spike count
sequences using Pearson’s correlation coefficient:

o {CovNuN))
1= Var(No) (Var (Np) W

where <... >represents an average over trials (i.e., each presentation of a given chirp stimulus is one trial). To
compute signal correlations, spike count sequences were first randomly permuted based on the order of trials to
obtain shuffled spike counts. Signal correlations were then computed on the shuffled spike counts using Eq. (1)
and were averaged over 50 independent realizations of the shuffling procedure. Noise correlations were computed
as the correlation coeflicient between the spike count residual sequences, which were obtained by averaging over
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trials and subtracting the mean spike count sequence from the spike counts for each trial®®. Thus, correlations
were computed for each individual chirp stimulus.

For correlations at the population level, we divided the entire population into two subpopulations through
partial sums: we summed the binary sequences X;(t) of 50% of the neurons in the entire population to form the
first subpopulation and then the activities of the other 50% of the neurons to form the second subpopulation.
Correlations were then computed as described above and error bands for signal and noise correlations were
generated for 300 bootstrap samples of partial sums.

The single neuron PSTHs R;(t) were calculated by low-pass filtering the binary sequences X;(¢) with a 10 ms
boxcar window. The population PSTHs were obtained by summing the single neuron PSTHs R,(t) with either
equal weights or unequal weights obtained through an evolutionary algorithm (described below):

N
equal — weight PSTH = ZR,»(t) )
i=1
N
unequal — weight PSTH = Z wiR;(t) (3)

i=1

where w; is the weight of neuron i. We note that, as the weights can be negative, the population PSTH obtained
using unequal weights can also be negative. For each stimulus, the population PSTH of each trial was then
normalized by the maximal value of that trial. The mean and standard deviation of the normalized population
PSTHs across different trials were then obtained.

To quantify the similarity of mean responses of the population to different stimuli, we computed the inter-
response distance?*””:

<(x-y)*>
max(x)—min(x) max(y)—min(y)
’ V2

D(x,y) =

(4)
}

max |:

where x and y are means of normalized population PSTHs across different trials of two different stim-
uli, <...>denotes an average over an evaluation window of 40 ms after chirp onset. For each stimulus, we calcu-
lated the inter-response distance of the stimulus to the rest of the stimuli individually, and then took the average
to obtain the averaged distance to other stimuli for this stimulus. For boxplots in Fig. 6¢, the interquartile range
(Q3=0.25, Q4 =0.75) was taken to rule out stimuli whose averaged distances to other stimuli are either overly
high or low, which hinder our comparisons.

To quantify the response variability of the population activities, we averaged the standard deviation of
responses across different trials over all stimuli:

n k,
RV =" % ) 5)
i=1

where o(k,) is the standard deviation of normalized population PSTHs across different trials of each stimulus and
n is the number of stimuli. The response variability at each time point was normalized by the maximal value of
variability across the entire evaluation time window. For boxplots in Fig. 6d, the interquartile range (Q3=0.25,
Q4=0.75) was taken to rule out times at which variability values are either overly high or low.

Classifier. We used a classifier to quantify the performance of ELL pyramidal cells at stimulus discrimina-
tion. We combined activities of individual neurons using either weighted or un-weighted sums for each chirp
stimulus. For each chirp stimulus, the averaged population activity of all trials was chosen as a template. Next,
each combined response was assigned as being generated by the stimulus that gave rise to a given template based
on whether the distance between the combined response and the template was minimum. We thus constructed
a “confusion matrix” whose element (i,j) gives the probability that a response was assigned as being generated
by stimulus j given that it was actually generated by stimulus 2. The diagonal elements of this matrix are the
probabilities that a stimulus was correctly assigned, whereas non-zero off-diagonal elements indicate misclassifi-
cation. For each confusion matrix we computed the discrimination performance by averaging over the diagonal
elements, as done previously?***%. The discrimination performance can thus vary between 0 (no discrimina-
tion) and 1 (perfect discrimination). Note that the chance level for discrimination performance was 0.0625 (that
is, 1/16) because we used a total of 16 different chirp stimuli. The distance between combined neuron activities
was computed using the van Rossum metric®. First, the combined neural activities were convolved with a decay-
ing exponential kernel with time constant 7:

