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Novel Functions of Feedback in
Electrosensory Processing
Volker Hofmann* and Maurice J. Chacron
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Environmental signals act as input and are processed across successive stages in the
brain to generate a meaningful behavioral output. However, a ubiquitous observation
is that descending feedback projections from more central to more peripheral brain
areas vastly outnumber ascending feedforward projections. Such projections generally
act to modify how sensory neurons respond to afferent signals. Recent studies in the
electrosensory system of weakly electric fish have revealed novel functions for feedback
pathways in that their transformation of the afferent input generates neural firing rate
responses to sensory signals mediating perception and behavior. In this review, we focus
on summarizing these novel and recently uncovered functions and put them into context
by describing the more “classical” functions of feedback in the electrosensory system.
We further highlight the parallels between the electrosensory system and other systems
as well as outline interesting future directions.

Keywords: descending pathways, weakly electric fish, response synthesis, neural coding, electrolocation,
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INTRODUCTION

How sensory information is processed by the brain to give rise to behavior remains an important
yet poorly understood question in systems neuroscience. This is due in part to the fact that, along
a given sensory pathway, descending connections from higher brain areas (‘‘feedback’’) vastly
outnumber ascending connections from the periphery (‘‘feedforward’’; Cajal, 1911; Holländer,
1970; Perkel et al., 1986; Sherman and Guillery, 2002; Markov et al., 2014; Salin and Bullier, 2017)
and modify how sensory neurons respond to feedforward input. Previous studies have revealed
multiple functions for such feedback pathways such as gain control (Treue and Martínez Trujillo,
1999), enhancing neural responses to particular stimuli (Hupé et al., 1998), or predictive coding
(Bastos et al., 2012). Recent research in the electrosensory system of weakly electric fish has revealed
novel, qualitatively different functions for feedback pathways in that their transformations of
feedforward signals can generate neural responses that mediate behavioral responses to sensory
input. Here, we review these novel functions and provide context for these results, particularly with
regards to other previously established functions of feedback in the electrosensory as well as in
other systems.

THE ELECTRIC SENSE: RELEVANT NEURAL CIRCUITRY AND
SENSORY INPUT

Weakly electric fish as a model system benefit from well-characterized anatomy, natural stimuli,
as well as feedback circuits that are easily accessible for pharmacological manipulation.We note that
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all these features have been extensively reviewed elsewhere
(Bastian, 1999; Berman and Maler, 1999; Bell and Maler, 2005;
Chacron et al., 2011; Marsat et al., 2012; Krahe and Maler, 2014;
Metzen et al., 2017).

To sense their surroundings and communicate with
conspecifics, Gymnotiform weakly electric fish actively generate
an electric field by emitting a quasi-sinusoidal electric organ
discharge (EOD). Objects with a conductivity different from
that of the surrounding water (e.g., prey) as well as interactions
with the EOD of a conspecific will modulate the amplitude of
the animal’s EOD. These changes in amplitude are detected by
electroreceptors scattered on the animal’s skin (Scheich et al.,
1973) that synapse onto pyramidal cells (P-cells) within the
electrosensory lateral line lobe (ELL; Maler, 1979; Maler et al.,
1981; Figure 1A). Specifically, each afferent fiber trifurcates
to make synaptic contact with P-cells within three parallel
segments: the centromedial (CMS), centrolateral (CLS) and
the lateral (LS) segments (Figure 1B) that are organized in
columns (Figure 1C) and display large differences in terms
of receptive field organization (Shumway, 1989; Krahe et al.,
2008; Hofmann and Chacron, 2017), ion channel composition
(Ellis et al., 2008; Motipally et al., 2019), and responses to
electrosensory stimuli (for review, see Krahe and Maler, 2014).
There are two main types of P-cells: ON- and OFF-type
that respond to increases and decreases in EOD amplitude,
respectively (Maler, 1979; Maler et al., 1981; Saunders and
Bastian, 1984). All P-cells project directly to the midbrain
Torus semicircularis (TS) and, from there, indirectly to higher
brain areas. There are large morphological and functional
heterogeneities in the P-cell population (Maler, 2009a,b).
In particular, so-called ‘‘deep’’ P-cells display small apical
dendrites and receive little feedback, whereas ‘‘superficial’’
P-cells instead display large apical dendrites and receive large
amounts of feedback.

