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Lower Baseline Variability Gives Rise to Lower Detection Thresholds

in Midbrain than Hindbrain Electrosensory Neurons

Chelsea Kim and Maurice J. Chacron *

Department of Physiology, McGill University, Montreal, QC, Canada

Abstract—Understanding how the brain decodes sensory information to give rise to behaviour remains an impor-
tant problem in systems neuroscience. Across various sensory modalities (e.g. auditory, visual), the time-varying
contrast of natural stimuli has been shown to carry behaviourally relevant information. However, it is unclear how
such information is actually decoded by the brain to evoke perception and behaviour. Here we investigated how
midbrain electrosensory neurons respond to weak contrasts in the electrosensory system of the weakly electric
fish Apteronotus leptorhynchus. We found that these neurons displayed lower detection thresholds than their
afferent hindbrain electrosensory neurons. Further analysis revealed that the lower detection thresholds of mid-
brain neurons were not due to increased sensitivity to the stimulus. Rather, these were due to the fact that mid-
brain neurons displayed lower variability in their firing activities in the absence of stimulation, which is due to
lower firing rates. Our results suggest that midbrain neurons play an active role towards enabling the detection
of weak stimulus contrasts, which in turn leads to perception and behavioral responses. � 2020 IBRO. Published by

Elsevier Ltd. All rights reserved.
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INTRODUCTION

Understanding how sensory input is processed by the

brain to give rise to behavior remains a central problem

in neuroscience. Such understanding is complicated by

the fact that natural sensory stimuli display complex

spatiotemporal characteristics that frequently consist of

a fast time-varying waveform whose amplitude (i.e., the

‘‘envelope” or contrast) varies more slowly (Attias and

Schreiner, 1997; Joris et al., 2004; Stamper et al., 2013;

Theunissen and Elie, 2014). Because such envelopes,

which are critical for perception (Shannon et al., 1995,

1998), vary at different frequencies than the underlying

carrier, their extraction (i.e., signal demodulation) requires

a nonlinear transformation (Rosenberg and Issa, 2011;

Stamper et al., 2013; Metzen and Chacron, 2015). More-

over, understanding the neural code is complicated by the

fact that descending connections from higher brain areas

(‘feedback’) vastly outnumber ascending connections

from the periphery (‘feedforward’) (Cajal, 1909;

Hollander, 1970; Sherman and Guillery, 2002). Previous
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studies have revealed multiple functions for such feed-

back pathways such as gain control (Treue and

Martinez Trujillo, 1999), enhancing neural responses to

particular stimuli (Hupe et al., 1998), or predictive coding

(Bastos et al., 2012), with the mechanisms underlying

these more or less well understood. More recent studies

have shown novel functions for feedback pathways in

actually generating neural responses to sensory input

but the exact nature of the underlying mechanisms

remains unknown (Clarke and Maler, 2017; Metzen

et al., 2018).

Gymnotiform wave-type weakly electric fish generate

a quasi-sinusoidal electric field surrounding their body

through the electric organ discharge (EOD) and sense

perturbations of this field through an array of

electroreceptor afferents (EAs) located on the skin

surface (Turner et al., 1999). These EAs project to pyra-

midal cells within the hindbrain electrosensory lateral line

lobe (ELL), which in turn project to the midbrain torus

semicircularis (TS). TS neurons project to higher brain

centers to mediate behavioral responses but also mas-

sively project back to ELL pyramidal cells, thereby form-

ing a closed-loop (Clarke and Maler, 2017; Metzen

et al., 2018) (see (Hofmann and Chacron, 2019) for

review). When two conspecifics are located in close prox-

imity to one another, interference between their EODs

gives rise to a sinusoidal amplitude modulation (i.e., a

beat or first-order) whose frequency is given by the differ-

ence between the two EOD frequencies and whose
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amplitude (i.e., envelope or second-order) is inversely

proportional to the distance between both animals (Yu

et al., 2012). The tuning properties of electrosensory neu-

rons that respond to both first- and second-order stimulus

attributes have been extensively studied and reviewed

(Chacron et al., 2003b, 2011; Marsat et al., 2012; Krahe

and Maler, 2014; Clarke et al., 2015; Huang and

Chacron, 2017; Metzen and Chacron, 2019). Recent

studies have started uncovering the mechanisms that

enable electrosensory neurons to respond to second-

order attributes (Metzen and Chacron, 2015, 2019;

