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Synergistic population coding 
of natural communication stimuli 
by hindbrain electrosensory 
neurons
Ziqi Wang & Maurice J. Chacron*

Understanding how neural populations encode natural stimuli with complex spatiotemporal structure 
to give rise to perception remains a central problem in neuroscience. Here we investigated population 
coding of natural communication stimuli by hindbrain neurons within the electrosensory system of 
weakly electric fish Apteronotus leptorhynchus. Overall, we found that simultaneously recorded neural 
activities were correlated: signal but not noise correlations were variable depending on the stimulus 
waveform as well as the distance between neurons. Combining the neural activities using an equal-
weight sum gave rise to discrimination performance between different stimulus waveforms that was 
limited by redundancy introduced by noise correlations. However, using an evolutionary algorithm to 
assign different weights to individual neurons before combining their activities (i.e., a weighted sum) 
gave rise to increased discrimination performance by revealing synergistic interactions between neural 
activities. Our results thus demonstrate that correlations between the neural activities of hindbrain 
electrosensory neurons can enhance information about the structure of natural communication 
stimuli that allow for reliable discrimination between different waveforms by downstream brain areas.

How neural populations encode sensory information (i.e., population coding) is one of the most intriguing 
questions in neuroscience and has been extensively  studied1–5. Understanding population coding is complicated 
by the fact that neural activities are not independent of each other but are instead  correlated2,4,6,7. The effects of 
correlations on coding remains under debate. Of particular interest are correlations between the trial-to-trial vari-
ability of neural activities (i.e. “noise correlations”) in relation to correlations between the mean neural responses 
to a given stimulus (i.e., “signal correlations”)2. While noise correlations can limit information transmission by 
introducing  redundancy3,8, they can also introduce synergy and be beneficial to  coding9–11. However, as most 
previous studies of population coding used artificial stimuli, the encoding of natural stimuli which often display 
complex spatiotemporal characteristics is less  understood12,13.

Here, we studied population coding of natural communication stimuli in the wave-type weakly electric fish 
Apteronotus leptorhynchus. These fish emit a quasi-sinusoidal electric field through the electric organ discharge 
(EOD) and can sense field perturbations to locate preys as well as communicate with  conspecifics14,15. These 
perturbations are detected by electroreceptors on the animals’ skin, which synapse onto pyramidal cells within 
the electrosensory lateral line lobe (ELL). ELL pyramidal cells can be categorized into ON cells and OFF cells, 
which respond to increases and decreases of the EOD amplitude, respectively. Pyramidal cells constitute the 
main output neurons of the ELL and project directly to the midbrain area torus semicircularis, and indirectly to 
higher brain areas that generate perception and  behavior16. During social interactions, weakly electric fish com-
municate using brief changes in their EOD called “chirps” whose attributes vary over a wide range and thus give 
rise to very heterogeneous stimulus  waveforms17–22. Previous studies have primarily focused on understanding 
how single electrosensory neurons respond to chirp  stimuli23,24 and used these recordings to study population 
 coding25,26. However, a limitation is that, because the neural recordings were not performed simultaneously, the 
effects of noise correlations were not considered. Importantly, ELL pyramidal cells display correlations between 
their activities in the absence of  stimulation27, which tend to give rise to noise correlations during  stimulation28,29. 
Here, to investigate how correlations affect population coding of chirps by ELL pyramidal cell populations, we 
used multi-channel Neuropixels probes to record simultaneously the activities of multiple ELL pyramidal cells 
in response to chirp stimuli.
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Results
Here we investigated how ELL pyramidal cell populations encode chirps with different attributes. During social 
interaction, interference between the EODs of two fish form a beat (i.e., a sinusoidal modulation in EOD ampli-
tude; Fig. 1a, top left). Chirps consist of transient increases in the EOD frequency of one fish (i.e., the emitter 
fish) and will give rise to a transient modulation of the beat waveform as sensed by the receiver fish. Differences 
in the duration of the frequency increase, its excursion, and the beat phase at which the chirp occurs will thus 
give rise to different stimulus  waveforms30. Figure 1b shows three example chirp stimulus waveforms (top) as 
well as raster plots of ON and OFF cells (middle) and population peri-stimulus time histograms (population 
PSTHs; bottom) in response to each stimulus. We recorded the activities of multiple ELL pyramidal cells simul-
taneously using Neuropixels probes (Fig. 1a, right) in response to chirp stimuli that were delivered to the fish 
through a pair of electrodes located on either side of the fish (Fig. 1a, bottom left). We considered responses to 
chirps within a 40 ms time window that started 8 ms after chirp onset to account for transmission delays (see 
“Materials and methods”).

Signal but not noise correlations vary with distance and stimuli. As previous studies have shown 
that the correlation structure (i.e., the relationship between signal and noise correlations) strongly impacts pop-
ulation  coding2, including in ELL pyramidal cells but for stimuli other than those considered  here28,31, we first 
investigated signal and noise correlations between ELL pyramidal cell pairs during chirp stimulation. Signal 

Figure 1.  Neuropixels probes were used to record extracellular activities of ELL pyramidal cells responding to 
chirps created using adobe illustrator CS6 v 16.0 (www. adobe. com). (a) Left: schematics demonstrating chirps 
stimuli used in the experiments and experimental set up. Right: recorded activities from example channels 
using Neuropixels probes with spikes of different neurons highlighted in colors. (b) Left: stimulus waveform 
(top) consisting of a 5 Hz beat with a chirp (vertical red dashed line), raster plot of ON and OFF cells (middle), 
and the mean and standard deviation (shaded areas) of normalized population PSTHs across different trials 
(see “Materials and methods”) (bottom) for chirp with 30 Hz excursion frequency at 0° of beat phase. The grey 
rectangle indicates the 40 ms chirp evaluation time window. Middle: same plots for chirp with 30 Hz excursion 
frequency at 180° of beat phase. Right: same plots for chirp with 60 Hz excursion frequency at 180° of beat 
phase.

http://www.adobe.com
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correlations represent similarities between the mean responses of two neurons to a given stimulus (Fig. 2a, left), 
while noise correlations are instead correlations between the trial-to-trial variabilities of neural responses to 
repeated presentations of a given stimulus and arise due to shared noisy synaptic input (Fig. 2a, right).