P-cells receive large amounts of feedback from higher brain
centers (Sas and Maler, 1983, 1987) that consist of three major
pathways. Neurons within TS project back to stellate cells within
the nucleus praeminentialis (nP) that then in turn project back to
ELL P-cells with direct excitation and indirect inhibition through
local interneurons (Figure 1D, blue). This feedback pathway
forms a closed loop and is part of the ‘‘direct feedback pathway’’
(Bratton and Bastian, 1990; Berman and Maler, 1999). Bipolar
and multipolar cells, as well as other cell types within nP, receive
input from deep P-cells (i.e., only a sub-set of ELL output).
While bipolar cells project back to ELL pyramidal cells in an
inhibitory fashion forming the other part of the ‘‘direct pathway’’
(Figure 1D, magenta), multipolar cells instead project indirectly
to ELL via granule cells of the eminentia granularis posterior
(EGp; Bastian and Bratton, 1990). The ELL is a cerebellar-like
structure, as EGp granule cell axons form parallel fibers that
contact the apical dendrites of superficial P-cells (Bastian et al.,
2004; Figure 1D, green). This open-loop feedback is known as the
‘‘indirect pathway.’’ It should be noted that ELL pyramidal cells
also receive other sources of neuromodulatory feedback (e.g.,
serotonergic, cholinergic; for review, see Márquez et al., 2013).

Electrosensory stimuli comprise of EOD amplitude
modulations caused by prey or inanimate objects which are

spatially localized (i.e., they impinge only upon a fraction of
the animal’s skin surface; Nelson and MacIver, 1999; Pedraja
et al., 2018) or those caused by interactions with conspecifics
that are spatially diffuse (i.e., they impinge on most if not
all the animal’s skin surface). In the latter case, interactions
between the EODs of two conspecifics give rise to a sinusoidal
amplitude modulation (i.e., a beat) whose frequency depends on
the difference between the two individual EOD frequencies. The
beat amplitude, termed the envelope, depends on the relative
distance and orientation between both fish (Yu et al., 2012;
Fotowat et al., 2013).

FUNCTIONS OF FEEDBACK INPUT ONTO
ELL PYRAMIDAL CELLS

In this section, we will briefly summarize some of the established
functions of feedback pathways on electrosensory processing
towards modifying how P-cells respond to feedforward input
from the periphery (e.g., response enhancement or attenuation).
In the following section (see ‘‘Recently Uncovered Novel
Functions for Electrosensory Feedback’’ section), we will then
focus on recently uncovered novel functions of electrosensory
feedback, that is the generation of neural responses which
mediate perception and behavior.

Gain Control and Adaptive Cancelation of
Sensory Stimuli
The first reported in vivo manipulations of electrosensory
feedback pathways consisted of pharmacological inactivation
as well as of lesioning the indirect feedback pathway (Bastian,
1986a,b). These manipulations made pyramidal cells more
sensitive to changes in beat amplitude (i.e., increased the gain,
which constitutes divisive gain control). This phenomenon has
been studied in great theoretical detail (Lewis and Maler, 2004;
Mejias et al., 2014) and a careful analysis revealed that there
appears to be both divisive and subtractive (i.e., a shift in the
sensitivity curve) gain control features.