Huang and Chacron, 2016; Huang et al., 2016, 2018,

2019; Metzen et al., 2018). In general, EAs tend to

respond to second-order attributes through changes in fir-

ing rate when the stimulus intensity (i.e., �40% contrast)

is sufficiently high such as to elicit response nonlinearities

such as rectification or saturation (Metzen and Chacron,

2015; Metzen et al., 2018). ELL pyramidal cells instead

respond to second-order attributes through increases in

firing rate at much lower stimulus intensities (i.e., �8%

contrast), thereby mediating behavioral responses

(Metzen et al., 2018). However, such responses are not

caused by nonlinear integration of feedforward input from

EAs. Rather, they are due to feedback input from mid-

brain. This is because pharmacological inactivation of

closed-loop feedback pathways abolished increases in

ELL pyramidal cell firing rate to second-order attributes

with weak contrasts as well as the animal’s behavioral

responses (see (Hofmann and Chacron, 2019) for

review). In general, the responses of TS neurons to

second-order attributes have been investigated to a much

lesser extent. Critically, how TS neurons respond to weak

contrasts, to in turn elicit responses from ELL pyramidal

cells via feedback, has not been investigated to date.
EXPERIMENTAL PROCEDURES

Animals

This study was conducted using the weakly electric fish

Apteronotus leptorhynchus. Adult specimens of either

sex were purchased from tropical fish suppliers and

housed in groups of 2 to 10 in tanks whose water

temperature and conductivities were controlled

according to published guidelines (26–29 �C, 300–

800 mS/cm) (Hitschfeld et al., 2009). Experiments were

performed on N= 52 fish. All procedures were approved

by McGill University’s Animal Care Committee under pro-

tocol 5285.
Surgery

Surgical procedures were similar to those used in

previous studies (Khosravi-Hashemi et al., 2011;

Aumentado-Armstrong et al., 2015; Metzen et al., 2016,

2018). For each experiment, an animal was injected intra-

muscularly with 0.1–0.5 mg of tubocurarine chloride

hydrate (Sigma-Aldrich, St-Louis, MO, USA). The animal

was then quickly transferred to a tank

(30 cm � 30 cm � 10 cm) containing water from the ani-

mal’s home tank and respirated with heated, oxygenated

water passed through its mouth at consistent flow rate of
�10 mL/min. Lidocaine (5%; AstraZeneca, Mississauga,

ON, Canada) was then applied to the head region locally

and a small craniotomy was performed over the contralat-

eral side. This is because the majority of ELL projections

to the contralateral TS come from the ipsilateral ELL (Carr

et al., 1981). For ELL recordings, the craniotomy was per-

formed over the ipsilateral side.
Recording

Extracellular recordings from midbrain and hindbrain

neurons were achieved with metal-filled micropipettes

(Frank and Becker, 1964), as done previously (Chacron

et al., 2009; Chacron and Fortune, 2010; Metzen et al.,

2018). For midbrain, electrodes were advanced at least

400 lm and up to 1000 lm at approximately coronal sec-

tion 13 of the published brain atlas in order to target neu-

rons located above layer 6 (Maler et al., 1991). For

hindbrain, we used similar techniques to those used pre-

viously to target ELL pyramidal cells within the lateral seg-

ment (LS). We chose this segment because previous

studies have shown that LS neurons displayed overall

the greatest sensitivities to sinusoidal envelopes (Huang

and Chacron, 2016). There exists two classes of ELL

pyramidal cells, namely On- and Off-type that respond

with excitation and inhibition to increases in EOD ampli-

tude, respectively (Saunders and Bastian, 1984). Data

from ELL On- and Off-type cells were pooled because

previous studies have shown that their responses to

envelope stimuli, including the one used here, are not sig-

nificantly different from one another (Huang and Chacron,

2016; Huang et al., 2016, 2019; Metzen et al., 2018).

Recordings were obtained from n= 45 TS and n= 196

ELL neurons. Baseline firing rates (i.e., mean firing rates

in the absence of stimulation) were 15.1 ± 8.4 spk/s and

6.9 ± 8.7 spk/s for ELL and TS neurons, respectively.

The recorded signals were sampled at 10 kHz and digi-

tized using a Power 1401 with Spike2 software (Cam-

bridge Electronic Design, Cambridge, UK) for offline

analysis.
Stimulation

Each animal was presented with stimuli consisting of

amplitude modulations (AMs) of its own EOD as done

previously (Huang and Chacron, 2016; Huang et al.,

2016; Metzen et al., 2018). To generate such stimuli,

the animal’s EOD zero-crossing points were used to trig-

ger a sinewave generator. At each of these points, the

function generator produced one cycle of sinewave at a

frequency �30 Hz greater than EOD frequency, ensuring

that this sinewave was synchronized to the animal’s EOD.

This signal was then multiplied by the stimulus waveform

(MT3 multiplier; Tucker Davis Technologies, Alachua, FL,

USA), isolated from ground (A395 linear stimulus isolator;