We found that ELL pyramidal cells displayed both signal and noise correlations in their activities in response 
to chirp stimuli. Specifically, signal correlations of same-type (i.e., pairs containing either ON cells or OFF cells) 
and opposite-type pairs (i.e., pairs containing both ON and OFF cells) were on average positive and negative 
respectively (Fig. 2b, compare top and bottom panels). In contrast, noise correlations were similarly distributed 
around 0 for both same-type and opposite-type pairs (Fig. 2c, compare top and bottom panels). Interestingly, 
for same-type pairs, signal correlations first decreased and then increased with increasing distance between the 
probe sites on which both neurons were recorded (Fig. 2b top, from 0 to 550 μm: linear regression, r = − 0.74, 
p = 0.011; from 400 to 1000 μm: linear regression, r = 0.91, p = 4.2 ×  10–5). For opposite-type pairs, the oppo-
site trend was observed in that signal correlation first increased and then decreased with increasing distance 
(Fig. 2b bottom, from 0 to 550 μm: linear regression, r = 0.66, p = 0.030; from 400 to 1000 μm: linear regression, 
r = -0.81, p = 8.3 ×  10–3). However, noise correlations were largely independent of distance for both same-type 
and opposite-type pairs (Fig. 2c, same-type pairs: linear regression, r = 0.020, p = 0.96; opposite type pairs: linear 
regression, r = 0.42, p = 0.10).

Next, we looked at whether and, if so, how signal and noise correlations varied as a function of the different 
chirp stimulus waveforms used in this study. We found that for the population with only ON cells, the distribu-
tions of signal and noise correlations were significantly different from one another for different chirps (Fig. 3a left, 
Friedman’s test, p = 4.0 ×  10–44; Fig. 3b left, Friedman’s test, p = 0.020). However, for the population with both ON 
and OFF cells, while the distributions of signal correlation were significantly different (Fig. 3a right, Friedman’s 
test, p = 1.1 ×  10–16), noise correlation distributions did not change significantly (Fig. 3b right, Friedman’s test, 
p = 0.17). Furthermore, we noticed that noise and signal correlations were not independent of each other. The 
signal and noise correlations for both ON-ON pairs and for all pairs are shown in Fig. 3c. Overall, there were 
positive but weak correlations between signal and noise correlations for both cases (Fig. 3c left, linear regression, 
r = 0.060, p = 1.3 ×  10–3; Fig. 3c right, linear regression, r = 0.11, p = 6.0 ×  10–15). Thus, our results at this stage 
show that, while signal correlations were strongly dependent on distance and chirp stimulus waveform, this was 
generally not the case for noise correlations.

Decoding ELL pyramidal cells activities with equal-weight sum and weighted sum. We next 
quantified the performance of a classifier at correctly discriminating between neural responses generated by a 
given chirp stimulus waveforms (see “Materials and methods”). In short, neural activities of all neurons were 
combined in different manners to obtain the population activity. The population activities obtained in response 
to different chirp waveforms were then compared across different stimulus trials using the van Rossum  metric32. 
Thus, a given population activity was assigned as being generated by a certain stimulus i if the distance between 
this activity and the chosen template for stimulus i was lower than all other distances computed using chosen 
templates for other stimuli (see “Materials and methods”). In practice, the trial-averaged population activities 
were chosen as templates. The performance of the classifier is represented by a confusion matrix where each 
entry (i,j) is the probability that a response which was actually generated by stimulus i is classified as generated 
by stimulus j. As such, the diagonal elements of the confusion matrix give the amount of correct classification 
whereas the off-diagonal elements instead give the amount of incorrect classification.

First, we combined the neural activities by performing a linear sum giving the same weight to each neuron 
(Fig. 4a). To quantify the effects of noise correlations, the performance of the classifier was evaluated on the 
neural responses as well as neural responses that were randomly shuffled with respect to trial order (see “Materi-
als and methods”). Performances obtained with and without noise correlations were significantly above chance 
level (with noise correlations, one-sample t-test, p = 3.9 ×  10–50; without noise correlations, one-sample t-test, 
p = 1.5 ×  10–54). We quantified the effect of timescale of encoding used in the van Rossum metric on the perfor-
mance. This is important as small timescales put more emphasis on precise spike timing whereas larger timescales 
instead place more emphasis on slower variations in the firing  rate32. We found that maximal performance was 
observed using a timescale of ~ 3 ms (Fig. 4b left), indicating that precise spike timing can be used to reliably dis-
criminate between different chirp stimulus waveforms. The performance when noise correlations were removed 
was higher than that obtained for the raw data (Fig. 4b right, one-way ANOVA, p = 1.3 ×  10–4), indicating that 
noise correlations have a detrimental effect on discrimination performance. Next, we analyzed how discrimina-
tion performance varied as a function of population size. We separated the entire population into ON cells and 
OFF cells and increased the population size by adding either ON cells or OFF cells first. We found that when 
increasing population size by first adding the ON cells, the performance increased when ON cells only were first 
considered and actually decreased when OFF cells were added to the pool (Fig. 4c). Interestingly, when increasing 
population size by first adding the OFF cells, the performance started with low values and increased slowly, but 
later increased drastically when ON cells were added (Fig. 4d). We found that ON cell populations had much 
better performance than OFF cell populations (Fig. 4d inset, one-way ANOVA, p = 1.0 ×  10–66). These results were 
consistent with the previous findings that single ON cells instead of single OFF cells better respond to  chirps33.