Further studies have shown that the indirect pathway cancels
predictable (i.e., redundant) sensory input via the formation
of a ‘‘negative image’’ whose amplitude can be modulated to
match that of the feedforward sensory input through plasticity
at feedback synapses (for review, see Bastian, 1999). Moreover,
investigators have focused on how recently-uncovered synaptic
plasticity rules mediate the formation of the negative image
(Bol et al., 2011; Harvey-Girard and Maler, 2013), thereby
making neural responses more invariant with respect to stimulus
amplitude (Mejias et al., 2013). The indirect feedback pathway
is diffuse in nature and is primarily activated by spatially
diffuse but not by spatially localized stimuli (Chacron et al.,
2003, 2005b; Bastian et al., 2004; Chacron, 2006). It most
likely originates from the so-called ‘‘non-classical’’ receptive
field (i.e., the area of sensory space in which impinging stimuli
do not by themselves affect the neural response but can
modulate the response to stimuli impinging upon other areas
of sensory space). Through this feedback input ELL pyramidal
cells responses to low frequency stimuli are attenuated (Chacron
et al., 2003, 2005a) and the responsiveness to spatially localized
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FIGURE 1 | Feedforward and feedback connectivity of the ELL. (A) Electroreceptors distributed across the body surface encode electrosensory stimuli and project
to pyramidal cells (P-cells) within the hindbrain ELL. (B) The ELL is organized in three parallel segments (LS, CLS and CMS), each of which is a somatotopic
representation of the body surface. All segments receive the same feedforward input from EAs. (C) Pyramidal cells (P-cells) within all ELL segments are organized in
columns. P-cells receive feedforward input at their basal sites whereas feedback inputs project to the apical dendrites. (D) While ON-type P-cells receive direct
excitatory (“+”) input from peripheral electroreceptors, OFF-type P-cells instead receive indirect inhibitory input via local interneurons (“−”). While all P-cells project to
the midbrain TS, only a subset of P-cells whose somata are located deep within the pyramidal cell layer (i.e., “deep” P-cells) project to the nP. There are several
sources of feedback onto ELL P-cells: one of the pathways forms a closed-loop and is topographically ordered. It consists of ascending projections from all P-cells
to TS from where descending projections project onto stellate cells within nP that then project back to ELL P-cells with direct excitation and indirect inhibition via
local interneurons (blue). The second pathway consists of feedforward projections from deep P-cells to bipolar cells within nP that then project back to ELL P-cells in
a diffuse manner and in an inhibitory fashion (magenta). The third pathway is termed “indirect” and consists of feedforward projections from deep P-cells to multipolar
cells within nP that then project to granule cells within the EGP which make parallel fiber connections to ELL P-cells. It should be noted that such parallel fibers make
little if any synaptic contact with deep P-cells. As such, this indirect pathway forms an open loop. Abbreviations: EA, electrosensory afferents; EGP, eminentia
granularis posterior; ELL, electrosensory lateral line lobe; CLS, centrolateral segment; CMS, centromedial segment; LS, lateral segments; nP, nucleus praeminentialis;
RF, receptive field; TS, torus semicircularis.

(e.g., prey) stimuli is increased (Litwin-Kumar et al., 2012).
Moreover, as the indirect feedback pathway is primarily activated
by low-frequency stimuli (Chacron et al., 2005b), another
function is the enhancement of responses to high-frequency
electrocommunication stimuli (Chacron et al., 2003, 2005b;
Bastian et al., 2004; Chacron, 2006; Marsat and Maler, 2012;
Marsat et al., 2012; Metzen, 2019) and the cancelation of
re-afferent sensory input that is self-generated during tail motion
(Bastian, 1995, 1996; Lewis et al., 2007). Most recently, it was
shown that the indirect pathway is also involved in attenuating
responses to low frequency envelopes (Huang et al., 2018),
which is consistent with the above-mentioned fact that feedback
makes neural responses to first-order stimuli more invariant with
respect to stimulus amplitude (Mejias et al., 2013). It should be
emphasized here that the indirect feedback pathway forms an

open loop in that it originates from deep P-cells and primarily
terminates on superficial P-cells. Modeling studies suggest that
such a configuration is necessary for adaptive cancelation to
occur (Bastian et al., 2004).

