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Abstract

Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to
the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of
motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does
not take into account particular action potential patterns. We investigated how different action potential patterns, namely
bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction
coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be
selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter
values for which our model neuron did not display directional selectivity when the full spike train was considered but
displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our
model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to
observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this
burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings
from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite
movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond
more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval
threshold. Our results thus show for the first time that different action potential patterns can differentially encode
movement and that traditional measures of directional selectivity need to be revised in such cases.
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Introduction

Motion perception is often required to control animal behavior

such as tracking [1–5], postural balance [6–9] and prey capture

[10,11]. Directional selectivity, in which neurons respond strongly

to an object moving in a given direction (‘preferred’) but respond

weakly or not at all when the same object moves in the opposite

direction (‘null’), is thought to provide a neural correlate of motion

perception [12]. Directionally selective neurons have been found

in several species including cats [12], rabbits [13], flies [14], and

weakly electric fish [15–18].

Since the discovery of direction selective neurons [12], several

models have been proposed to explain how this selectivity emerges in

the brain [19–22]. Among these models, so called ‘‘Reichardt

detectors’’ have received considerable attention and have been used

to describe directional selectivity across several animal species [3,12–

14,18,23–29]. These rely on two fundamental operations to generate

directional selectivity [30,31]: first, asymmetric filtering of informa-

tion from at least two separate zones within the receptive field

generates a directional bias [13,14,18,27,32,33] and, second, subse-

quent nonlinear integration of these inputs [13,14,28,29,31,34,35].

Directional selectivity has been traditionally characterized by

comparing the maximum firing rate obtained when a given object

moves in a given direction to that obtained when the same object

moves in the opposite direction. However, this does not take into

account particular action potential patterns. Previous studies have

shown that, for stationary stimuli, particular action potential

patterns such as bursts (i.e. packets of action potential followed by

quiescence) as well as isolated spikes could carry information that

is qualitatively different than that carried by the full spike train

[36–54]. However, whether these action potential patterns carry

information about motion direction is poorly understood in

general [26,43].

Weakly electric fish sense distortions of their self-generated

electric organ discharge (EOD) via an array of electroreceptor

neurons on their skin [55,56]. These electroreceptors synapse onto

pyramidal cells within the hindbrain electrosensory lateral line

lobe (ELL), which in turn project to the midbrain torus

semicircularis (TS). It was previously shown that TS but not

ELL neurons display directionally selective responses to moving

objects [18,35]. The mechanism by which TS neurons generate

directionally selective responses has been previously elucidated

and is consistent with the Reichardt model. It consists of

asymmetric filtering of afferent ELL input across the fish’s body

surface that is achieved by different time constants of synaptic

depression across the receptive field [18] followed by nonlinear
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integration of these inputs via subthreshold T-type calcium

currents [26,35] (see [55] for review). We have recently found

that bursts were more reliable indicators of motion direction than

either the full spike or the isolated spike train in TS neurons [26].

These results suggest that isolated spikes actually code for other

stimulus features than motion direction. However, a systematic

analysis of movement direction coding by bursts and isolated

spikes has not been carried out to date.

To address whether isolated spikes can actually code for motion

direction, we systematically varied parameters in a previously

established model of directional selectivity. Confirming our

previous results, we found parameter regimes for which bursts

were better indicators of motion direction than either the full spike

or the isolated spike trains. However, we also found parameter

regimes in which bursts and isolated spikes could both code for

movement direction. Specifically, bursts were then preferentially

elicited when the object moves in a given direction while isolated

spikes were preferentially elicited when the object moves in the

opposite direction. Further, our results show that, while the

subthreshold T-type calcium conductance was not necessary to

observe such regimes, it greatly enhanced the set of parameter

values for which they were observed. Experimental recordings

from TS neurons confirmed our model’s prediction that bursts and

isolated spikes can actually code for opposite movement directions.

Finally, we considered a plausible neural circuit that can extract

isolated spikes from a spike train and quantified this circuit’s ability

to extract the isolated spikes from a spike train consisting of a

mixture of bursts and isolated spikes. Our results show for the first

time that different action potential patterns in a given neuron can

carry information about different movement directions and

suggest that differential coding of stimulus attributes by bursts

and isolated spikes is a general feature of sensory processing that is

applicable to a wide range of stimuli including motion.

Results

Bursts and isolated spikes can code for opposite
movement directions

Our biophysical model is based on the Hodgkin-Huxley

formalism [57] (see Materials and Methods). The receptive field

is modeled in one dimension as two adjacent zones (ON and OFF)

that have time constants of depression tON and tOFF, respectively

(Fig. 1A). In this model, the OFF zone represents the output of I-

type (i.e. inhibited by increases in the stimulus) ELL pyramidal

cells and the ON zone represents the output of E-type (i.e. excited

by increases in the stimulus) ELL pyramidal cells as both cell types

made excitatory connections onto TS neurons [58]. The summed

input from each zone is convolved with an alpha function to mimic

the synaptic PSP shape and fed into a Hodgkin-Huxley model with

leak, spiking sodium, delayed rectifier potassium, and T-type

calcium conductances (Fig. 1A, see Materials and Methods). T-

type calcium channels are inactivated at resting membrane

potential values (i.e. , 260 mV) and require ,100 ms

hyperpolarisation to , 270 mV in order to remove their

inactivation after which a subsequent depolarisation will lead to

a subthreshold calcium spike, leading to nonlinear integration of

synaptic input. Moreover, bursts of sodium action potentials can

occur on top of these calcium spikes [59,60]. However, a simple

depolarization from the resting potential will not lead to burst

firing as the calcium channel is still inactivated and will instead

lead to isolated spike firing [60]. We mimicked the effect of the

massive synaptic bombardment that neurons receive under in vivo

conditions [61], by including a noise term that causes membrane

potential fluctuations. This noise term can give rise to a mixture of

burst and isolated action potential firing as observed for TS

neurons under in vivo conditions [26].

The stimulus consists of an object that moves across the

receptive field in both directions (see Materials and Methods).

Fig. 1B shows the outputs from the ON and OFF zones to this

stimulus. When the object moves from left to right (i.e. from the

OFF zone to the ON zone), the hyperpolarisation from the OFF

zone precedes the depolarization from the ON zone. However,

when the object moves in the opposite direction (i.e. from the ON

zone to the OFF zone), the depolarisation from the ON zone is

truncated by the hyperpolarisation from the OFF zone (Fig. 1C).

The membrane potential responses of the model neuron to these

moving stimuli are shown in Fig. 1D. When the object moves from

left to right, the hyperpolarisation from the OFF zone removes the

inactivation of the calcium conductance and the depolarisation

from the ON zone activates this conductance, which tends to

result in a burst of action potentials (Fig. 1D, top). In contrast,

when the object moves in the opposite direction, the depolarisation

from ON zone is not preceded by a hyperpolarisation, and thus

tends to elicit isolated action potentials (Fig. 1D, top).

We used an ISI threshold criterion to separate the model’s

output spiketrain into bursts and isolated spikes (Fig. 1D, bottom,

see Materials and Methods). Specifically, when a given interspike

interval was less than the threshold, the two spikes associated with

this interspike interval were considered to belong to a burst

[41,42,44]. The spikes that were not deemed part of a burst were

labelled isolated spikes (Fig. 1D, bottom). We used this criterion to

separate the spike train into the burst train (i.e. the train of action

potentials that belong to bursts) and the isolated spike train (i.e. the

train of action potentials that do not belong to bursts) (see

Materials and Methods).