Next, we combined the neural activities of all neurons using a weighted sum (i.e., a sum with unequal weights) 
(Fig. 5a). To find the weights that give rise to the best discrimination performance, we used an evolutionary 
algorithm (see “Materials and methods”; Fig. 5a). The effect of timescale of encoding on performance was 
similar as in the case of the equal-weight sum (Fig. 5b left). Overall, the performance improved significantly 
when performing a weighted sum as compared to that obtained with equal-weight sum with and without noise 
correlations (Fig. 5b right top, equal-weight with noise correlations vs. weighted with noise correlations, one-
way ANOVA, p = 1.1 ×  10–39; equal-weight without noise correlations vs. weighted without noise correlations, 



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10840  | https://doi.org/10.1038/s41598-021-90413-1

www.nature.com/scientificreports/



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10840  | https://doi.org/10.1038/s41598-021-90413-1

www.nature.com/scientificreports/

one-way ANOVA, p = 8.7 ×  10–19). Weight distributions for ON and OFF cells were largely mirror images of 
one-another (Fig. 5b right bottom, ON cells: mean = 0.12, std = 0.16; OFF cells: mean = − 0.19, std = 0.15) and 
were significantly different (two-sample Kolmogorov–Smirnov test, p = 9.0 ×  10–62). Further, we noticed that, 
unlike the equal-weight case, noise correlations were actually beneficial as removing them significantly reduced 
performance (Fig. 5b right, weighted with noise correlations vs. weighted without noise correlations, one-way 
ANOVA, p = 5.3 ×  10–19). For the effect of population size on performance, adding OFF cells to the ON cells 
population did not decrease the performance (Fig. 5c), in contrast to the equal-weight case (Fig. 4c); however, 
a population with only OFF cells still had a poor performance in the weighted case (Fig. 5d). It is important to 
note that population consisting of only ON cells displayed much better performance in the weighted case than 
in the equal-weighted case (compare Figs. 5c and 4c). As such, the improvement in performance is not due to 
considering both ON and OFF cells with opposite weights. Rather, such improvement is largely due to hetero-
geneities within the ON cell population.

Why is there an overall performance increase when using a weighted sum vs. an unweighted sum? Intuitively, 
increases in performance can occur when the set of responses elicited by different stimuli become more distant 
from one another and thus more discriminable. However, increases in performance can also occur if the size of 
these sets decreases (Fig. 6a). Figure 6b shows three example stimulus waveforms (left top panel) as well as popu-
lation PSTHs when taking equal-weight (left middle panel) and weighted (left bottom panel) sums. It was seen 
that the population activities were more different from each other (see dashed rectangle) when taking weighted 
sums, partly because a weighted sum with both positive and negative weights can lead to negative population 
activities while population activities obtained with equal-weight sum can only be positive by definition. Quan-
tification of the distance between responses (see “Materials and methods”) confirmed that greater values were 
obtained when considering weighted sums than equal-weight sums (Fig. 6c, one-way ANOVA, p = 4.5 ×  10–4). 
We next tested whether weighted neural responses were less variable than their equal-weight counterparts. To 
do so, we quantified the variability in the response using both weighted and equal-weight sums, as well as before 
and after removing noise correlations (see “Materials and methods”). We found that weighted sums reduced 
overall variability of neural activities, both with and without noise correlations (Fig. 6d, equal-weight with noise 
correlations vs weighted with noise correlations, one-way ANOVA, p = 3.9 ×  10–29; equal-weight without noise 
correlations vs weighted without noise correlations, one-way ANOVA, p = 3.4 ×  10–17). We also noticed that 
removing noise correlations reduced overall variability in the equal-weight case and increased overall variability 
in the weighted case (Fig. 6d, equal-weight with noise correlations vs equal-weight without noise correlations, 
one-way ANOVA, p = 3.1 ×  10–9; weighted with noise correlations vs weighted without noise correlations, one-
way ANOVA, p = 0.040).

Weighted sums of ELL pyramidal cells activities eliminate redundancy and introduce syn-
ergy. Why is the performance greater for weighted sums before removing noise correlations? Previous theo-
retical studies have shown that noise correlations can be beneficial to information transmission when their sign 
is opposite to that of signal  correlations2. In order to study the correlation structures at a population level beyond 
two neurons, we combined the activities of subsets of neurons. Specifically, we divided our dataset into two 
subpopulations and considered correlations between the summed (either equal-weight or weighted) activities 
of both  subpopulations34 (see “Materials and methods”). We found that, for equal-weight, signal and noise cor-
relations were both predominantly positive (Fig. 7a, 78.3% of points in upper-right quadrant). However, this was 
much less the case for weighted sums, as more data points with signal and noise correlations having the opposite 
signs were observed (Fig. 7b, number of points in upper-left quadrant increased from 18.4 to 34.5%, while num-