Similar functions have also been uncovered in other species
of weakly electric fish (Enikolopov et al., 2018) and also
show striking parallels to both the auditory and the visual
system: the enhancement of responses to high-frequency
stimuli through the attenuation of responses to low frequency
stimuli is similar to what is seen in the auditory system.
Here, feedback signals from the corticofugal system modulate
frequency tuning of auditory subcortical neurons via synaptic
plasticity (Chowdhury and Suga, 2000; Gao and Suga, 2000;
Ma and Suga, 2001). Also, feedback was shown to effectively
cancel responses to self-generated sounds in the dorsal
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cochlear nucleus (Singla et al., 2017). The fact that electrosensory
feedback originates from a ‘‘non-classical’’ part of the receptive
field and modulates responses of target neurons (see above),
is reminiscent to the visual system. Their stimulation outside
of the receptive field was shown to effectively enhance the
responses of neurons within the primary visual cortex to visual
edges (i.e., high-spatial frequency stimulus features) in natural
visual scenes (Vinje and Gallant, 2000, 2002), presumably
through feedback signals. Similarly, stimulation of feedback to
thalamic neurons was shown to effectively enhance their classical
surround, thereby increasing sensitivity to high-spatial frequency
stimuli (Murphy and Sillito, 1987; Sillito et al., 1993; Cudeiro and
Sillito, 1996; Jones et al., 2000; Webb et al., 2003).

Generation of Gamma-Range Oscillations
Oscillatory neural activity within the gamma band (20–80 Hz)
is seen ubiquitously across systems and species and is thought
to play an important role in information processing (Uhlhaas
et al., 2011; Buzsáki andWang, 2012). During diffuse stimulation,
inhibitory input from nP bipolar cells (Figure 1D, magenta)
was shown to generate a gamma oscillation which can be seen
in the activities of single ELL pyramidal cells (Doiron et al.,
2003). Specifically, the transmission delay associated with this
feedback pathway (∼15 ms) gives rise to a peak in spectral
power (∼30 Hz). No such oscillations were seen when spatially
localized stimuli mimicking prey were used instead. Subsequent
studies have shown that the induced oscillations not only require
spatially diffuse stimulation but also that the stimuli need to be
spatially correlated with one another (Doiron et al., 2004; Lindner
et al., 2005).

Further theoretical studies have highlighted potential issues
with the original modeling as it did not specifically account for
the fact that there are both ON- and OFF-type ELL pyramidal
cells that respond to increases and decreases in the stimulus,
respectively (Lefebvre et al., 2009; Payeur et al., 2013). If the
feedback pathways simply integrate input from both cell types,
then the power of gamma band oscillations would be weak, which
is unlike what is observed experimentally. Based on these studies,
several predictions regarding the anatomical organization of the
feedback pathway were made: the feedback should be strongly
asymmetric or segregated between ON- and Off-type responses.
An oscillation resulting from stellate cell feedback seems however
unlikely given that blocking excitatory feedback from nP stellate
cells in vivo did not alter this oscillation (Doiron et al., 2003).
Another alternative is that these oscillations result from a
combination of feedforward excitatory and delayed feedforward
inhibitory inputs that can mimic weak oscillatory states (Payeur
et al., 2015).

Functionally, gamma-oscillations might enable the animal to
distinguish between prey and conspecific-related stimuli (Doiron
et al., 2003), or to enhance the ability of TS neurons to encode
motion direction (Ramcharitar et al., 2005). Such functions are
similar to those found in mammalian systems, where cortico-
thalamic feedback loops generate multiple rhythms that drive
neocortical neurons to fire in synchrony and thus presumably
better encode specific stimulus features (for review, see Nuñez
and Malmierca, 2007). Whether gamma-range oscillations

synchronize the ELL pyramidal cell network remains to be
shown experimentally. While only a limited number of studies
has recorded from ELL pyramidal cell pairs so far (Chacron
and Bastian, 2008; Litwin-Kumar et al., 2012; Simmonds and
Chacron, 2015; Hofmann and Chacron, 2018b), answering
the above question will require recordings from even greater
population sizes. Such studies should also investigate if and how
such synchronization enables the ELL pyramidal cell network to
better encode behaviorally relevant stimuli.