The response of our model to this stimulus is presented in Fig. 2.

When we used the full spike train to compute the peri-stimulus

time histogram (PSTH), the model displayed a strong response

when the object moved in the left to right direction and a weaker

response when the object moved in the right to left direction

(Figs. 2A and 2B, middle). We quantified this difference using a

directional bias (DB) index that ranges between 21 and 1 with 0

implying no directional selectivity (see Materials and Methods).

Specifically, DB values of 1 and 21 indicate complete direction

preference for movement from left to right and from right to left,

respectively, while a value of 0 indicates no direction selectivity.

We found that this neuron displayed selectivity to the object

moving from left to right when using the full spike train

(DB = 0.51) (Fig. 2C purple column).

However, qualitatively different results were obtained when we

instead used the burst and isolated spike trains to compute the

PSTH from this same neuron. We found that bursts mostly

occurred when the object moved from left to right (Fig. 2A arrows;

Fig. 2C green column), thereby giving rise to a larger directional

bias (DB = 0.72) than that of the full spike train. In contrast,

isolated spikes mostly occurred when the object moved from right

to left (Fig. 2A arrows; Fig. 2C orange column), giving rise to a

negative directional bias (DB = 20.34). These results show that

bursts and isolated spikes can encode opposite directions of

movement.

Effects of T-type calcium channels on movement
direction coding by bursts and isolated spikes

We next investigated movement direction coding by bursts and

isolated spikes in our model without the calcium conductance. To

do this, we performed numerical simulations of our model with

gT = 0. We note that our model then does not generate calcium-

mediated burst firing, but can generate short interspike intervals

Parallel Coding by Action Potential Patterns
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that would be considered as ‘‘bursts’’ according to the ISI

threshold criterion when the bias current is sufficiently high. We

found that our model displayed a stronger response when the

object moved from right to left and a weaker response when the

object moved from left to right when the full spike train was used

(Fig. 3A, Fig. 3B middle). Our model thus still displayed

directional selectivity (DB = 20.46). When we used the burst

train, we observed a stronger directional bias (DB = 20.97) as

bursts were almost exclusively elicited when the object moves from

right to left. In contrast, the isolated spikes tended to be elicited

when the object moves in both directions with a slight bias when

the object moves from right to left as reflected by a weaker

directional bias (DB = 20.21). As such, our results show that both

bursts and isolated spikes encoded the same movement direction

(i.e. right to left) when we set gT = 0 in our model as they displayed

negative directional biases (Fig. 3C).

In order to better understand these results, we then plotted the

inputs to the model when the object moves from left to right

(Fig. 4A, left) and right to left (Fig. 4A. right). In the left to right

direction, the hyperpolarisation from the OFF zone attenuates the

subsequent depolarisation from the ON zone (Fig. 4A, left). In

contrast, in the right to left direction, the initial depolarisation

from the ON zone is truncated by the subsequent hyperpolarisa-

tion from the OFF zone (Fig. 4A, right). The response of our

model to these different inputs strongly depends on the value of the

T-type conductance gT. When gT is present, the initial hyperpo-

larisation from the OFF zone removes the inactivation of this

conductance and the subsequent depolarization activates it,

thereby causing a burst of action potentials as explained above

when the object moves from left to right (Fig. 4B, left). In contrast,

the initial depolarisation gives rise to isolated spikes when the

object moves from right to left as the T-type conductance is then

inactivated (Fig. 4B, right). The following hyperpolarisation only

partially removes this inactivation and the subsequent repolariza-

tion gives rise to a burst of action potentials albeit with a larger

intraburst interval (Fig. 4B, right). Therefore, our model tends to

Figure 1. Modeling directional selectivity in TS neurons. A) Schematic of our model. The receptive field is composed of two zones: the OFF
zone which represents the output of I-type ELL pyramidal cells with synaptic depression time constant tOFF while the ON zone represents the output
of E-type ELL pyramidal cells with synaptic depression time constant tON. The responses from each zone are then fed into a Hodgkin-Huxley model
with spiking sodium (gNa), delayed rectifier potassium (gK), leak (gleak), and T-type calcium (gT) conductances. Noise is also added to this model in
order to mimic synaptic input from other neurons. B) Inputs from OFF zone (beige), ON zone (brown), and the sum of the two (dashed blue) for t1 =
t2 = 500 msec when the object moves from left to right (i.e. from the OFF zone to the ON zone). C) Summed input from both zones when the object
moves from left to right (blue) and from right to left (red). D) Segregating the spike train to bursts and isolated spikes. The top trace is an example
membrane potential trace for one trial (object moves from left to right and then from right to left) from our model in response to the inputs shown in
C. Spikes (purple lines) belonging to interspike intervals that were less than the burst threshold (cyan) were identified as belonging to bursts (green
lines) while those that do not were identified as isolated spikes (red lines).
doi:10.1371/journal.pone.0040339.g001
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respond with a mixture of bursts and isolated spikes when the

object moves from right to left.

Qualitatively different results were seen when we removed the

T-type conductance (i.e. gT = 0). When the object moves from left

to right, the depolarization from the ON zone is partially occluded

by the preceding hyperpolarisation from the OFF zone and thus

gives rise to isolated spiking (Fig. 4C, left). When the object moves

from right to left, the initial depolarisation from the ON zone gives

rise to a burst of action potentials. The subsequent hyperpolar-

ization from the OFF zone silences spiking and the repolarisation

then gives rise to isolated spikes (Fig. 4C, right). As such, our

model gives rise to isolated spikes when the object moves in both

directions and to bursts preferentially when the object moves from

right to left.

Exploring the effect of the synaptic depression time
constants on movement direction coding by bursts and
isolated spikes

We then systematically varied model parameters and character-

ized the directional biases of bursts and isolated spikes with the T-

type conductance present. We first varied the synaptic depression

time constants from the ON (tON) and OFF (tOFF) zones in our

model. Our results show that varying these can lead to dramatic

qualitative differences between the directional biases of bursts and

isolated spikes. Indeed, for small tOFF and large tON values (i.e. tOFF

,0.1 sec and tON .0.1 sec), the full (Fig. 5A), burst (Fig. 5B), and

isolated (Fig. 5C) spike trains all displayed positive directional biases

and thus encoded the same movement direction. However, the

Figure 3. T-type calcium channels promote coding of opposite
movement directions by bursts and isolated spikes. A) Raster
plot (top) obtained for tON = 5 msec, tOFF = 500 msec when gT = 0. The
spikes in the raster plot are color coded, as orange for isolated spikes
and green for burst spikes. PSTH curves (bottom) obtained from all
spikes (purple), burst spikes (green), and isolated spikes (orange). B)
PSTH values near the maximum values in the left to right (blue) and
right to left (red) directions for burst spikes (left), all spikes (center), and
isolated spikes (right). C) Directional biases computed from all spikes
(green), burst spikes (purple), and isolated spikes (orange). We note that
the error bars are too small to be shown.
doi:10.1371/journal.pone.0040339.g003