Figure 2.  Signal but not noise correlations varied with distance. (a) Schematics showing how signal and noise 
correlations arise created using adobe illustrator CS6 v 16.0 (www. adobe. com). While signal correlation arises 
from similarity in mean responses to stimuli (left), noise correlation instead arises from shared noisy synaptic 
inputs (right). (b) Top: signal correlations of same-type pairs (i.e., pairs of either ON or OFF cells) as a function 
of distance (blue dots). Distance was discretized into 20 bins (50 microns per bin) and signal correlations for 
pairs that fall within the same bin were averaged (black dots, error bars indicate standard deviation). Signal 
correlations first decreased and then increased with distance (from 0 to 550 microns: linear regression, r = − 
0.74, p = 0.011; from 400 to 1000 microns: linear regression, r = 0.91, p = 4.2 ×  10–5). Bottom: signal correlations 
of opposite-type pairs (i.e., pairs containing one ON and one OFF cell) as a function of distance (red dots). 
Signal correlations first increased and then decreased with distance when the data was averaged within bins 
(from 0 to 550 microns: linear regression, r = 0.66, p = 0.030; from 400 to 1000 microns: linear regression, r = − 
0.81, p = 8.3 ×  10–3). We note that qualitatively similar results were obtained when performing a linear regression 
on the data without averaging (same type: from 0 to 550 microns: linear regression, r = − 0.26, p = 4.7 ×  10–37; 
from 400 to 1000 microns: linear regression, r = 0.34, p = 2.8 ×  10–26; opposite type: from 0 to 550 microns: linear 
regression, r = 0.18, p = 2.2 ×  10–13; from 400 to 1000 microns: linear regression, r = − 0.32, p = 2.0 ×  10–14). (c) 
Top: same as (b), but for noise correlations. There was no significant correlation between noise correlations 
and distance for both same-type pairs and opposite-type pairs (same-type pairs: linear regression, r = 0.020, 
p = 0.96; opposite type pairs: linear regression, r = 0.42, p = 0.10). When performing a linear regression on 
the data without averaging, we found a negligible but significant relationship between noise correlations 
and distance both for same type pairs (slope = − 1.3 ×  10–5, r = − 0.045, p = 0.014) and for opposite type pairs 
(slope = 2.5 ×  10–5, r = 0.096, p = 2.2 ×  10–5). However, note that the slopes are infinitesimally small in magnitude 
in both cases. In panels b and c, correlation coefficient values that were deemed non-significant at the p = 0.05 
level using the function “corrcoeff ” in Matlab are plotted in green.
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Figure 3.  Correlation structure during chirp stimulation. (a) The probability distribution of signal correlations 
for each chirp stimulus waveform used. There were significant differences between the distributions for the 
population with only ON cells (left) and the population with both ON and OFF cells (right) (ON cells only: 
Friedman’s test, p = 4.0 ×  10–44; ON and OFF cells: Friedman’s test, p = 1.1 ×  10–16). (b) Same as (a) but for 
noise correlations. There were significant differences between the distributions for the population with ON 
cells only (Friedman’s test, p = 0.020), while there were no significant differences between the distributions 
for the population with both ON and OFF cells (Friedman’s test, p = 0.17). (c) Noise correlations of ON-ON 
pairs only (left) and of all pairs (right) plotted against signal correlations of the same pairs. There were positive 
relationships between signal and noise correlations for ON–ON pairs and for all pairs (ON–ON pairs: linear 
regression, r = 0.060, p = 1.3 ×  10–3; all pairs: linear regression, r = 0.11, p = 6.0 ×  10–15).
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ber of points in upper-right quadrant decreased from 78.3 to 61.0%). These findings thus confirm our hypothesis 
and explain why removing noise correlations led to lower performance when considering equal-weight sums but 
instead led to increased performance when considering weighted sums.

Discussion
Summary of results. In this study, we investigated for the first time how ELL pyramidal cell populations 
encode natural electro-communication stimuli by simultaneously recording the activities of multiple neurons. 
We first demonstrated that the activities of ELL pyramidal cells were correlated pairwise under chirp stimulation. 
Specifically, while signal correlations varied as a function of the physical distance between recording probe sites 
as well as stimulus waveform, noise correlations were instead largely independent of both distance and stimulus 
waveform. There was furthermore a positive relationship between signal and noise correlations. We next quanti-
fied the performance of a classifier at correctly discriminating which stimulus waveform was presented based on 

Figure 4.  Discrimination performances of population activities when using an equal-weight sum to combine 
neural activities. (a) Schematics showing how the responses of ELL pyramidal cells were summed with equal 
weights. (b) Left top: confusion matrices where each entry is the probability of a stimulus i predicted as stimulus 
j (prediction based on distance between neural responses quantified by van Rossum metric with timescale τ, see 
“Materials and methods” for details) for a population of 21 neurons consisting of 16 ON cells and 5 OFF cells 
with τ = 1, 3 and 100 ms. Left bottom: discrimination performance as a function of τ. The shaded areas represent 
standard deviation when using 30 different sub-trials (60% of all trials), and same for (c) and (d). The range of 
τ values for which performance was higher than 90% of the maximum is 6 ms. Right: boxplots showing that 
equal-weight sum of neural activities without noise correlations (right) had better performance than that with 
noise correlations (left; one-way ANOVA, p = 1.3 ×  10–4). (c) The effect of population size on discrimination 
performance. ON cells were first considered before OFF cells. Top: confusion matrices for populations of 1 ON 
cell, 11 ON cells, and all cells (16 ON cells and 5 OFF cells) with τ = 3 ms. Bottom: discrimination performance 
as a function of population size. (d) Same as (c) but OFF cells were first considered before ON cells. Top: 
confusion matrices for populations of 1 OFF cell, 5 OFF cells, and all cells (16 ON cells and 5 OFF cells) with 
τ = 3 ms. Bottom: discrimination performance as a function of population size. Inset: boxplot showing that 5 ON 
cells had better performance than 5 OFF cells (one-way ANOVA, p = 1.0 ×  10–66).
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the combined neural activities of ELL pyramidal cells. When the activities were combined using an equal-weight 
sum, we found that ON cells have better discrimination performance than OFF cells with a combined (ON 
and OFF cells) correct discrimination performance around 75%. Noise correlations were overall detrimental 