Sensory Searchlight
While clear functional roles for both the indirect feedback as
well as the direct feedback (bipolar component) were uncovered,
the functional role of direct feedback pathway emanating from
nP stellate cells has remained elusive. This is despite the
fact that multiple studies have characterized how stellate cells
respond to relevant electrosensory stimuli in vivo (Bratton
and Bastian, 1990), characterized synaptic plasticity at stellate
to P-cell synapses both in vitro (Oswald et al., 2002) and
in vivo (for review, see Bastian, 1999). Because this pathway
is topographic in nature, it was hypothesized that it should
be primarily activated by spatially localized stimuli. Moreover,
because of the strong potentiation observed at synapses, it
was thought that this pathway acts as a ‘‘sensory searchlight’’
by enhancing P-cell responses to spatially localized stimuli
(Berman and Maler, 1999). While it is true that stellate cells
respond to stimuli mimicking prey (Bratton and Bastian,
1990), there has been, at least until very recently, no direct
demonstration of a function for the direct feedback pathway
in vivo. We next describe recently uncovered functions for
this pathway.

RECENTLY UNCOVERED NOVEL
FUNCTIONS FOR ELECTROSENSORY
FEEDBACK

Generation of Bursting Neuronal
Responses to Moving Objects
A recent study has investigated how electrosensory feedback
pathways affect P-cell responses to moving objects (Clarke and
Maler, 2017). While previous studies have investigated how
electrosensory neurons respond to objects moving along the
animal’s rostro-caudal axis (Bastian, 1981a,b; Saunders and
Bastian, 1984; Chacron et al., 2009; Khosravi-Hashemi et al.,
2011). Clarke and Maler (2017) have instead investigated how
electrosensory neurons responded to looming and receding
objects. Such stimuli are experienced by the animal during the
electromotor response (Heiligenberg, 1973; i.e., when animals
seek to maintain a constant lateral position to large moving
objects such as root masses of plants). Their stimulation
paradigm consisted of a looming object that would then remain
stationary close to the animal’s skin surface. After a few seconds,
the object was again receded from the skin surface. The authors
used both metal as well as plastic objects that will increase
and decrease EOD amplitude, respectively. They found that
peripheral electroreceptors displayed strong adaptation to both
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looming and receding objects (i.e., their firing rates returned to
values seen in the absence of stimulation; Clarke et al., 2013).
Interestingly and unlike afferents, an increase in firing rate due
to burst firing was also observed when an ‘‘inverted-contrast’’
paradigm was used for receding motion (i.e., OFF-type cells with
a metal object or ON-type cells with a plastic object). This burst
response was seen even after the object remained stationary close
to the animal’s skin for several seconds during which the firing
rate of peripheral electroreceptors almost fully adapted (Clarke
et al., 2014).

How can P-cells give such a strong burst response even
though the peripheral electroreceptors that provide feedforward
input do not? Clarke and Maler (2017) investigated the role
of ELL feedback pathways towards generating responses to
both looming and receding objects. To do so, they blocked
descending input from TS onto nP stellate cells (Figure 1D,
blue). While such a manipulation only moderately affected
responses to looming objects, they found that burst responses
to receding objects were abolished. How can closed-loop
feedback from TS to nP stellate cells to ELL generate bursting
responses in P-cells to receding objects? P-cells display a burst
mechanism that relies on somato-dendritic interactions (Lemon
and Turner, 2000; Krahe and Gabbiani, 2004; Metzen et al.,
2016). Generally burst firing serves to signal specific stimulus
features (Oswald et al., 2004; Maler, 2009a; Avila-Akerberg
et al., 2010; for review, see Krahe and Gabbiani, 2004). Here,
the authors propose that feedback input from nP stellate cells
is far more effective at eliciting burst firing from P-cells
because these synapses display strong potentiation (Oswald
et al., 2002). In contrast, the feedforward input from peripheral
electroreceptors will be too weak to elicit a burst response
by itself. Thus, this mechanism requires feedforward input to
elicit feedback that then generates the neural burst response
through a transformation of the feedforward input. Specifically,
electroreceptor responses elicit P-Cell isolated spikes (i.e., no
bursts) which then trigger bursting via feedback. Interestingly,
further studies have shown that serotonergic modulation can
enhance P-cells burst responses to improve the detectability
of receding but not looming objects (Marquez and Chacron,
2018). Further experiments are needed to fully understand the
mechanisms by which feedback pathways generate responses to
moving objects.