Figure 2. Bursts and isolated spikes code for opposite
movement directions. A) Raster plot (top) obtained for tON = 5 msec,
tOFF = 500 msec from our model. Each dot represents the time at which
an action potential occurs. These are color coded as orange for isolated
spikes and green for burst spikes. PSTH (bottom) obtained from all
spikes (purple), burst spikes (green), and isolated spikes (orange). B)
PSTH values near the maximum values in the left to right (blue) and
right to left (red) directions for burst spikes (left), all spikes (middle), and
isolated spikes (right). Note the opposite directional preference of
isolated spikes (brown arrow). C) Directional biases computed from
burst spikes (green), all spikes (purple), and isolated spikes (orange).
doi:10.1371/journal.pone.0040339.g002
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directional bias of isolated spikes was smaller in magnitude than that

of the full and burst trains, which corresponds to the regime

described in our previous study [26]. We will henceforth refer to this

regime as ‘‘same direction selectivity’’. In contrast, for large tOFF

and small tON values (i.e. tOFF .0.1 sec and tON ,0.1 sec), both the

full (Fig. 5A) and burst (Fig. 5B) trains displayed a positive

directional bias while the isolated spike train (Fig. 5C) displayed a

negative directional bias. We will henceforth refer to this regime as

‘‘opposite direction selectivity’’.

In order to better characterize both regimes, we computed an

opposite directionality index (ODI, see Materials and Methods). This

index is positive when the directional biases of both bursts and isolated

spikes have the same sign, negative when they are opposite in sign, and

0 when one does not display significant directional selectivity. We

found that the ODI was positive for small tOFF and large tON values

(i.e. tOFF ,0.1 sec and tON .0.1 sec) and negative for large tOFF and

small tON values (i.e. tOFF .0.1 sec and tON ,0.1 sec) (Fig. 5D).

In order to better understand why varying the depression time

constants tON and tOFF can give rise to qualitatively different

regimes, we plotted the PSTH curves for the full, burst, and

isolated spike trains for two sets of parameter values that gave rise

to same and opposite direction selectivity regimes in Figs. 5E and

5F, respectively. The parameter values used for the same and

opposite direction selectivity regimes are shown in Fig. 5D as

points ‘‘E’’ and ‘‘F’’, respectively. For the same direction selectivity

regime, the maximum firing rate from the full, burst, and isolated

spike trains was strongest when the object moves from left to right

(Fig. 5E). In contrast, for the opposite directional selectivity

regime, the maximum firing rate for the full spike and burst trains

were higher when the object moves from left to right while that of

isolated spike train is highest when the object moves from right to

left (Fig. 5F).

We thus conclude that the ratio tOFF/tON has a strong influence

on whether bursts and isolated spikes code for the same or opposite

movement directions. Indeed, the former regime tended to occur for

low values of tOFF/tON while the latter regime tended to occur for

high values of tOFF/tON. We also varied the gains from the ON and

OFF zones, GON and GOFF, and found that varying these gave rise

Figure 4. T-type calcium channels promote burst and isolated spike firing when the object moves in opposite directions. A) Summed
input currents from both zones when the object moves from left to right (blue) and from right to left (red) for tON = 5 msec, tOFF = 500 msec. B)
Example membrane potential traces when the object moves from left to right (left) and from right to left (right) with the T-type calcium conductance.
The response consisted of bursts (black) when the object moved from left to right and of bursts (black) and isolated spikes (gray) when the object
moved from right to left. C) Example membrane potential traces when the object moves from left to right (blue) and from right to left (red) without
the calcium conductance. The response consisted of isolated spikes (gray) when the object moved from left to right and of bursts (black) and isolated
spikes (gray) when the object moved from right to left.
doi:10.1371/journal.pone.0040339.g004
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to qualitatively similar results in that opposite movement direction

regimes were mostly seen for high values of GOFF/GON (Fig. S1).

Exploring the effect of bias current on movement
direction coding by bursts and isolated spikes

We next explored whether the bias current Ibias influenced

coding of movement direction by bursts and isolated spikes. To do

so, we plotted the directional biases of the full (Fig. 6A), burst

(Fig. 6B), and isolated (Fig. 6C) spike trains as a function of both

the bias current Ibias and the ratio of the synaptic depression time

constants tOFF/tON which was varied so as to observe both same

and opposite direction selectivity regimes (see Materials and

Methods). Our results show that when Ibias was low (i.e. ,21.8

nA) or high (i.e. .20.5 nA), neither bursts (Fig. 6B) nor isolated

spikes (Fig. 6C) displayed significant directional selectivity,

resulting in an ODI of zero (Fig. 6D). Regimes in which the

Figure 5. The synaptic depression time constants tON and tOFF strongly influence movement direction coding by bursts and
isolated spikes. A) Directional bias computed from the full spike train as a function of tON and tOFF. B) Directional bias computed from the burst
spike train as a function of tON and tOFF. C) Directional bias computed from the isolated spike train as a function of tON and tOFF. D) Opposite
direction selectivity index (ODI) as a function of tON and tOFF. E) PSTH values near the maximum values in the left to right (blue arrow) and right to left
(red arrow) directions for the full spike (purple), burst (green), and isolated (orange) spike trains for an example data point marked with a star in panel
D. F) PSTH values near the maximum values in the left to right (blue arrow) and right to left (red arrow) directions for the full spike (purple), burst
(green), and isolated (orange) spike trains for another example data point marked with a star in panel D.
doi:10.1371/journal.pone.0040339.g005
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ODI was non-zero tended to occur for intermediate values of Ibias

(i.e. 21.8 nA,Ibias,20.5 nA). For low values of tOFF/tON (i.e.

tOFF/tON,0.2), we observed same directional selectivity regimes

characterized by positive ODI (Fig. 6D). In contrast, for high

values of tOFF/tON (i.e. tOFF/tON.0.2), we observed regimes of

opposite direction selectivity characterized by negative ODI

(Fig. 6D). In particular, we found that, for some parameter values

(i.e. Ibias = 21 nA and tOFF/tON = 1), the full spike train displayed

weak directional selectivity (Fig. 6A) while both the burst (Fig. 6B)

and isolated (Fig. 6C) spike trains displayed strong selectivity for

opposite movement directions. We return to this point below in

the discussion.

The PSTH curves for the full, burst, and isolated spike trains are

shown for two sets of parameter values that gave rise to same and

opposite direction selectivity regimes in Figs. 6E and 6F,

respectively. The parameter values used for the same and opposite

direction selectivity regimes are shown in Fig. 6D as points ‘‘E’’

and ‘‘F’’, respectively. For the same direction selectivity regime,

Figure 6. The bias current Ibias and synaptic depression time constant ratio tOFF/tON strongly influence movement direction coding
by bursts and isolated spikes. A) Directional bias computed from the full spike train as a function of tOFF/tON and Ibias. B) Directional bias
computed from the burst train as a function of tOFF/tON and Ibias. C) Directional bias computed from the isolated spike train as a function of tOFF/tON

and Ibias. D) Opposite direction selectivity index as a function of tOFF/tON and Ibias. E) PSTH values near the maximum values in the left to right (blue
arrow) and right to left (red arrow) directions for the full spike (purple), burst (green), and isolated (orange) spike trains for an example data point
marked with a star in panel D. F) PSTH values near the maximum values in the left to right (blue arrow) and right to left (red arrow) directions for the
full spike (purple), burst (green), and isolated (orange) spike trains for another example data point marked with a star in panel D.
doi:10.1371/journal.pone.0040339.g006
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the maximum firing rate from the full spike, burst, and isolated

spike trains was strongest when the object moves from left to right

(Fig. 6E). On the other hand, for the opposite directional selectivity

regime, the maximum firing rates for the full spike and the burst

trains were both greatest when the object moves from left to right

while that of isolated spikes was greatest when the object moves

from right to left (Fig. 6F).