Figure 5.  Discrimination performances of population activities when taking the weighted population sum. (a) 
Schematics showing how the responses of ELL pyramidal cells were summed with different weights assigned 
for different neurons. The weights were generated by an evolutionary algorithm. If the weights generated 
gave a better performance, they replaced the previous weights; if the weights generated did not improve the 
performance for 10 iterations (performance maximized), the evolutionary algorithm was terminated (see 
“Materials and methods” for details). (b) Left top: confusion matrices where each entry is the probability of 
a stimulus i predicted as stimulus j (prediction based on the distance between neural responses quantified by 
van Rossum metric with timescale τ, see “Materials and methods” for details) for a population of 21 neurons 
consisting of 16 ON and 5 OFF cells with τ = 1, 3 and 100 ms. Left bottom: discrimination performance as a 
function of τ. The shaded areas represent standard deviation of performance from different simulations of the 
evolutionary algorithm (30 in total), and same for (c) and (d). The range of τ values for which performance 
was higher than 90% of the maximum is 5.3 ms, which is similar to that obtained in the equal-weighted case 
(Fig. 4b). Right top: boxplots showing that weighted sums of neural activities improved performance for both 
with and without noise correlations (with noise correlations, one-way ANOVA, p = 1.1 ×  10–39; without noise 
correlations, one-way ANOVA, p = 8.7 ×  10–19); also, equal-weight sum of neural activities without noise 
correlations had better performance than those with noise correlations (one-way ANOVA, p = 1.3 ×  10–4), 
while weighted sum of neural activities with noise correlations had better performance than those without 
noise correlations (one-way ANOVA, p = 5.3 ×  10–19). Right bottom: the probability distributions of weights 
assigned to ON cells and OFF cells over 30 runs of the evolutionary algorithm. (c) The effect of population 
size on discrimination performance. ON cells were first considered before OFF cells. Top: confusion matrices 
for populations of 1 ON cell, 11 ON cells, and all cells (16 ON cells and 5 OFF cells) with τ = 3 ms. Bottom: 
discrimination performance as a function of population size. (d) Same as (c) but now OFF cells were first 
considered before ON cells. Top: confusion matrices for populations of 1 OFF cell, 5 OFF cells, and all cells (16 
ON cells and 5 OFF cells) with τ = 3 ms. Bottom: discrimination performance as a function of population size.
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to discrimination performance as their removal increased performance. When instead considering weighted 
sums and using an evolutionary algorithm to optimize the weights, we found increased performance up to 85%. 
Interestingly, noise correlations were then beneficial as removing them decreased performance. Further analysis 
revealed that the improved performance by weighted sum was the result of maximizing distance between trial-

Figure 6.  Weighted sums maximized the performance by increasing distances between trials-averaged 
responses to different stimuli and reducing trial-to-trial variability. (a) Schematics showing that weighted sums 
of neural activities maximize the performance by increasing the inter-response distance (i.e., distances between 
trials-averaged responses to different stimuli) and reducing response variability. These were created using adobe 
illustrator CS6 v 16.0 (www. adobe. com). (b) Top: three example chirp stimuli. The waveforms are shifted to 
the right by 8 ms to account for the common synaptic delay of chirp responses. Middle and bottom: the means 
and standard deviations (shaded areas) of normalized population PSTHs across different trials of the example 
chirp stimuli under equal-weight and weighted sum. Horizontal dashed line indicates zero. Dashed squares 
indicate that responses to different stimuli under weighted sum are more different from each other compared 
to responses under equal-weight sum. (c) Boxplots showing that weighted sums of neural activities had higher 
inter-response distance than equal-weight sums of neural activities (one-way ANOVA, p = 4.5 ×  10–4). (d) 
Boxplots showing that weighted sums of neural activities had lower response variability than equal-weight sums 
of neural activities (with noise correlations, one-way ANOVA, p = 3.9 ×  10–29; without noise correlations, one-
way ANOVA, p = 3.4 ×  10–17); also, equal-weight sums of neural activities without noise correlations had lower 
response variability than equal-weight sums with noise correlations (one-way ANOVA, p = 3.1 ×  10–9) while 
weighted sums of neural activities without noise correlations had higher response variability than weighted 
sums with noise correlations (one-way ANOVA, p = 0.040).
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averaged responses to different chirp stimuli and minimizing overall variability. By considering correlations 
between the summed activities of subpopulations, we found that signal and noise correlations tended to have 
the same sign when considering equal-weight sums, which is detrimental to discrimination. In contrast, signal 
and noise correlations with opposite signs became relatively more dominant when considering weighted sums, 
which is beneficial to discrimination. Our results thus show that ELL pyramidal cells display significant correla-
tions in their activities during chirp stimulation that can be either beneficial or detrimental to discriminability 
depending on how these activities are decoded by downstream brain areas.

Origins of signal and noise correlations. Our results have shown that signal correlation magnitude first 
decreased with distance then increased. While the decrease can be explained by increasing dissimilarity in the 
receptive fields of neurons with increasing distance, the increase of signal correlations as the distance further 
increased is more puzzling. One possible explanation is that descending input from higher brain areas (i.e., feed-
back) modulate chirp responses to increase signal correlations. Indeed, ELL pyramidal cells receive abundant 
feedback consisting of both topographic and diffuse  sources35. In particular, diffuse feedback was shown to affect 
signal correlations in ELL pyramidal cells to beat  stimuli29 and enhance single neuron responses to  chirps36. 
Such feedback originates from cerebellar granule cells, which make the ELL a cerebellum-like  structure37. As 
such feedback originates from afferent input located far away from the cell within the non-classical receptive 
 field38,39, we hypothesize that this might explain the increase in signal correlations observed for larger distances. 
Alternatively, the decrease and increase in signal correlations could be due to the fact that the recording probe 
went across different maps of ELL, from the lateral segment (LS) into the central lateral segment (CLS) thereby 
recording from cells in different segments that receive similar feedforward inputs from electroreceptor afferents. 
Further studies are needed to test these predictions.

In contrast, our results showed that noise correlations were invariant as the physical distance between neurons 
increased. These observations agree with previous findings in the visual cortex that noise correlations do not 
depend on the contact  distance40. In general, noise correlations can arise from both bottom-up and top-down 
inputs as well as recurrent  connections41. The amount of common input from electrosensory afferents to ELL 
pyramidal cells decreases as the distance between neurons  increases27,28. Thus, if noise correlations were caused 
by common feedforward input, they would likely decay as distance between neurons increases. Therefore, it is 
likely that the descending input from cerebellar granule cells mentioned above strongly contribute to shaping 
noise correlations during chirp stimulation. Indeed, previous studies have shown that feedback can modulate 
noise correlations in response to beat  stimuli29. The fact that a previous study of cerebellum found that parallel 
fibers can synchronize neural activities and no difference in correlations was found across pairs with different 
 distance42 is consistent with our hypothesis.