—(t=t;)

fO=3" H—me @)

where t; is the ith spike time, M is the total number of spikes and H(t) is the Heaviside step function (H(x)=0
if x<0and H(x)=1 if x> =0). The distance was then computed as the Euclidian distance between convolved
combined neural activities fp; and fr:
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D(fr;»fr,), = %/ [fR- —ka]zdt (5)

We varied 7 between 1 and 100 ms to evaluate the effects of precise spike timing on classification. When 7 is
small, the metric takes into account spike timing whereas, when 7 is larger, the metric takes into account slower
changes in firing rate. If not specified otherwise, 7=3 ms was used.

Evolutionary algorithm. In order to determine whether performing a weighted sum of neural response
gave rise to better classification than an equal-weight sum, we trained an evolutionary algorithm (EA) using the
population responses on a randomly selected 60% of trials for each chirp stimulus as a training dataset. We then
measured the classification accuracy of the trained classifier on the entire dataset. We chose the recording ses-
sion that contained the greatest number of neurons recorded simultaneously (n=21).

Specifically, each neuron was assigned a weight w; which varies between — 2 and 2 and the goal was to choose
a set of weights that maximizes the performance of the classification algorithm described above. The EA is
described in detail in a previous studies by our group®*”. Specifically, a set of weight vectors (i.e., “agents”) is
allowed to evolve by minimizing a fitness function Fy, over a series of iterations (i.e., “generations”). In keeping
with the notation used in previous studies”, we denote XJ (i) as parameter i for agent r of generation k. First, the
population of K individuals is randomly initialized with weight values that are uniformly distributed with zero
mean and restrained within [ 2 2]. For each individual at every generation, a new individual is constructed by
“differentiation”: the rth new parameter vector Xlt,m' 118 built by combining three other individuals X,:‘, X ,:2, and
X, wherer, #r,#ry:

Xlz,triul = X}? + (X}t2 _X;ZS)F,VV =1...,N (6)

where the differential weight F=0.5, and the three individuals are chosen based on a probability distribution
that is preferentially weighted for more fit (i.e., lower fitness score) individuals:

_TER) ) v

mpx(1 = Fie(X.) v

pr = Jexp

where A is a normalization constant such that the sum of probability values is equal to one. Random mutations
are then performed as follows:

. X7 .. .(0), if u<CR .

r — k,trial \*/> — Ci—

Xyt (D) = {X;Z(i)’ otherwise ,Vr=1,...,N;i=1,...,D (8)

where u is a random variable generated from a uniform distribution U(0,1) and with crossover probability
CR=0.9. Selection is finally performed to produce the next generation via:

r_ I X ifFﬁt(X;m) < Fﬁf(XIC) —
X1 = {X]z, otherwise Vr=L...N ©)

In this study, the fitness function for a given individual was defined as:
Fs(X[) =1—DPx; (10)

where DPyr is the discrimination performance estimated by computing the precision of events (i.e., spikes)
of our neuronal population in response to our set of 16 chirp stimuli. The EA was terminated if the change in
population discrimination performance was less than 0.0001 in 10 consecutive iterations. The algorithm was
repeated 30 times, and each time a different set of weights was obtained because of different initial conditions
and the randomness in generating new individual and mutations. The weights were normalized so that the sum
of weights of all neurons equals to 1. The weights that gave rise to the best performance out of the 30 runs were
used for Figs. 6 and 7. As mentioned above, this methodology is the same as that used previously for midbrain
neurons>, which allows for a direct comparison between these previous results and those obtained in the current
study for hindbrain neurons. In general, we found significant correlations between weight magnitude and STA
amplitude to noise stimulus for ON (r=0.92, p=6.4 x 1077) and OFF cells (r=0.95, p=0.013).
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