T-type calcium currents promote coding of opposite
movement directions by bursts and isolated spikes

We next explored how different parameters influenced move-

ment coding by bursts and isolated spikes in our model without the

T-type calcium conductance (i.e. gT = 0). When using the full spike

train, we obtained directional bias values that were negative for

low values of tON (i.e. tON,0.1 sec) and zero otherwise (Fig. 7A).

In contrast, when using the burst train, we obtained directional

bias values that were near zero when tON was large (i.e. tON.0.2

sec) and tOFF was small (i.e. tOFF,0.2 sec) and negative otherwise

(Fig. 7B). The isolated spike train (Fig. 7C) tended to display

directional bias values near zero except for low values of tON (i.e.

tON,0.02 sec) and tOFF (i.e. tOFF,0.2 sec) where it was positive.

As such, the ODI was zero for almost all values of tON and tOFF

except for low values of tON (i.e. tON,0.02 sec) and tOFF (i.e.

tOFF,0.2 sec) for which it was negative (Fig. 7D). We also varied

the gains GON and GOFF and found qualitatively similar results in

that the parameter regions for which opposite directional

selectivity was observed were greatly reduced (compare Figs. S2

and S1).

The PSTH curves for the full spike train, bursts, and isolated

spikes are shown for parameter values for which the ODI was

negative and null in Figs. 7E and 7F, respectively. These values

correspond to those indicated by the points ‘‘E’’ and ‘‘F’’ in

Fig. 7D. In the regime where the opposite directional selectivity

regime was observed, the firing rates from the full spike and burst

trains were both greatest when the object moves from right to left

while the maximum firing rate from the isolated spike train was

greatest when the object moves from left to right (Fig. 7E). In

contrast, in the regime where no directional selectivity was

observed, the maximum firing rates of the full, burst, and isolated

spike trains were all approximately equal for both movement

directions (Fig. 7F).

We next plotted the directional biases of the full (Fig. 8A), burst

(Fig. 8B), and isolated (Fig. 8C) spike trains as a function of both

the bias current Ibias and the ratio of the synaptic depression time

constants tOFF/tON when gT = 0. Our results show that the bias

current Ibias can significantly influence movement direction coding

by the full, burst, and isolated spike trains (Figs. 8A, B, C). Indeed,

both the full spike (Fig. 8A) and burst (Fig. 8B) trains displayed

similar profiles: no directional selectivity was observed for low

values of tOFF/tON (i.e. tOFF/tON,3) and negative directional

biases were observed for higher values. In contrast, the isolated

spike train (Fig. 8C) displayed a qualitatively different profile in

that negative directional biases where observed for high values of

tOFF/tON (i.e. tOFF/tON.10) and low bias current values (i.e.

Ibias,3.1 nA) while positive values were observed for larger bias

current values (i.e. Ibias.3.1 nA) (Fig. 8C). As a result, the opposite

directional selectivity index ODI displayed both positive and

negative values when plotted as a function of Ibias and tOFF/tON

(Fig. 8D). As such, we observed both same and opposite direction

selectivity regimes in our model without the T-type conductance.

The PSTH curves for the full spike train, bursts, and isolated

spikes are shown for example same and opposite direction

selectivity regimes in Figs. 8E and 8F, respectively. The parameter

values used for the same and opposite direction selectivity regimes

are shown in Fig. 8D as points ‘‘E’’ and ‘‘F’’, respectively. For the

same direction selectivity regime, the maximum firing rate from

the full spike, burst, and isolated spike trains is strongest when the

object moves from right to left (Fig. 8E). On the other hand, for

the opposite directional selectivity regime, the maximum firing

rate for the full spike and the burst trains are higher when the

object moves from right to left while that of isolated spikes is

highest when the object moves from left to right (Fig. 8F).

These results show that bursting mediated by T-type calcium

channels is not necessary to observe opposite direction selectivity.

However, such bursting greatly extends the range of values of the

synaptic time constants tON and tOFF and the bias current Ibias for

which such coding is observed. We also note that the magnitude of

directional biases observed for either of the full, burst, and isolated

spike trains was smaller overall without the T-type conductance

(compare Figs. 5 and 7 as well as Figs. 6 and 8). We conclude that

T-type calcium channels promote movement coding by bursts and

isolated spikes.

Electrosensory midbrain neurons display opposite
coding of movement direction by bursts and isolated
spikes

Our analysis of the effects of different parameters on movement

direction coding by bursts and isolated spikes has shown the

existence of regimes for which bursts and isolated spikes code for

the same movement direction and regimes for which bursts and

isolated spikes code for opposite movement directions. In order to

test this prediction, we performed extracellular recordings from

N = 32 TS neurons in vivo while moving an object back and forth

along the rostro-caudal axis of the animal as done previously

[18,26,35,62] (see Materials and Methods). We found that bursts

and isolated spikes could code for opposite movement directions in

3 neurons. The PSTH obtained for the full, burst, and isolated

spike trains for these three neurons are shown in Figs. 9A, 9B, 9C.

We found that opposite coding of movement direction by bursts

and isolated spikes was most pronounced for the neuron from

Fig. 9C. Indeed, this neuron responded mostly with bursts when

the object moved from tail to head and responded mostly with

isolated spikes when the same object moved from head to tail

(Fig. 9C). This was reflected in the directional biases from the burst

and isolated spike trains that were 0.6, and 20.63, respectively. As

such, bursts and isolated spikes displayed directional biases that

were almost equal in magnitude for this neuron. These data

suggest that there exists neurons in TS for which bursts and

isolated spikes can code for opposite movement directions.

Decoding isolated spikes using a delay mechanism
coupled with inhibition

Any information carried by action potential patterns such as

bursts and isolated spikes is only functionally relevant if it is

decoded by downstream neurons. We have previously proposed a

biologically plausible circuitry for extracting burst spikes [26].

However, plausible neural circuits that can selectively respond to

isolated spikes but are insensitive to bursts have not been proposed

to date. We note that the ISI threshold criterion that we have used

to separate bursts and isolated spikes is acausal in nature This is

because any given spike can only be classified as being part of a

burst based on whether the next spike occurs after an interval of

time that is less than the burst threshold. Similarly, any given spike

can only be classified as isolated if the next spike occurs after an

interval of time that is greater than the burst threshold.

A schematic of a biophysically plausible neural circuit that is

sensitive to isolated spikes is shown in Figure 10A (see Materials
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and Methods). It consists of two synapses: the first is excitatory and

displays no synaptic plasticity (i.e. the EPSP amplitude elicited by

each presynaptic action potential is the same), and the second is

inhibitory and displays strong short-term facilitation. The second

synapse, therefore, responds preferentially to bursts as shown

previously [26]. The output of the excitatory synapse is delayed

with respect to the output of the inhibitory synapse, and both

inputs are then summed and half-wave rectified (Fig. 10A).