World Precision Instruments, Sarasota, FL, USA), and

then delivered through a pair of chloridized silver wire

electrodes placed 15 cm away from the fish’s body on

either side. Stimuli consisted of a sinusoidal 5 Hz wave-

form whose amplitude (i.e., contrast) increases linearly

with time between 0 and 100% (Metzen et al., 2018) in

order to investigate detection thresholds as well as
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band-pass filtered white noise (5–15 Hz, 4th order Butter-

worth) whose amplitude was sinusoidally modulated at

frequencies 0.05, 0.1, 0.2, 0.5, 0.75, and 1.0 Hz that were

previously used to investigate neural tuning characteris-

tics (Huang and Chacron, 2016; Huang et al., 2016,

2018). It is important to note that previous studies have

shown that similar detection thresholds were found using

either 5 Hz sinewaves or 5–15 Hz noise stimuli whose

amplitude increases linearly with time (Metzen et al.,

2018). Because not all neurons could be held throughout

the full length of the stimulation protocol, it was necessary

to gather additional data from ELL neurons in response to

sinusoidal envelopes. Thus, the number of neurons used

for statistical comparison is not the same throughout the

manuscript.
Data analysis

All data analysis was performed using MATLAB

(MathWorks, Natick, MA, USA). Neural signals were

thresholded in order to obtain the spike times. From

these, a ‘‘binary” sequence with timestep 0.5 ms was

constructed by binning time and setting the content of a

given bin to 2000 if a spike occurred within it, and to

zero otherwise. Note that, as the timestep is less than

the absolute refractory period of electrosensory neurons

(1–2 ms or higher), there can be at most one spike

occurring during any given bin. The resulting sequence

was then low-pass filtered (cutoff frequency 0.05 Hz,

2nd order Butterworth filter) to give the time-average

firing rate as done previously (Metzen et al., 2018). It is

important to note that Metzen et al. (2018) showed that

both neural and behavioral detection threshold values

were similar for a wide range of filter settings (see their

Fig. S1). To assess whether the neural responses were

significant, we computed the probability distribution of fir-

ing rate values under baseline conditions (i.e., in the

absence of stimulation but in the presence of the animal’s

EOD). Firing rate values comprising the low and high

extremities of the probability distribution with less than

0.05 cumulative probability of occurrence were deemed

to be significant. The firing rate detection threshold is

the lowest value of contrast for which the corresponding

firing rate is significantly greater than baseline.

We computed the time-varying vector strength (VS)

from the spike times in order to measure the degree of

phase-locking to the sinusoidal AM stimulus. Vector

strength was computed for each cycle of stimulation:

VS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

coshi

 !2

þ 1

N

XN
i¼1

sinhi

 !2
vuut : ð1Þ

hi is the phase of ith spike duration stimulation and N is

the total number of spikes. hi is obtained from the ith spike
time by subtracting the nearest time in the past at which

the stimulus is maximum, dividing by the stimulus

period, and multiplying by 2p. The time-varying vector

strength was obtained by averaging vector strength

values over a time window of 1 s. Rayleigh statistics

was used to determine the 95% significance level

(VS2N> 3.5) as done previously (Metzen et al., 2018).
The vector strength detection threshold is the lowest stim-

ulus contrast for which the corresponding vector strength

is significant at the 95% level.

As both TS (this study) and ELL (Huang and Chacron,

2016; Huang et al., 2016, 2018) neural populations

responded to sinusoidal contrast modulations by sinu-

soidal modulations in firing rate, we used linear systems

identification techniques to characterize the transfer func-

tion relating the input to the output. The neural gain (i.e.,

the amplitude of the transfer function) was computed for

each frequency as:
Gain ¼ Aresponse

Astim

: ð2Þ

Here Aresponse is the amplitude (i.e., the difference

between the maximum and minimum values of fitted

sinewaves to the stimulus cycle-averaged firing rate

modulation), while Astim is that of the sinusoidal

envelope stimulus. We note that we did not include

parts of the stimulus cycle during which the neuron

displayed rectification (i.e., cessation of firing) for the fit.

We also measured the phase of the transfer function for

each frequency as the time relative to stimulus cycle

that one must shift the stimulus by such that its

maximum occurs at the same time as that of the firing

rate response.
RESULTS

The aim of this study was to investigate how TS neurons,

which project to higher brain areas to mediate behavior,

as well as provide feedback input to ELL pyramidal

cells, respond to weak contrast stimuli. As mentioned

above, previous experimental results have shown that

closed-loop feedback that includes input from TS

neurons is necessary to generate an increase in the

firing rates of ELL, which is in turn necessary to

generate behavioral responses (Metzen et al., 2018)

(Fig. 1A). Specifically, in response to a sinusoidal stimu-

lus whose amplitude (i.e., contrast) increases linearly with

time (Fig. 1B, top left panel), EAs respond through phase-

locking (i.e., action potentials occur preferentially near

local maxima of the sinusoidal stimulus) but display no

change in firing rate when the contrast is weak enough

(Fig. 1A, left). This phase-locking information is sent to

ELL pyramidal cells (Fig. 1A, green) which respond to

increased contrast with both phase-locking and increases

in firing rate (Fig. 1A, pink and blue arrows) and send this

information to TS neurons (Fig. 1A, orange). TS neurons

project to higher brain areas to mediate behavior (Fig. 1A,

right) as well as project back to ELL pyramidal cells via

the nP (Fig. 1A, purple). While this closed-loop feedback

is necessary in order to generate increases in ELL firing

rate to weak contrasts as well as behavioral responses,

the underlying mechanisms have not been investigated

to date (Fig. 1A, ‘‘?”). In this study, we performed electro-

physiological recordings from TS neurons in awake

behaving animals (Fig. 1B) in order to investigate

responses to the same stimuli used previously for EAs

and ELL pyramidal cells.