Figure 7.  Weighted sums of neural activities eliminated redundancy and introduced synergy by yielding 
beneficial correlation structure. (a) Noise and signal correlations between two subpopulations, which were 
formed by partially summing the activities of entire population with equal weights (see “Materials and 
methods”). Different data points correspond to different bootstrap samples of partial sums. Percentages of data 
points in each quadrant are shown. (b) Same as (a) but the subpopulations were formed using weighted sums.
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Optimized decoding of ELL pyramidal cells activities. Our results showed that a weighted sum of 
neural activities can improve discrimination performance, which was due in part to synergistic effects of noise 
correlations. These findings agreed with the previous studies showing that, rather than averaging neuronal 
responses by weighting them equally, weighting neurons differently can provide more  information43–45. In this 
case, the weights were generated using an evolutionary algorithm to maximize the discrimination performance 
of electro-communication stimuli. We note that such “combinatorial codes” can recover much more informa-
tion about the stimulus and are thus  advantageous46–52. In general, the amount of information extracted by 
the algorithm was an upper-bound. However, it is unclear how such weights can be assigned physiologically. 
Possible biological implementations of neural decoding with weighted sums have been investigated in previ-
ous  studies53,54. For example, a model of population decoding with weights determined by the activity levels of 
upstream neurons can capture the experimentally observed  behaviours53. In the electrosensory system, mid-
brain neurons of torus semicircularis in general integrate synaptic inputs from both ON- and OFF-type ELL 
pyramidal cells although the relative proportion varies greatly across individual  neurons55. While a recent study 
showing that some midbrain neurons can reliably discriminate between different chirp stimulus waveforms pro-
vides support for the hypothesis that TS neurons respond to a weighted sum of ELL  inputs56, further investiga-
tion is needed to fully test this hypothesis, and, if true, determine how the weights are assigned.

Our results show that ELL pyramidal cell populations can discriminate between chirps occurring at dif-
ferent phases of the beat. This is consistent with previous results showing good discriminability in peripheral 
electroreceptor  afferents57 as these faithfully follow the detailed time course of the chirp  stimulus24,58. Our results 
show that considering correlations between ELL pyramidal neuron activity can improve discriminability in the 
unequal-weighted case and we note that previous studies have shown other types of synergistic neural codes 
based on synchrony in both  afferents23,59 and ELL pyramidal  cells60. While behavioral studies have shown that fish 
can detect chirps with different  attributes24,58,61, whether fish can discriminate between different chirp stimulus 
waveforms remains unknown as the behavioral responses were mostly invariant (i.e., the same) when varying 
chirp attributes such as amplitude, duration, and the phase of the beat at which the chirp occurs  at24,58.

It is also important to note that our study focused on natural electrocommunication signals termed “small 
chirps” that tend to occur on top of low frequency  beats19,62. There are other types of electrocommunication 
signals with different characteristics, e.g. “big chirps” that instead tend to occur on top of high frequency  beats19. 
Interestingly, recent studies have shown that small chirps can also occur on top of high frequency  beats15. 
Moreover, a previous study that considered population coding of both small and big chirps but did not consider 
the effects of noise correlations has found results qualitatively similar to our own when varying the timescale of 
 encoding33. Further studies are needed in order to understand how correlations influence coding of big chirps 
as well as small chirps occurring on top of higher frequency beats by ELL pyramidal cell populations. Moreover, 
future studies should consider other behaviorally relevant stimulus classes (e.g., prey). We also note that the 
stimulation protocol using two electrodes on each side of the animal gives rise to stimulation patterns that are 
more homogeneous than those typically encountered during social  interactions63. Future studies should take 
into account such patterns of stimulation when studying sensory processing by neural populations.

Implications for other systems. Previous studies have shown that the electrosensory system processes 
information similarly to other sensory systems (e.g. contrast  coding64, sensory  adaptation65). Sensory processing 
of natural communication stimuli has been widely studied in other animals (e.g.  songbirds66,67,  grasshoppers68,69, 
the  grassfrog70). We note that there are also similarities between the electrosensory system and other systems 
in terms of sensory processing of communication stimuli: for example, the midbrain torus semicircularis in the 
grassfrog contains neurons that selectively respond to natural mating  calls70, while in the torus semicircularis 
of weakly electric fish A. leptorhynchus, neurons selectively respond to chirps were also  found24. Therefore, we 
predict that our results are applicable to population coding of communication stimuli in other systems.

Our results further demonstrated the ON–OFF asymmetry of ELL pyramidal cells in terms of chirp discrimi-
nation. Previous studies showed symmetry between ON and OFF pyramidal cells in terms of their responses to 
different chirps (i.e., ON cells increase their firing rates while OFF cells decrease their firing rates in response 
to increases in stimulus amplitude)24,64. While the chirp stimuli we delivered contained equally phases that ON 
cells prefer and those that OFF cells prefer, ON cells still perform much better than OFF cells in discriminating 
different chirps, which is in agreement with previous  studies25. Since we only used chirps with four different 
phases, future studies of chirp stimuli with more phases used can be done to further confirm an asymmetry in 
coding of chirp stimuli by ON and OFF type cells. ON and OFF type cells are found in other sensory modalities 
(e.g.  visual71,72,  auditory73,  olfactory74). Other types of ON–OFF asymmetries have also been found previously 
in the visual  system75–78. Our results thus add further evidence supporting the hypothesis that ON–OFF asym-
metries are general property across different sensory modalities.

Methodologically, we used an evolutionary algorithm that runs iteratively to find weights that maximize dis-
crimination performance, as was done recently for midbrain  neurons56. The same algorithm was used previously 
to optimize model  parameters79. The algorithm takes both spike timing and firing rate into account, therefore 
extracts information in not only the spike counts but the structures of spike trains. This algorithm can be easily 
adapted to analyze activities of neurons in other systems and help determine the upper-bound of information 
that the spiking activities of neurons can carry. We note that a similar approach was also used to optimize weights 
to maximize  discriminability45.
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Materials and methods
Animals. The South American wave-type weakly electric fish Apteronotus leptorhynchus (N = 2) was used in 
this study. Animals were purchased from tropical fish suppliers and were housed in groups (2–10) at controlled 
water temperatures (26–29 °C) and conductivities (300–800 µS  cm−1) according to published  guidelines80. All 
animal procedures were approved by McGill University’s animal care committee and were conducted according 
to the ARRIVE guidelines.