Intuitively, this circuit should be sensitive to isolated spikes for the

following reason: bursts will give rise to greater facilitation of the

inhibitory synapse, thereby causing a larger inhibition in the

postsynaptic cell that will tend to prevent a response to the bursts

from the excitatory synapse due to the delay. In contrast, isolated

spikes will not induce such facilitation. As a result the inhibition is

Figure 7. The synaptic depression time constants tON and tOFF influence movement direction coding by bursts and isolated spikes
with gT = 0. A) Directional bias computed from the full spike train as a function of tON and tOFF. B) Directional bias computed from the burst spike
train as a function of tON and tOFF. C) Directional bias computed from the isolated spike train as a function of tON and tOFF. D) Opposite direction
selectivity index as a function of tON and tOFF. E) PSTH values near the maximum values in the left to right (blue arrow) and right to left (red arrow)
directions for the full spike (purple), burst (green), and isolated (orange) spike trains for an example data point marked with a star in panel D. F) PSTH
values near the maximum values in the left to right (blue arrow) and right to left (red arrow) directions for the full spike (purple), burst (green), and
isolated (orange) spike trains for another example data point marked with a star in panel D.
doi:10.1371/journal.pone.0040339.g007
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sufficiently low such that the excitation from the first synapse can

reach threshold for spiking. We note that such a scheme is not

unreasonable since inhibition can sometimes precede excitation in

midbrain neural circuits [63,64].

We next tested the performance of this simple model in

segregating isolated spikes from bursts to that of an ISI threshold.

Our results show that this model was accurate at detecting isolated

spikes (Fig. 10B). The spikes that were incorrectly classified tended

to be the first spikes of bursts as determined by the ISI threshold

that occurred after a period of isolated spiking, as the inhibition is

then too weak and too short to block these (Fig. 10B). We then

quantified this performance by using signal detection theory [65]

Figure 8. The bias current Ibias and synaptic depression time constant ratio tOFF/tON influence movement direction coding by bursts
and isolated spikes with gT = 0. A) Directional bias computed from the full spike train as a function of tOFF/tON and Ibias. B) Directional bias
computed from the burst train as a function of tOFF/tON and Ibias. C) Directional bias computed from the isolated spike train as a function of tOFF/tON

and Ibias. D) Opposite direction selectivity index as a function of tOFF/tON and Ibias. E) PSTH values near the maximum values in the left to right (blue
arrow) and right to left (red arrow) directions for the full spike (purple), burst (green), and isolated (orange) spike trains for an example data point
marked with a star in panel D. F) PSTH values near the maximum values in the left to right (blue arrow) and right to left (red arrow) directions for the
full spike (purple), burst (green), and isolated (orange) spike trains for another example data point marked with a star in panel D.
doi:10.1371/journal.pone.0040339.g008
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(see Materials and Methods) and found that this model gave high

probabilities of correct classification for a wide range of delay td
and synaptic facilitation time constant tF values (Fig. 11A). We

also investigated whether the incorrectly classified spikes actually

belonged to bursts and isolated spikes as determined by the ISI

threshold. To do so, we plotted the probability of misclassification

for spikes that, according to the ISI threshold, were considered

isolated spikes (Fig. 11B), the first spike of a burst (Fig. 11C), or any

other spike of a burst (Fig. 11D). Thus, our results show that, for

the parameter values that gave rise to the maximum probability of

correct classification, the majority (<90%) of spikes that were

incorrectly classified were actually the first spikes of a burst for the

reason mentioned above. We found that these percentages

strongly depended on parameter values (Figs. 11B, C, D). For

example, increasing the delay for a given value of the facilitation

time constant reduces the percentage of misclassified first spikes of

a burst (Fig. 11C), increases the percentage of misclassified isolated

spikes (Fig. 11B), and does not affect the remaining percentage of

misclassified spikes that are part of a burst (Fig. 11D), but

decreases the probability of correct classification (Fig. 11A).

We next varied both the inhibition time constant tI and gain GI

in our model. Our results show that the maximum probability of

correct classification could be obtained for a wide range of values

(Fig. 11E). Again, for the parameter values that gave rise to

maximum probability of correct classification, the majority of

misclassified spikes were actually the first spikes of bursts as seen by

plotting the percentage of misclassified spikes that were considered

isolated spikes (Fig. 11F), the first spike of a burst (Fig. 11G), or any

other spike of a burst (Fig. 11H).

We next tested whether the extracted isolated spikes could

indeed code for the opposite movement direction than that coded

by both the burst and full spike trains, as observed using an ISI

threshold. As such, we used the spiketrain from the example

neuron shown in Fig. 9B as an input to the model. We found that

the input and output PSTHs were maximal for opposite

movement directions (Fig. 12A) and thus displayed opposite

directional biases (Fig. 12B). Finally, we computed the directional

bias of isolated spikes obtained with our model against that

computed from isolated spikes obtained with the ISI threshold

criterion across our experimental dataset (Fig. 12C) and observed

a significant positive correlation between both quantities (R = 0.52,

p = 0.0023, N = 32). These results show that a generic circuit with

a temporal delay can be used to selectively extract directional

information carried by isolated spikes.

Discussion

Summary of results
We have explored the coding of movement direction by specific

action potential patterns, namely bursts and isolated spikes, in a

biophysical model of directional selectivity in midbrain neurons of

weakly electric fish. We found that, for a wide range of parameter

values, bursts displayed strong directional selectivity and isolated

spikes displayed little or no directional selectivity consistent with

previous findings [26]. However, we also found a qualitatively

different regime for which bursts and isolated spikes were

preferentially elicited when the object moved in opposite

directions. As such, our results show for the first time that bursts

and isolated spikes can code for opposite movement directions. We

have also shown that subthreshold T-type calcium channels can

greatly enhance the range of parameter values for which this

regime was observed. This is because such channels must be de-

inactivated by inhibition in order to be activated by subsequent

excitation and give rise to a burst of action potentials. We have

also shown experimental recordings from TS neurons in weakly

electric fish for which bursts and isolated spikes coded for opposite

movement directions. Finally, we have shown that plausible simple

neural circuits can reliably extract isolated spikes from spike trains

that consist of both bursts and isolated spikes. To our knowledge,

Figure 9. Electrosensory midbrain neurons can display oppo-
site movement direction coding by bursts and isolated spikes.
A) Peri-stimulus time histogram (PSTH) for an example neuron
computed from all spikes (purple), bursts (green), and isolated spikes
(orange). The curves have been normalized by their maximum values.
Directional bias (DB) values were 20.64, 20.39, and 0.36 for burst, all
spikes, and isolated spikes, respectively. B) PSTH for another example
neuron computed from all spikes (purple), bursts (green), and isolated
spikes (orange). The curves have been normalized to 1. Directional bias
(DB) values were 20.59, 20.5, and 0.56 for burst, all spikes, and isolated
spikes, respectively. C) PSTH for another example neuron computed
from all spikes (purple), bursts (green), and isolated spikes (orange). The
curves have been normalized to 1. Directional bias (DB) values were 0.6,
0.5, and 20.63 for burst, all spikes, and isolated spikes, respectively.
doi:10.1371/journal.pone.0040339.g009
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these results constitute the first demonstration that bursts and

isolated spikes can both code for movement direction in the same

neuron. The relative simplicity and generality of our mathematical

model suggests that our results will be applicable to other systems.