Fig. 1. Electrosensory pathways in A. leptorhynchus and experimental setup. (A) Weak electrosen-

sory stimuli are first transduced by electroreceptor afferents (EAs, left dark grey) that phase-lock to the

sinusoidal first-order stimulus and whose degree of phase-locking increases with stimulus contrast

(pink arrow). These project onto ELL pyramidal cells (green). These also phase-lock to the sinusoidal

carrier but increase their firing rates in response to increased contrast (blue arrow). ELL pyramidal

cells thus send information through both phase-locking and firing rate to the TS (orange), which sends

descending projections back to the ELL through the nP via stellate cells (purple). Previous

experiments have shown that this closed-loop feedback pathway is necessary to generate increases

in ELL pyramidal cell firing rate but does not affect phase-locking and that such increases in firing rate

are necessary in order to generate behavioral responses as measured by changes in EOD frequency

((Metzen et al., 2018); right dark grey). (B) Experimental setup in which the animal is stimulated via a

stimulation isolation unit (SIU), which isolates the stimulus from ground, while neural responses are

recorded from TS. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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ELL pyramidal cells respond to weak contrasts
through increases in firing rate

To establish a reference to which we can compare the

results obtained from TS, we first reproduce a

previously published experimental result (Metzen et al.,

2018) from a representative example ELL pyramidal cell

(Fig. 2). With increasing amplitude (red) of the sinusoidal

carrier (grey), this ELL pyramidal cell displayed increased

phase-locking as well as increased firing for each carrier

cycle (Fig. 2A, insets). Phase-locking was quantified

using the vector strength (see Experimental procedures,

Fig. 2B), while increases in spiking activity were quantified

using the time-averaged firing rate which was obtained by

low-pass filtering the spiking activity in order to remove

fluctuations during the sinusoidal carrier cycle (see Exper-

imental procedures, Fig. 2C). For both measures, a con-

fidence interval was computed from fluctuations in the

absence of stimulation (see Experimental procedures).

The stimulus contrast at which either measure crossed

the upper bound of the confidence interval was then
defined to be the detection thresh-

old (Metzen et al., 2018). It is seen

that the firing rate detection thresh-

old was lower than the vector

strength detection threshold for

this neuron (compare Fig. 2B, C).

As mentioned above, previous

results have shown that, after

feedback inactivation, both the fir-

ing rate detection threshold of

ELL neurons as well as that of

behavior dramatically increases

(Metzen et al., 2018). As such,

feedback is necessary in order to

generate increases in ELL pyrami-

dal cell firing rate to weak con-

trasts, which are in turn

necessary to generate perception

and behavior. We further note that

we did not see a significant corre-

lation between the firing rate

detection threshold and the base-

line firing rate (R= 0.07,

p= 0.64, n= 49), which strongly

suggests that the detection thresh-

old does not depend on ELL pyra-

midal cell heterogeneities. This is

because previous studies have

established a strong correlation

between the baseline firing rate

and heterogeneities within the

pyramidal cell population (Bastian

and Nguyenkim, 2001; Bastian

et al., 2004) (see (Maler, 2009)

for review).

Midbrain electrosensory
neurons display lower detection
threshold values than their
hindbrain afferent neurons

We next investigated how TS
neurons responded to sinusoidal carriers whose

amplitude increases linearly with time. Fig. 3A shows

the response of a representative TS neuron (bottom

panel) to the stimulus (middle panel). As seen in the

insets a and b of Fig. 3A, this neuron tended to phase-

lock to the sinusoidal stimulus and, as stimulus contrast

increased, the spikes increased in number and occurred

more reliably during a subset of phases during the

cycle. We quantified TS neural responses by computing

both the time-varying vector strength (VS) and time-

varying firing rate (FR) (see Experimental procedures)

as done previously with the ELL neural responses (see

Fig. 2; (Metzen et al., 2018)). Plotting the time-

dependent VS (Fig. 3B, top) and FR (Fig. 3C) revealed

increases in both quantities with increasing stimulus

amplitude. Interestingly, the time-dependent FR

increased almost immediately after stimulus onset, which

gave rise to a very low FR detection threshold (0.11%;

Fig. 3A, blue cross) that is lower than that typically

observed for ELL neurons. In contrast, increases in VS



Fig. 2. ELL neurons respond to ramp stimuli. (A) A sample extracellular recording from a

representative hindbrain ELL neuron responding to a ramp stimulus. Insets a and b demonstrate

the changes in spiking activities of this neuron in response to increased stimulus contrast. Notably,

with increased contrast the neuron spikes more frequently and at a more consistent phase. (B) Time-

varying vector strength and Rayleigh statistics for this example ELL neuron. At the point where the

value of Rayleigh statistics rises above 3.5 (pink circle), the corresponding stimulus contrast is set to

be equal to vector strength detection threshold (panel A, pink cross), which was 43.4% for this neuron,

which corresponds to 0.58 mV/cm. (C) Time-varying firing rate of the same ELL neuron. Firing rate

detection threshold is determined based on the interval (white arrow) containing 95% of the probability

distribution of baseline firing rate values (blue shaded region). Once the upper limit of this interval is

crossed after stimulus onset (blue circle), the corresponding stimulus contrast is taken to be firing rate

detection threshold (panel A, blue cross), which was 11.7% for this neuron, which corresponds to