Surgery and recording. Surgical procedures have been described in details  previously38. Briefly, animals 
were immobilized by injection of 0.1–0.5 mg of tubocurarine (Sigma) intramuscularly. The animals were then 
transferred to an experimental tank (30 cm × 30 cm × 10 cm) containing water from the animal’s home tank and 
respirated by a mouth tube providing constant flow of oxygenated water at a flow rate of 10 mL  min−1. Before 
surgery, the animal’s head was locally anesthetized with lidocaine ointment (5%; AstraZeneca, Mississauga, ON, 
Canada). Craniotomy (a ~ 5  mm2 window) was performed to partially expose the hindbrain. Neuropixel probes 
(Imec inc., Leuven, Belgium) were inserted into the brain along the rostral–caudal axis and a 45° angle with 
respect to the sagittal plane at transverse slice T-4 of the brain atlas  (see81) laterally near the praeeminentialis 
efferent tract (labeled “tP-Cb” on the atlas), and the tip moved 1500 μm into the brain as measured from the 
surface. We waited at least one hour after probe insertion before starting recordings to allow brain tissue to 
settle following probe insertion and to improve recording stability. Accounting for the fact that the first record-
ing site is located 175 μm away from the tip along the probe shaft, as well as the fact that recordings were typi-
cally obtained on recording sites ranging between 13 and 97, this gives approximate recording between 355 and 
1195 μm from the brain surface along, which are within the range reported from a previous study where location 
within LS was confirmed by histological post-processing82,83. Thus, based on probe geometry,  anatomy81, and our 
experience recording from ELL pyramidal  cells58,65,82,84,85, it is likely that most of our recordings were from LS. 
However, we cannot reject the hypothesis that some of our recordings were from the centrolateral segment. The 
distance between recorded units was computed as the physical distance between the recording sites on which the 
spikes shapes of both units displayed the largest amplitude, which is approximate. However, since a given unit 
was most often recorded from the nearest neighbours to the primary recording site, the error is at most 40 μm 
based on probe geometry. We note that this is much smaller than the range of distances over which recordings 
were obtained.

Stimulation. The electric organ discharge (EOD) of A. leptorhynchus is neurogenic, and therefore is not 
affected by injection of curare. Stimuli consisted of amplitude modulations (AM) of the animal’s own EOD were 
produced by triggering a function generator to emit one cycle of a sine wave for each zero crossing of the EOD as 
done  previously86. The frequency of the emitted sine wave was set slightly higher (30 Hz) than that of the EOD, 
which allowed the output of the function generator to be synchronized with the EOD. The emitted sine wave was 
subsequently multiplied with the desired AM waveform (MT3 multiplier; Tucker Davis Technologies, Alachua, 
FL, USA), and the resulting signal was isolated from the ground (A395 linear stimulus isolator; World Precision 
Instruments, Sarasota, FL, USA). The isolated signal was then delivered through a pair of chloridized silver wire 
electrodes located 15 cm away from the animal on each side of the recording tank perpendicular to the fish’s 
rostro-caudal axis. In this study, a 5 Hz beat frequency and 14 ms chirp duration were used. Chirps were gener-
ated with different attributes by systematically varying the excursion frequency (30, 60, 90 and 120 Hz) and the 
phase (0, 90, 180 and 270°) of the underlying beat cycle at which the chirp occurs. As such, a total of 16 chirps 
were used (4 different chirp amplitudes, 4 different chirp phases). Parameter ranges were chosen to contain those 
observed in previous  studies17,87. To measure the stimulus intensity, a dipole was placed near the animal’s skin. 
Stimulus intensity was adjusted to produce changes in EOD amplitude that were ~ 20% of the baseline level, as 
done  previously24,88. Each type of chirp stimulus was presented 40 times (i.e., 40 trials).

Data analysis. Spike times for each individual neuron were sorted using Kilosort and manually curated using 
Phy 2. The spike times were converted into binary sequences Xi(t) sampled at 2 kHz (i.e., 1 if a spike occurred 
during a given binwidth of 0.5 ms and 0 otherwise). Neurons were classified into either ON- or OFF-type based 
on spike-triggered average (STA) of a low-pass filtered (0–120  Hz) noise stimulus as done  previously89. The 
strength of the neural response was quantified by the STA amplitude (i.e., the distance between the maximum 
and minimum values)85.

We quantified correlations between neuronal activities using spike count sequences Ni that were obtained 
from each spike train by counting the number of spikes occurring during 4 successive and non-overlapping 
10 ms time windows that were always aligned with respect to 8 ms after the onset of the chirp stimulus in order 
to account for transmission delays. We then computed the correlation coefficient between pairs of spike count 
sequences using Pearson’s correlation coefficient:

where < … > represents an average over trials (i.e., each presentation of a given chirp stimulus is one trial). To 
compute signal correlations, spike count sequences were first randomly permuted based on the order of trials to 
obtain shuffled spike counts. Signal correlations were then computed on the shuffled spike counts using Eq. (1) 
and were averaged over 50 independent realizations of the shuffling procedure. Noise correlations were computed 
as the correlation coefficient between the spike count residual sequences, which were obtained by averaging over 

(1)rij =
�Cov(Ni ,Nj)�

√

�Var(Ni)��Var(Nj)�
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trials and subtracting the mean spike count sequence from the spike counts for each  trial56. Thus, correlations 
were computed for each individual chirp stimulus.

For correlations at the population level, we divided the entire population into two subpopulations through 
partial sums: we summed the binary sequences Xi(t) of 50% of the neurons in the entire population to form the 
first subpopulation and then the activities of the other 50% of the neurons to form the second subpopulation. 
Correlations were then computed as described above and error bands for signal and noise correlations were 
generated for 300 bootstrap samples of partial sums.