Role of active burst dynamics in generating directional
selectivity

Previous studies have shown that, for most TS neurons, bursts

and isolated spikes were the most and least reliable indicators of

motion direction, respectively [26]. Therefore, it was suggested

that isolated spikes coded for stimulus attributes other than motion

direction. In this study we have shown that, for some TS neurons,

bursts and isolated spikes can code for opposite movement

directions. Our model predicts that an active burst mechanism

mediated by a T-type calcium conductance is not necessary in

order to observe opposite coding of movement direction by bursts

and isolated spikes. Nevertheless, this active burst mechanism

greatly extended the range of parameter values for which we

observed this regime and moreover increased the degree of

directional selectivity as quantified by the directional bias

associated with the burst and isolated spike trains to values that

were observed experimentally. The fact that we only observed this

regime in a few TS neurons suggests that such neurons are quite

rare, which most likely explains why these neurons were not found

in previous studies [26]. Further studies using intracellular

recordings are needed in order to test whether these neurons

constitute a specific class within the TS that would thus be distinct

from neurons for which bursts and isolated spikes code for the

same movement direction and whether they selectively express T-

type calcium channels as predicted from our model.

Functional relevance of opposite directional selectivity of
bursts and isolated spikes

What is the functional relevance of having bursts and isolated

spikes encode opposite movement direction in the same neuron?

We propose that such parallel encoding may be used to

discriminate different objects moving in opposite directions within

the neuron’s receptive field. Such parallel coding is entirely

consistent with an emerging general picture in which bursts and

isolated spikes can code for different stimulus attributes simulta-

neously and in parallel in the same neuron

[25,39,41,42,44,52,66,67]. In weakly electric fish, foreground

and background motion in opposite directions could occur during

prey capture [10] or during tracking behavior [5] and the

simultaneous encoding of both fore and background movement

may be necessary for proper motor control.

Extracting bursts and isolated spikes
Our results are consistent with a growing body of literature that

shows that bursts and isolated spikes can encode different stimulus

attributes and thus might serve different functions

[25,41,42,44,66,68,69]. This assumes that downstream neural

circuits can somehow extract bursts and isolated spikes from a

spike train. While previous studies have considered neural circuits

that can selectively extract bursts [26,41,51,70], we are not aware

of any previous studies that have proposed biophysically plausible

neural circuits that would be sensitive exclusively to isolated spikes

prior to this one.

Specifically, we have proposed that the neural circuits that

would respond exclusively to isolated spikes need to include a

delay. This delay is necessary because any given spike cannot be

Figure 10. A biophysically plausible neural circuit can accurately extract isolated spikes and therefore decode their information
about movement direction. A) Schematic of the decoding model for isolated spikes. It consists of parallel processing by two synapses with one
displaying facilitation and the other displaying no plasticity (i.e. ‘‘static’’). The output from the static synapse YE(t) is delayed and the output from the
facilitating synapse YI(t) is then subtracted from it. This signal is then half-wave rectified to give the output Z(t). Finally, Z(t) is thresholded to obtain
the output spikes. B) Performance of the decoding model compared with the performance of an ISI threshold criterion at detecting isolated spikes.
Shown are the delayed output of the static excitatory synapse YE(t2td) (green trace), facilitating inhibitory synapse YI(t) (blue trace), and the output of
the model Z(t) (red trace) with the threshold used to detect output spikes (dashed gray trace), the original spike train (purple ticks), the isolated spikes
according to the ISI threshold (orange ticks), and the isolated spikes according to the decoding model (black ticks). Parameter values used were
tF = 200 msec, tD = 500 msec, tE = 5 msec, tI = 8 msec, GI = 5, I0 = 3.41 msec, td = 4 msec.
doi:10.1371/journal.pone.0040339.g010
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Figure 11. Extracting isolated spikes using a biologically plausible model. A) Probability of correct classification PCC as a function of the
facilitation time constant tf and delay td. B, C, D Probability of misclassification Pmisclassification for the spikes that, according to the ISI threshold, were
considered to be isolated spikes (B), the first spikes of a burst (C), or any other spikes of a burst (D), as a function of the facilitation time constant tf

and delay td. Other parameter values used were tD = 500 msec, tE = 5 msec, tI = 5 msec, GI = 7, I0 = 3.41 msec. E) Probability of correct classification
PCC as a function of the inhibition time constant tI and gain GI. F, G, H Probability of misclassification Pmisclassification for the spikes that, according to
the ISI threshold, were considered to be isolated spikes (F), the first spikes of a burst (G), or any other spikes of a burst (H), as a function of the
inhibition time constant tI and gain GI. Other parameter values used were tF = 200 msec, tD = 500 msec, tE = 5 msec, I0 = 3.41 msec, td = 4 msec.
doi:10.1371/journal.pone.0040339.g011
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unambiguously assigned as being part of a burst or being isolated

without knowing at what time the next action potential will occur.

Thus, it is necessary to compare the spike train at the present with

the same spike train delayed by a time interval on the order of the

burst threshold.

We note that neural circuits that use temporal combinations of

delayed excitation and inhibition in order to achieve response

selectivity have been described in other midbrain circuits and may

be a general feature of sensory processing [63,64,71,72]. In

Apteronotus leptorhynchus, many TS neurons project to the optic

tectum (OT) where neurons respond selectively to moving objects

in a directionally biased fashion [4,73]. It is possible that plasticity

at the TS-OT synapses or a combination of excitation and

inhibition from TS might enable OT neurons to decode bursts

and/or isolated spikes from TS neurons. Future studies should

investigate this interesting possibility.

Implications for other systems
Our results show that the traditional method for measuring

directional selectivity, in which the maximum firing rates elicited

in response to the moving object in each direction are compared,

can in some cases fail to capture salient information transmitted

by direction selective neurons. This is because such techniques

take the full spike train into account. Indeed, we found parameter

regimes for which the isolated and full spike trains displayed

selectivity for opposite movement directions. Moreover, for

subsets of these parameters, the full spike train displayed little

directional selectivity but for which the burst and isolated spike

trains displayed opposite directional selectivity (see e.g. Fig. 6).

This result may have important consequences for the

generation of direction selectivity in the mammalian visual

cortex. Indeed, the electrosensory system has many parallels with

thalamocortical pathways [74]. In particular, thalamic relay

neurons within the lateral geniculate nucleus (LGN) have

subthreshold T-type calcium channels that mediate burst firing

[45,59,60,75–80]. The spike trains from thalamic relay neurons

consist of a mixture of bursts and isolated spikes in the awake-

behaving animals [42,81,82]. While previous studies have shown

that these neurons are not directionally selective [12], these did

not consider action potential patterns such as bursts and isolated

spikes. We hypothesize that bursts of action potentials from

thalamic relay neurons in LGN carry specific directional

information that is then used by postsynaptic neurons within

the primary visual cortex to generate directionally biased

responses. This hypothesis is supported by the fact that

thalamocortical synapses display strong depression and that

sustained isolated action potential firing from thalamic relay

neurons activates this depression [45,60,83]. Nevertheless, ,100

ms of inhibition can remove this depression as well as

deinactivate T-type calcium channels. A subsequent depolariza-

tion caused by excitation can thus cause burst firing as well as an

amplified post-synaptic response [45,60,83]. Studies performed

within the LGN are necessary to validate this hypothesis and are

beyond the scope of this paper.