0.16 mV/cm. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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were more nuanced, leading to a greater value for detec-

tion threshold (2.38%; Fig. 3A, pink cross). Across our TS

dataset, we found that detection threshold values

obtained from vector strength were similar to those of

ELL neurons (Fig. 3D, left panel; p= 0.20, TS: n= 40,

ELL: n= 49, Wilcoxon ranksum test). However, detection

threshold values obtained from firing rate were signifi-

cantly lower than those of ELL neurons (Fig. 3D, right
panel; p= 3.1e-11, TS: n= 40,

ELL: n= 49, Wilcoxon ranksum

test).

Lower detection thresholds in
TS neurons are due to
decreased variability in the
absence of stimulation

Why do TS neurons display lower

firing rate detection thresholds

than ELL pyramidal cells? One

possibility is that TS neurons,

while having similar baseline

variabilities as ELL neurons in the

absence of stimulation thereby

leading to similar confidence

intervals, are more sensitive to

increases in the stimulus contrast

(i.e., have greater gain). If this

hypothesis is correct, then the

firing rate of TS neurons should

increase more steeply as a

function of increasing contrast,

such as to cross the upper

interval border at a lower contrast

(Fig. 4A). To test this hypothesis,

we recorded TS neural responses

(Fig. 4B, middle orange) to

sinusoidal modulations in contrast

at different frequencies (Fig. 4B,

top), which are independent of

the ramps used previously, and

measured their sensitivities to

these. Importantly, we also

recorded ELL neural responses to

the same sinusoidal contrast

modulations to provide a direct

comparison between both neural

populations (Fig. 4B, middle

green). We found that both neural

populations responded through

sinusoidal modulations in firing

rate (Fig. 4B, bottom) and, as

such, used linear systems

identification techniques to

measure sensitivity (see

Experimental procedures).

Overall, while the sensitivities of

TS neurons were higher than that

of ELL neurons (Fig. 4C), the

difference between the two was

only significant for the highest

frequencies, which are not
representative of the frequency content of the slowly

varying ramps used to compute detection thresholds.

Interestingly, sensitivity for TS and ELL neurons both

increased as power laws with increasing temporal

frequency characterized by similar exponents (Fig. 4D;

p= 0.18, TS: n= 16, ELL: n= 62, Wilcoxon ranksum

test). As such, our results suggest that the lower firing

rate detection thresholds observed for TS neurons, as
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compared to ELL pyramidal cells, are not due to

differences in sensitivity between both neural populations.

An alternative hypothesis is that TS neurons display

lower baseline variability then ELL neurons. This would

then lead to a smaller confidence interval overall and

thus an earlier crossing point, which would translate to a
lower detection threshold as illustrated in Fig. 5A. To

test this hypothesis, we measured the baseline

variability as the width of the confidence interval of

baseline firing activity in TS neurons and compared it to

that of ELL neurons (Fig. 5B, white arrows). Overall, the

distribution of variability for TS neurons was significantly
different than that of ELL neurons

(Fig. 5C; p= 3.3e-05, TS: n= 43,

ELL: n= 48, two-sample

Kolmogorov-Smirnov test), which

confirms our hypothesis that

differences in detection thresholds

are due to differences in variability.

Further analysis revealed that the

overall baseline mean firing rate of

TS neurons was significantly lower

than that of ELL neurons (Fig. 5D;

p= 3.7e-06, TS: n= 43, ELL:

n= 48, two-sample Kolmogorov-

Smirnov test); this explains the

lower variability, as firing rate

ultimately cannot fall below 0 Hz.

Further, there was a significant

positive correlation between the

baseline firing rate and the

detection threshold for TS neurons

(R= 0.52, p= 0.0004, n= 43).

Overall, these results suggest that

TS neurons achieve a lower firing

rate detection threshold through a

lower mean baseline firing rate than

ELL, which in turn lowers the

variability and facilitates detection

of an increase in firing rate.