The single neuron PSTHs Ri(t) were calculated by low-pass filtering the binary sequences Xi(t) with a 10 ms 
boxcar window. The population PSTHs were obtained by summing the single neuron PSTHs Ri(t) with either 
equal weights or unequal weights obtained through an evolutionary algorithm (described below):

where wi is the weight of neuron i. We note that, as the weights can be negative, the population PSTH obtained 
using unequal weights can also be negative. For each stimulus, the population PSTH of each trial was then 
normalized by the maximal value of that trial. The mean and standard deviation of the normalized population 
PSTHs across different trials were then obtained.

To quantify the similarity of mean responses of the population to different stimuli, we computed the inter-
response  distance24,79:

where x and y are means of normalized population PSTHs across different trials of two different stim-
uli, < … > denotes an average over an evaluation window of 40 ms after chirp onset. For each stimulus, we calcu-
lated the inter-response distance of the stimulus to the rest of the stimuli individually, and then took the average 
to obtain the averaged distance to other stimuli for this stimulus. For boxplots in Fig. 6c, the interquartile range 
(Q3 = 0.25, Q4 = 0.75) was taken to rule out stimuli whose averaged distances to other stimuli are either overly 
high or low, which hinder our comparisons.

To quantify the response variability of the population activities, we averaged the standard deviation of 
responses across different trials over all stimuli:

where σ(kn) is the standard deviation of normalized population PSTHs across different trials of each stimulus and 
n is the number of stimuli. The response variability at each time point was normalized by the maximal value of 
variability across the entire evaluation time window. For boxplots in Fig. 6d, the interquartile range (Q3 = 0.25, 
Q4 = 0.75) was taken to rule out times at which variability values are either overly high or low.

Classifier. We used a classifier to quantify the performance of ELL pyramidal cells at stimulus discrimina-
tion. We combined activities of individual neurons using either weighted or un-weighted sums for each chirp 
stimulus. For each chirp stimulus, the averaged population activity of all trials was chosen as a template. Next, 
each combined response was assigned as being generated by the stimulus that gave rise to a given template based 
on whether the distance between the combined response and the template was minimum. We thus constructed 
a “confusion matrix” whose element (i,j) gives the probability that a response was assigned as being generated 
by stimulus j given that it was actually generated by stimulus i26,89,90. The diagonal elements of this matrix are the 
probabilities that a stimulus was correctly assigned, whereas non-zero off-diagonal elements indicate misclassifi-
cation. For each confusion matrix we computed the discrimination performance by averaging over the diagonal 
elements, as done  previously26,56,89. The discrimination performance can thus vary between 0 (no discrimina-
tion) and 1 (perfect discrimination). Note that the chance level for discrimination performance was 0.0625 (that 
is, 1/16) because we used a total of 16 different chirp stimuli. The distance between combined neuron activities 
was computed using the van Rossum  metric32. First, the combined neural activities were convolved with a decay-
ing exponential kernel with time constant τ:

where ti is the ith spike time, M is the total number of spikes and H(t) is the Heaviside step function (H(x) = 0 
if x < 0 and H(x) = 1 if x >  = 0). The distance was then computed as the Euclidian distance between convolved 
combined neural activities fRj and fRk:

(2)equal − weight PSTH =
N
∑

i=1

Ri(t)

(3)unequal − weight PSTH =
N
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wiRi(t)
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We varied τ between 1 and 100 ms to evaluate the effects of precise spike timing on classification. When τ is 
small, the metric takes into account spike timing whereas, when τ is larger, the metric takes into account slower 
changes in firing rate. If not specified otherwise, τ = 3 ms was used.

Evolutionary algorithm. In order to determine whether performing a weighted sum of neural response 
gave rise to better classification than an equal-weight sum, we trained an evolutionary algorithm (EA) using the 
population responses on a randomly selected 60% of trials for each chirp stimulus as a training dataset. We then 
measured the classification accuracy of the trained classifier on the entire dataset. We chose the recording ses-
sion that contained the greatest number of neurons recorded simultaneously (n = 21).

Specifically, each neuron was assigned a weight wi which varies between − 2 and 2 and the goal was to choose 
a set of weights that maximizes the performance of the classification algorithm described above. The EA is 
described in detail in a previous studies by our  group56,79. Specifically, a set of weight vectors (i.e., “agents”) is 
allowed to evolve by minimizing a fitness function Ffit over a series of iterations (i.e., “generations”). In keeping 
with the notation used in previous  studies79, we denote Xr

k(i) as parameter i for agent r of generation k. First, the 
population of K individuals is randomly initialized with weight values that are uniformly distributed with zero 
mean and restrained within [− 2 2]. For each individual at every generation, a new individual is constructed by 
“differentiation”: the rth new parameter vector Xr

k,trial is built by combining three other individuals Xr1
k  , Xr2

k  , and 
Xr3
k  , where  r1 ≠  r2 ≠  r3:

where the differential weight F = 0.5, and the three individuals are chosen based on a probability distribution 
that is preferentially weighted for more fit (i.e., lower fitness score) individuals:

where λ is a normalization constant such that the sum of probability values is equal to one. Random mutations 
are then performed as follows:

where u is a random variable generated from a uniform distribution U(0,1) and with crossover probability 
CR = 0.9. Selection is finally performed to produce the next generation via:

In this study, the fitness function for a given individual was defined as:

where DPXr
k
 is the discrimination performance estimated by computing the precision of events (i.e., spikes) 

of our neuronal population in response to our set of 16 chirp stimuli. The EA was terminated if the change in 
population discrimination performance was less than 0.0001 in 10 consecutive iterations. The algorithm was 
repeated 30 times, and each time a different set of weights was obtained because of different initial conditions 
and the randomness in generating new individual and mutations. The weights were normalized so that the sum 
of weights of all neurons equals to 1. The weights that gave rise to the best performance out of the 30 runs were 
used for Figs. 6 and 7. As mentioned above, this methodology is the same as that used previously for midbrain 
 neurons56, which allows for a direct comparison between these previous results and those obtained in the current 
study for hindbrain neurons. In general, we found significant correlations between weight magnitude and STA 
amplitude to noise stimulus for ON (r = 0.92, p = 6.4 ×  10–7) and OFF cells (r = 0.95, p = 0.013).
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