Figure 12. Comparison of a biologically plausible model with the ISI threshold. A) Input PSTH (gray) and output PSTH (black) from the
model when the input consists of the full spike train from an example TS neuron. B) Output directional bias (black) and input directional bias (gray)
computed from the PSTHs in C. Note the difference in sign. C) Directional bias of isolated spikes computed from the decoding model as a function of
the directional bias of isolated spikes computed from the ISI threshold criterion. There was a significant positive correlation between both quantities
(R = 0.52, p = 0.0023, N = 32). Parameter values used were tF = 70 msec, tD = 500 msec, tE = 5 msec, tI = 8 msec, GI = 7, I0 = 3.41 msec, td = 4 msec.
doi:10.1371/journal.pone.0040339.g012

Parallel Coding by Action Potential Patterns

PLoS ONE | www.plosone.org 14 June 2012 | Volume 7 | Issue 6 | e40339



Conclusion
We investigated whether action potential patterns such as bursts

and isolated spikes encoded movement direction in a model of

directional selectivity in electrosensory midbrain neurons. We

found parameter regimes in which bursts and isolated spikes could

encode opposite movement directions in the same neuron even

though the full spike train displays little or no directional

selectivity. As such, neurons that are categorized as non-

directionally selective using the full spike train may in fact be

highly directional selective if one considers instead particular

action potential patterns. Such coding of opposite movement

directions by bursts and isolated spikes could be used in

discriminating different objects moving in opposite directions

within the neuron’s receptive field and is likely to be found across

sensory systems.

Materials and Methods

Ethics statement
McGill University’s institutional Animal Care and Use Commit-

tee approved all experimental procedures and animal husbandry.

Animals
We used the weakly electric fish Apteronotus leptorhynchus in this

study. Animals were obtained from tropical fish suppliers and were

housed in laboratory tanks for several days in order to become

acclimated to the new environment. This was performed

according to published guidelines [84]. The surgical and

experimental procedures have been described in detail elsewhere

[18,35,62,85–88].

Stimulation and recording
Extracellular recordings from TS neurons were made using

previously described techniques [18,35,62,89]. We used both

patch [62,89] and metal-filled micropipettes [62,90–92] to obtain

these recordings. The stimulus consisted of a 1.8 cm wide metal

plate coated with a plastic coating on the side opposite to the

animal that was actuated using a pen plotter (HP 7010B). This

object moved back and forth along the animal’s rostro-caudal axis

over a distance of 20 cm [17,18,35,93,94] for at least 30 cycles.

The sinusoid was centered at the animal’s midpoint and had a

frequency of 0.25 Hz, corresponding to an average velocity of ,10

cm/sec. These velocities correspond to those that the animal

experiences during prey capture [10] and within the velocities of

error signals observed during refuge tracking [5].

Data were acquired with a Cambridge Electronic Design

Power1401 hardware and Spike2 software (Cambridge, UK) and

analyzed using Spike2 (CED) and custom-made routines in

MATLAB (The Mathworks, Natick, MA). The recorded mem-

brane potentials were thresholded in order to obtain the action

potential times. We excluded neurons whose total spike count was

less than 400 over the stimulus duration. Recorded spike trains

were segregated into bursts and isolated spikes as described above

using an ISI threshold. Neurons with burst or isolated spike counts

less than 100 were not analyzed.

Burst and isolated spike classification
We used an interspike interval threshold to separate the

simulated spiking responses into burst and isolated spikes

[25,36,41,44] (Fig. 1D). Specifically, two consecutive action

potentials that were separated by a time interval less than the

burst threshold were considered as part of a burst. Spikes that were

not part of bursts were included in the isolated spike train. The

burst threshold was computed as the time at which the falling

phase of initial peak of the autocorrelogram crossed the 99.9%

Poisson confidence limit as done previously [25,26,36,95].

Quantifying directional selectivity and opposite
directionality

The full spike, burst (i.e. the train of spikes that belong to bursts)

and the isolated (i.e. the train of spikes that are isolated) spike

trains were each used to compute peri-stimulus time histograms

(PSTHs) in response to the moving object. We then computed a

measure of directional bias as [18,35]:

DB~
RLR{RRL

max (RLR,RRL)

where RLR, RRL are the maximum firing rates obtained when the

object moves from ‘‘left to right’’ and ‘‘right to left’’, respectively

(note that ‘‘left to right’’ corresponds to the object moving from the

animal’s snout to the tail and that ‘‘right to left’’ corresponds to the

object moving from the tail to the snout) and max(RLR, RRL) is the

maximum of the two. This measure varies between 21 and 1. DB

values of 1 and 21 indicate complete direction preference for

movement from left to right and from right to left, respectively,

while a value of 0 indicates no direction selectivity.

To quantify the opposite directionality we used the directional

biases computed from burst spikes and isolated spikes and then

computed the opposite directionality index as:

ODI~iDDBburst{DBisolatedspikesD

where i is 1 if the maximum firing rate of burst spikes and isolated

spikes happen preferentially for the same object movement

direction and is 21 otherwise. i is 0 if directional biases of bursts

or isolated spikes equal 0.

Modeling TS neurons
Our model TS neuron’s one-dimensional receptive field consists

of two 10 mm long adjacent ‘ON’ and ‘OFF’ zones. The ‘ON’

zone represents the output of E-type ELL pyramidal cells that are

excited by the stimulus while the ‘OFF’ zone represents the output

of I-type ELL pyramidal cells that are inhibited by the stimulus as

observed experimentally [85,96]. Then a point object moved at a

speed of 10 cm/s back and forth across these zones. The output of

each zone is then given by [18]:

Oi(t)~FizuiGi H(t{li)exp {
t{li

ti

� �

where Fi is the bias current which represents the baseline activity

from E and I-type pyramidal cells which are approximately equal

on average [97,98] and ni = 1,21 for i = ON, OFF, respectively.

Here ti is the depression time constant associated with zone i, li is

the time that object enters zone i, and Gi is the gain of zone i. The

responses of each zone were then convolved with an alpha

function with time constant 20 msec to mimic synaptic EPSPs.

Consistent with anatomical data showing that both E and I-type

ELL pyramidal neurons make excitatory connections onto TS

neurons [99], the input I(t) to our neuron model is taken to be:

I(t)~OONzOOFF
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We note that the outputs from the ON and OFF zone, OON and

OOFF, were not delayed with respect to one another, which is

consistent with recent experimental results showing no significant

delay between the inputs from E and I-type sources onto TS

neurons [88]. The TS neuron was modeled using the Hodgkin-

Huxley formalism based on available experimental data [35], the

model contains spiking sodium, delayed rectifier potassium, low

threshold calcium (T-type), and leak conductances:

C
dV

dt
~{gleak(V{Eleak){gT s3

?(V )h(V{ECa)

{gNam3
?(V )(0:85{n)(V{ENa){gK n4(V )(V{EK )

zA I(t)zIbiaszs j(t)

dh

dt
~W

h?(V ){h

th(V )

dn

dt
~

n?(V ){n

tn(V )

m?(V )~
am(V )

am(V )zbm(V )

n?(V )~
an(V )

an(V )zbn(V )

tn(V)~
0:05

an(V )zbn(V )

am(V )~
0:1 (Vz40:7)

1{exp {0:1 (Vz40:7)½ �

bm(V )~4 exp {0:05 (Vz49:7)½ �

an(V )~
0:01 (Vz40:7)

1{exp {0:1 (Vz40:7)½ �

bn(V )~0:125 exp {0:0125 (Vz50:7)½ �

s?(V )~
1

1zexp {(Vz69)=7:8½ �

h?(V )~
1

0:5z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25zexp (Vz82)=6:3½ �

p

th(V)~30z
exp (Vz150)=18½ �

1:5z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25zexp (V{70)=4½ �

p

where C is the membrane capacitance, V is the transmembrane

potential difference, gleak is the leak conductance with reversal

potential Eleak. Here gT, gNa, and gK are the voltage-gated

calcium, sodium, and potassium conductances with reversal

potentials ECa, ENa, and EK, respectively. A is the synaptic weight

and Ibias is a constant bias current, sj(t) is zero mean low-pass

filtered Gaussian white noise with standard deviation s that

mimics sources of synaptic input [100].