Comparison of detection
thresholds observed for TS
neurons as well as in other brain
areas to behavior

Our results have so far shown that

TS neurons display lower detection

thresholds of firing rate but are

similar in that of vector strength

compared to ELL neurons. To

better put this into context, we next

compare the detection thresholds

of ELL, TS, nP stellate cells, and

behavior (data from (Metzen et al.,

2018)). Fig. 6A shows that, on aver-

age, TS neurons displayed lower fir-

ing rate detection thresholds than

either of ELL, nP stellate cells, or

behavior (one-way ANOVA with

Bonferroni correction on log-

transformed quantities, df = 3,

F= 47.39). Fig. 6B shows that, on

average, TS neurons displayed

lower firing rate detection thresholds

than either of ELL, nP stellate cells,

or behavior (one-way ANOVA with

Bonferroni correction on log-



Fig. 4. TS and ELL neurons display similar sensitivity to contrast. (A) Illustration showing that,

assuming similar baseline firing rate variability for TS and ELL neurons, lower detection thresholds

could be achieved if the sensitivity (i.e., ‘‘gain” or the slope of the firing rate increase after stimulus

onset) of TS neurons (orange) was higher than that of ELL neurons (green). (B) Top: A noisy carrier

(grey) was modulated sinusoidally (red). Middle: example spiking responses of TS (orange) and ELL

(green) neurons to this stimulus. Bottom: Time-dependent firing rates of these same ELL (green) and

TS (orange) neurons. (C) Population-averaged gain values as a function of frequency for TS (orange)

and ELL (green) neurons. No significant difference was observed for the lower frequencies (p= 0.28,

0.78, 0.34, 0.02, 0.03, 0.10 for envelope frequencies 0.05, 0.1, 0.2, 0.5, 0.75, 1.0 Hz, respectively; TS:

n= 15–16 and ELL: n= 53–65, Wilcoxon ranksum tests). (D) Population-averaged best-fit power

law exponent alpha values were not significantly different between TS and ELL (p= 0.18; TS: n= 16

and ELL: n= 62, Wilcoxon ranksum test). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

C. Kim, M. J. Chacron /Neuroscience 448 (2020) 43–54 49
transformed quantities, df = 3, F= 47.39). This result is

surprising given that TS neurons provide the necessary

input to generate both the feedback onto ELL pyramidal
3

Fig. 3. TS neurons display lower firing rate detection thresholds than ELL neurons. (A) A sample ext

midbrain TS neuron responding to a ramp stimulus. Insets a and b demonstrate the changes in spiki

increased stimulus contrast. Notably, with increased contrast the neuron spikes more frequently and at a

vector strength and Rayleigh statistics for this example TS neuron. At the point where the value of Rayl

the corresponding stimulus contrast is set to be equal to vector strength detection threshold. In this ex

cross), which corresponds to 0.012 mV/cm. (C) Time-varying firing rate of the same TS neuron. In

determined based on the interval (white arrow in inset) containing 95% of the probability distribution o

region). Once the upper limit of this interval is crossed after stimulus onset (blue circle), the correspondin

detection threshold, which is 0.11% for this neuron (panel A, blue cross) and corresponds to 0.0005 m

threshold values for vector strength (left) and firing rate (right). In each case, TS (left) and ELL (right)

were not significantly different from one another (p= 0.20; TS: n= 40, ELL: n= 49, Wilcoxon ranksum

significantly lower values than ELL neurons (p= 3.1e-11; TS: n= 40, ELL: n= 49, Wilcoxon ranksum te

colour in this figure legend, the reader is referred to the web version of this article.)
cells as well as to generate behav-

ioral responses. As further dis-

cussed below, we hypothesize

that the relatively lower firing rate

detection thresholds of TS neurons

are due to convergent input from

ELL (Fig. 6C). In contrast, because

nP stellate cells that project unto

ELL pyramidal cells display higher

firing rate thresholds than TS neu-

rons on average (Fig. 6B), we

hypothesize that there is very little

convergence from TS to nP

(Fig. 6C). Moreover, anatomical

studies suggest that there is little

convergence from nP stellate cells

onto ELL pyramidal cells as the

feedback pathway is topographic

(Berman and Maler, 1999). We

note that further studies are

needed to fully validate these pre-

dictions, hence the ‘‘?” in Fig. 6C.
DISCUSSION

Summary of results

In this study, we performed

electrophysiological recordings

from TS neurons in awake

behaving animals in order to

investigate their responses to

contrast increased linearly with

time as well as the nature of the

underlying mechanisms. Our

results show that TS neurons

responded to such stimuli through

increased phase-locking as well

as increased firing rate.

Interestingly, increases in firing

rate occurred on average for

lower contrasts than for ELL

neurons (i.e., TS neurons

displayed lower firing rate

detection thresholds), while there

were no significant differences in
terms of phase-locking between both neural

populations. Further investigation revealed that the
racellular recording from a representative

ng activities of this neuron in response to

more consistent phase. (B) Time-varying

eigh statistics rises above 3.5 (pink circle),

ample, the value is 2.38% (panel A, pink
set: the firing rate detection threshold is

f baseline firing rate values (blue shaded

g stimulus contrast is taken to be firing rate

V/cm. (D) Population-averaged detection

are compared. For vector strength, values

test). For firing rate, TS neurons displayed

st). (For interpretation of the references to



Fig. 5. TS neurons display lower baseline variability than ELL neurons. (A) Illustration showing that, if

TS and ELL display similar sensitivities, then a lower baseline variability for TS (orange band) would

lead to a lower firing rate detection threshold (orange circle) than for ELL (green band and circle). (B)
Example baseline activity from example TS (top) and ELL (bottom) neurons. Both the mean firing rate