Generating Neural Responses to
Envelopes
In a series of experiments, Metzen et al. (2018) have
found that, for low enough beat amplitudes (i.e., envelopes),
feedback pathways are necessary to generate both neural
and behavioral responses. Such stimuli would occur when
both animals are located far away from each other (Stamper
et al., 2013). The authors used sinusoidal beat stimuli whose
amplitude (i.e., envelope) increased linearly over time and
measured both neural and behavioral detection thresholds
(i.e., the stimulus amplitude for which the neural or behavioral
response became significantly different from that seen in the
absence of stimulation). Responses were quantified by either

the mean firing rate or the strength of phase locking to
the beat.

Behaviorally, animals respond to very faint envelope stimuli
(i.e., <10% contrast) through modulation of their EOD
frequency. When investigating the neural underpinnings of
these behavioral responses, it was found that, although ELL
P-cells could detect faint envelope stimuli through increases
in firing rate, peripheral electroreceptors did not. Their firing
rates only showed significant increases at much higher (>30%)
stimulus amplitudes. This finding is almost paradoxical: how
can ELL P-cells respond through changes in firing rate to
stimuli, even though their input does not? The answer lies
beyond firing rate: if one considers detection thresholds based
on phase locking, then both peripheral electroreceptors and
P-cells actually respond to faint envelope signals (i.e., contrasts
of less than 10%). Thus, a simple explanation for the
observed behavioral responses is that information transmitted
in a feedforward fashion via phase locking elicits behavioral
responses. However, when eliminating feedback from nP stellate
cells via injection of the sodium channel antagonist lidocaine,
this explanation was proven wrong: both behavioral and P-cell
firing rate responses to faint envelope signals were abolished.
Interestingly, feedback manipulation did not affect phase locking
in P-cells and as such, it is the P-cell firing rate response
rather than phase locking that is decoded in order to give rise
to behavior.

Other control experiments showed that blocking the indirect
pathway did not affect P-cell responses and that injecting
lidocaine into TS gave rise to the same effects on P-cell
responses as those obtained after injecting lidocaine in nP.
Recordings from stellate cells in nP showed an increase in
firing rate to faint envelope signals. Both of these controls
strongly suggest that the phase locking responses of P-cells are
inherited from those of their afferent (i.e., feedforward) inputs
and that these are transformed into a firing-rate response within
the closed-loop feedback of the direct topographic pathway. A
further study has shown that this pathway increases P-cell firing
rate responses to envelopes independently of temporal frequency
(Huang et al., 2018). Thus, phase locking from peripheral
receptors induces phase locking in P-cells that presumably
triggers an increase in the firing rate of nP stellate cells,
which in turn increases P-cell firing rate response which is
decoded downstream to give rise to behavior. Further studies
are however needed to fully understand the mechanism that
transforms phase locking to firing rate and generates P-cell
firing rates responses to faint envelope signals. It should be
noted that, in this case, ELL pyramidal cell phase locking
responses (i.e., temporal code) are preserved and used to generate
firing rate responses (i.e., a rate code). This shares similarities
with the somatosensory system of rodents where cortical
feedback transforms an incoming temporal code into a rate code
(Ahissar et al., 2000).

SUMMARY AND FUTURE DIRECTIONS

In this review, we have summarized the classical functions of
electrosensory feedback to highlight recently uncovered novel
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TABLE 1 | Functions of feedback in the electrosensory system.

“classical” functions

Function Pathway Type Effective transformation Studies

Cancelation of redundant LF input Indirect, diffuse Open loop Generation and scaling of a negative
image

Bastian (1995, 1999) and Bastian et al.
(2004)

Control of frequency tuning Indirect, diffuse Open loop Generation and scaling of a negative
image for low frequency stimuli.