(grey dashed line in each panel) and the width of the confidence interval (white arrow in each panel)

were computed. (C) Distributions of variability (i.e., the width of the confidence interval shown as a

white arrow in panel B) for TS (orange) and ELL (green) neurons. Both distributions were significantly

different from one another (p= 3.3e-05; TS: n= 43, ELL: n= 48, two-sample Kolmogorov-Smirnov

test for probability distributions). Arrows indicate median values for each distribution. (D) Distributions
of mean baseline firing rate (i.e., the mean firing rate in the absence of stimulation shown as dashed

grey lines in panel B) for TS (orange) and ELL (green) neurons. Both distributions were significantly

different from one another (p= 3.7e-06; TS: n= 43, ELL: n= 48, two-sample Kolmogorov-Smirnov

test for probability density distributions). Arrows indicate median values for each distribution. We note

that the probability density for ELL was lower than that for TS for low (<7.5 Hz) values of baseline FR

variability and mean baseline FR. This simply reflects the fact that, on average, TS neurons tend to

display lower mean baseline firing rates as well as variabilities than ELL neurons. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)
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lower firing rate detection thresholds of TS neurons were

due to lower variability in the absence of stimulation rather

than differences in sensitivity. Such lower variability most

likely results from lower firing rates in the absence of

stimulation overall as well as convergent input from ELL

neurons.
Feedback and electrosensory processing

Our results have shown that TS neurons displayed lower

detection thresholds than both ELL neurons as well as nP

stellate cells providing feedback to ELL neurons. This

result has important implications for understanding the
role played by these neurons in

generating both behavioral

responses as well as the

feedback input to nP stellate cells

as well as to ELL neurons.

What are the mechanisms that

mediate lower firing rate detection

thresholds in TS neurons as

compared to ELL neurons? One

possibility is that TS neurons

display lower firing rate detection

thresholds because they receive

convergent input from multiple

ELL neurons (Fig. 6C), as

proposed for the auditory system

(Krishna and Semple, 2000).

Indeed, summing the activities of

multiple neurons can lead to reduc-

tion in variability (Zohary et al.,

1994). However, the fact that the

baseline activities of ELL pyramidal

cells are correlated could either be

detrimental or beneficial for reduc-

ing variability (Zohary et al., 1994;

Hofmann and Chacron, 2017).

Specifically, while positive correla-

tions are detrimental, negative cor-

relations are instead beneficial.

Previous studies have shown that

correlations between the baseline

activities of ELL pyramidal cells

can either be positive or negative

(Chacron and Bastian, 2008;

Hofmann and Chacron, 2017,

2018). As such, whether correla-

tions between the baseline activi-

ties of ELL pyramidal cells are

beneficial or detrimental for reduc-

ing variability when pooling such

activities will depend a lot on which

ELL cells converge onto a given TS

neuron. Although anatomical stud-

ies are needed in order to better

understand how input from ELL

neurons converges onto TS neu-

rons, electrophysiological studies

strongly suggest that TS neurons

receive input from both ON- and

OFF-type ELL pyramidal cells
(McGillivray et al., 2012), which tend to display negative

correlations between their baseline activities on average

(Hofmann and Chacron, 2017). Thus, we predict that neg-

ative correlations between the baseline activities of ELL

pyramidal cells will lead to further reduction in baseline

variability, thereby leading to lower detection thresholds

in TS neurons. Further studies looking at how ELL pyra-

midal cell populations respond to weak contrast stimuli

such as those used here are needed to test this

hypothesis.

While a simple summation of convergent ELL activity

is likely to be sufficient to observe reduced variability as



Fig. 6. Comparison of phase locking and firing rate detection thresholds across brain areas and

behavior. (A) Whisker-box plots showing the vector strength detection thresholds of ELL pyramidal

cells, TS, nP stellate cells (‘‘STCells”), and of behavior. All three neuron groups displayed similar

detection thresholds, while behavioral detection thresholds were significantly higher than those of ELL

neurons (one-way ANOVA with Bonferroni correction on log-transformed quantities, df = 3,

F= 6.14). (B) Whisker-box plots showing the firing rate detection thresholds of ELL, TS, nP stellate

cells, and of behavior. TS neurons displayed lower firing rate detection thresholds than either of ELL,

nP stellate cells, or behavior (one-way ANOVA with Bonferroni correction on log-transformed

quantities, df = 3, F= 47.39). (C) Putative circuit diagram suggesting that convergence from multiple

ELL cells to TS neurons mediate their lower firing rate detection thresholds. The fact that nP stellate

cells displayed higher detection thresholds than TS neurons suggests that there is minimal

convergence at best. Finally, anatomical studies suggest that there is minimal convergence from

nP stellate cells to ELL pyramidal cells as the feedback pathway is topographic (Berman and Maler,

1999).
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mentioned above, other mechanisms might further reduce

the firing rate detection thresholds of TS neurons.

Specifically, previous studies have shown that

subthreshold membrane conductances such as T-type

calcium channels and voltage-gated sodium channels

lead to nonlinear summation of post-synaptic responses

(Fortune and Rose, 1997, 2003; Chacron and Fortune,

2010) and therefore shape the temporal filtering proper-

ties of TS neurons to current injection (Fortune and

Rose, 1997, 2003), as well as help generate directionally
selective responses to moving

objects (Chacron and Fortune,

2010). However, the degree to

which such molecular mechanisms

impact the nonlinear integration in

TS necessary for increased ELL

firing rate response to weak stimuli

is unclear. Further studies using

intracellular recording techniques

should pharmacologically inacti-

vate such conductances in order

to test our hypothesis more

thoroughly.

Our results have shown that TS

neurons with lower baseline firing

rates tended to display lower

firing rate detection thresholds

than their counterparts with higher

baseline firing rates. It is likely

that TS neurons with lower

baseline firing rates correspond to

the ‘‘sparse” subpopulation, as

these neurons are mostly silent

except when their preferred

stimulus is presented, rather than

the ‘‘dense” subpopulation which

tends to respond to more stimuli

and displays higher firing rates

overall (Vonderschen and

Chacron, 2011; Sproule et al.,

2015). While anatomical studies

have shown that there are 50 TS

neural classes (Carr et al., 1981;

Carr and Maler, 1985), the rela-

tionship between anatomical and

physiological differences is much

less clear in TS than in ELL

(Sproule et al., 2015), where there

is a strong negative correlation

between the baseline firing rate

and morphology (Bastian and

Nguyenkim, 2001; Bastian et al.,

2004). In TS, both sparse and

dense neurons have been found

throughout most if not all layers

and TS neurons from most layers

project back to nP (Carr et al.,

1981; Carr and Maler, 1985;

Sproule et al., 2015). As such, it

is likely that nP stellate cells

receive input from both sparse
and dense TS neurons, which might explain why stellate

cells display larger firing rate detection thresholds than

TS neurons overall (Fig. 6B). It is also conceivable that

putative correlations between the activities of TS neurons

would hinder any reduction in variability due to convergent

input in stellate cells, as discussed above for ELL neu-

rons. Finally, as mentioned above, previous anatomical

studies have shown that the direct feedback pathway

emanating from stellate cells is highly topographic, with

a given stellate cell projecting to at most a few pyramidal
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cells (Berman and Maler, 1998, 1999), which could

explain why stellate and ELL pyramidal cells display sim-

ilar firing rate detection thresholds. Further studies are

however needed to test all these predictions.

Our results have shown that, while TS neurons

displayed lower firing rate detection thresholds than ELL

neurons, phase-locking detection thresholds were

similar in both neural populations. It is important to note

that phase-locking not only carries information about the

carrier waveform (e.g., about its frequency content), but

also about the contrast. As such, the mechanism

observed in the electrosensory system is qualitatively

different from those observed previously where

feedback can enable the conversion from a temporal

code to a rate code (Ahissar et al., 2000). We hypothesize

that the information carried through changes in firing rate

is more robust to variability, which generally increases in

higher order brain areas (Softky and Koch, 1993;

Shadlen and Newsome, 1998) and thus ensures accurate

perception and behavioral responses. We also note that

the variations in contrast considered here contained low

(i.e. <1 Hz) frequencies, and as such do not require infor-

mation through precise spike timing. It is furthermore

important to note that, although our detection threshold

measure is largely influenced by baseline (i.e., absence

of stimulation) variability, such variability will, in general,

determine trial-to-trial variability during stimulation

(Risken, 1996; Chacron et al., 2003a, 2005; Mitchell

et al., 2018). A reduction in trial-to-trial variability has been

shown to be beneficial for neural coding and behavioral

performance (Churchland et al., 2010; von Trapp et al.,

2016). Further studies are needed to investigate how

lower baseline activity and variability in TS neurons shape

their trial-to-trial variability during stimulation.
Decoding neural activity to generate perception and
behavior

How are changes in ELL neural firing rate in response to

weak contrast stimuli decoded downstream in order to

give rise to behavior? We note that, because previous

results have shown that behavioral detection thresholds

were similar to those of single ELL pyramidal cells

(Metzen et al., 2018), the timescale at which the organism

decides to generate a behavioral response must be much

shorter than that at which the amplitude varies for the

stimuli used here. Interestingly, our results show that

the thresholds of TS neurons are on average lower than

behavioral ones. How can single neurons display better

performance than the entire organism? Explanations for

such a seemingly counterintuitive result have been pro-

posed and involve suboptimal decoding by downstream

brain areas due to strong correlations between neural

activities (Pitkow et al., 2015). However, whether TS neu-

ral activities are correlated at the population level has not

been investigated to date and, as mentioned above,

should be the focus of future studies. Alternatively, it is

possible that behavioral responses are obtained by inte-

grating the activities of ‘‘dense” TS neurons that tend to

display higher detection thresholds. Anatomical studies

are needed in order to better understand how the activi-
ties of TS neurons are combined by downstream brain

areas in order to generate behavioral responses.
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