Chacron et al. (2003, 2005b), Chacron
(2006); Huang et al. (2016, 2018) and
Huang and Chacron (2017)

Induction of oscillation in gamma range Direct, diffuse Open loop Delayed inhibitory feedback, interaction
with STSP of ELL efferents

Doiron et al. (2003, 2004) and Lindner
et al. (2005)

Sensory searchlight (?) Direct, topographic Closed loop Excitatory input triggering burst firing Berman and Maler (1999)

“novel” functions

Generation of responses to receding
objects

Direct, topographic Closed loop Excitatory input triggering burst firing Clarke and Maler (2017)

Generation of envelope responses at
low contrasts

Direct, topographic Closed loop Transformation of phase locking to firing
rate.

Huang et al. (2018) and Metzen et al.
(2018)

functions of the closed-loop direct pathway towards generating
neural and behavioral responses. The functions of feedback in the
ELL are summarized in Table 1.

It is likely that similar roles of feedback can be found in
other systems. This is because the electrosensory system shares
many similarities with both the visual (for review, see Clarke
et al., 2015) as well as auditory and vestibular systems (Metzen
et al., 2015). On top of examples mentioned above, recent
studies have shown that feedback is necessary to complete the
perception of touch (Manita et al., 2015; Kwon et al., 2016;
Takahashi et al., 2016). Specifically, such feedback terminates
on the apical dendrites of cortical neurons to generate a
burst response, which is conceptually similar to the results of
Clarke and Maler (2017). In neurons of the cochlear nucleus,
detection thresholds to envelopes are thought to emerge through
feedforward integration of input from auditory fibers. However,
based on the results ofMetzen et al. (2018), further studies should
investigate how feedback contributes to determining auditory
envelope detection thresholds.

In the electrosensory system, a better understanding of the
mechanisms underlying the described feedback transformations
will only be achieved by investigating how TS neurons
respond to electrosensory stimuli (Khosravi-Hashemi et al.,
2011; Vonderschen and Chacron, 2011; McGillivray et al., 2012;
Sproule et al., 2015). Also, further studies will require the
characterization of responses in nP using stimuli like those
in Clarke and Maler (2017) and Metzen et al. (2018). In
addition to that, further studies are needed to understand
the interplay between neuromodulatory feedback and the
feedback inputs described here and how this optimizes
neural responses based on behavioral context. Beyond that,
it is clear that, in the electrosensory as in other systems,
behavior is determined by integrating the activities of large
neural populations. However, only a few studies have begun
to unravel the impact of feedback on population coding
(Chacron and Bastian, 2008; Litwin-Kumar et al., 2012;
Simmonds and Chacron, 2015; Hofmann and Chacron, 2018b).
This research direction is particularly interesting and timely

as feedback has been shown to impact population coding
in other systems (Bondy et al., 2018; Merrikhi et al.,
2018).

Finally, it should be noted that most studies have investigated
the impact of feedback onto neuronal coding in immobilized and
thus, at least partly, behaviorally restrained animals. Nonetheless,
animals in general and weakly electric fish in particular are
known to display a rich repertoire of sensory-related behaviors
termed ‘‘active sensing movements’’ (for review, see e.g.,
Schroeder et al., 2010; Wachowiak, 2011; Hofmann et al., 2013;
Grant et al., 2014). It was shown that active control of the
re-afferent sensory input can enhance (Stamper et al., 2012;
Hofmann et al., 2017) or even generate sensory information
(Biswas et al., 2018; Hofmann and Chacron, 2018a; Pedraja
et al., 2018). Recent technological advances made it possible
to record neuronal activity in freely moving animals (Fotowat
et al., 2019) and thus to investigate the role of feedback under
active conditions. Such studies focus on how feedback is involved
in differentiating between ex- and re-afferent input, and in
shaping neuronal tuning in an activity-based manner. It is
likely that such mechanisms are similar to those encountered in
the somatosensory system of whisking rodents, where cortical
feedback unto thalamic neurons can, for example, alter receptive
field size thereby enhancing sensory information (Malmierca and
Nuñez, 2004).
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