We simulated this model numerically using an Euler-Maruyama

Algorithm with integration time step dt = 0.0025 msec. Other

parameter values used, unless otherwise stated, were gleak =

0.18 mS, gT = 0.32 mS, gNa = 30 mS, gK = 10 mS, Eleak = 265 mV,

ECa = 120 mV, ENa = 60 mV, EK = 285 mV, C = 1 mF, A = 0.75,

B = 0.1, = 2, G1 = G2 = 1, Ibias = 21.3 nA, GON = GOFF = 1,

FON = FOFF = 2, tON = 5 msec, tOFF = 500 msec. These values

are comparable to those used in previous modeling studies [35,59].

For some simulations, we set gT = 0 and Ibias = 3.1 nA to adjust for

firing rate. All simulations for computing PSTHs and directional

biases were done over 1000 trials. We explored the parameter

spaces by systematically varying synaptic depression time constants

of ON and OFF zones in a range of 5 msec to 500 msec which is

biologically relevant [18]. To explore the effect of synaptic

depression time constants and bias current together we used

synaptic depression time constants ratio tOFF/tON in the range of

1/50 to 50 in which tOFF and tON were (in sec) [0.01 0.5], [0.01

0.4], [0.01 0.3], [0.01 0.3], [0.01 0.2], [0.01 0.1], [0.01 0.05],

[0.01 0.04], [0.01 0.03], [0.01 0.02], [0.01 0.01], [0.02 0.01], [0.03

0.01], [0.04 0.01], [0.05 0.01], [0.1 0.01], [0.2 0.01], [0.3 0.01],

[0.4 0.01], [0.5 0.01].

In all our analysis and figures in which the directional biases

from our model were plotted as a function of parameters,

directional biases whose magnitude was below 0.15 were set to

zero. This is because previous analysis has shown that such

directional biases were not significantly different from zero [18].

The burst threshold that was used for our model simulations was

set at 10 msec as done previously [26].

Modeling biophysically plausible mechanisms to extract
isolated spikes

While the interspike interval threshold procedure described

above is a simple computational method for segregating bursts and

isolated spikes, it is not clear how such a threshold mechanism

could be implemented in CNS circuits. A neural circuit which

responses to bursts and is insensitive to isolated spikes has been

previously considered [26]. However, the complement problem of

designing a neural circuit that would be unresponsive to bursts but

sensitive to isolated spikes has, to our knowledge, not been

considered before.

Here we introduce a plausible circuit that can extract isolated

spikes. Specifically, we consider the presynaptic spike train as a

sum of delta functions:

X (t)~
XN

i~1

d(t{ti);

where ti is the ith spike time. X(t) is first passed through two parallel

synapses. The first is excitatory and does not have any synaptic

dynamics (i.e. no plasticity and the amplitude of the output EPSP

is the same for all presynaptic action potentials), the output of this

synapse is thus given by convolving the input spike train X(t) with

an alpha function with time constant tE:

YE(t)~
XN

i~1

H(t{ti)
t{ti

t2
E

exp {
t{ti

tE

� �
:

The second synapse is inhibitory and displays plasticity. This

plasticity is described by facilitation and depression terms

[1012104]:

dD

dt
~

1{D

tD

; t~ti[D(ti)?D(ti) 1{F (ti)ð Þ

dF

dt
~{

F

tF

; t~ti[F (ti)?F (ti)zDF(ti{ti{1)

DF (I)~
I0

I
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At the time of an input spike ti, D is first decreased by an

amount F(ti)D(ti); then F is updated by an increment DF. The

increment DF is inversely proportional to the time interval

between the current action potential and the last one. As such,

short time intervals such as those that occur during burst firing will

cause more potentiation than longer ones. We have also

introduced an upper bound for F (i.e. F(t)#1) to prevent negative

values for the update factor of the depression variable. The output

of this synapse is thus given by:

YI (t)~{GI

XN

i~1

H(t{ti)D(ti)F (ti)
t{ti

t2
I

exp {
t{ti

tI

� �
;

where D, F are the depression and facilitation terms, respectively.

Here tI is the time constant of the alpha function that models the

time course of the IPSP and GI is a gain term. As such, the

inhibitory synapse displayed strong facilitation in response to a

burst of presynaptic action potentials. We assume that the output

YE(t) is delayed by a time td. The postsynaptic output is then given

by:

Z(t)~TF YE(t{td )zYI (t)ð Þ,

with TF defined as:

TF (Y )~
Y if Y§0

0 if Yv0

�

The post-synaptic spike train was obtained by thresholding Z(t)

(i.e. finding the times at which Z(t) crosses a threshold value from

below). We then took experimentally recorded spike sequences,

and segregated them into bursts and isolated spikes using both our

decoding model and ISI threshold methods. Then, we compared

the sequences of burst and isolated spikes obtained from each

model in the following way. We used signal detection theory [65]

in order to quantify the decoding model’s performance at

detecting isolated spikes as defined by the ISI threshold. We

computed the probability of correct detection (PD) as the fraction

of spike times deemed to be part of isolated spike train according

to the decoding model that were also deemed part of isolated spike

train using the ISI threshold criterion (i.e. that were ‘‘correctly’’

classified). The probability of false alarm (PFA) was computed as

the fraction of spike times deemed to be part of isolated spike train

according to the decoding model that were deemed to be burst

using the ISI threshold criterion (i.e. that were ‘‘incorrectly’’

classified). The overall performance can then be quantified by

computing the probability of correct classification (PCC) as:

PCC~
PD

2
z

(1{PFA)

2

A value of PCC = 0.5 implies that our model performs at chance

level compared to the ISI threshold criterion (i.e. that any given

spike is randomly assigned as being part of a burst or isolated). In

contrast, PCC = 1 indicates that the model performs identically to

the ISI threshold criterion. We note that this does not imply that

the ISI threshold criterion is optimal in any way as segregating

bursts and isolated spikes, merely that our biophysically plausible

decoding model performs as well. As such, signal detection theory

is used here to determine how well the decoding model performs

relative to the ISI threshold criterion.

Supporting Information

Figure S1 The gains GON and GOFF strongly influence
movement direction coding by bursts and isolated
spikes. A) Directional bias computed from the full spike train

as a function of GON and GOFF. B) Directional bias computed

from the burst spike train as a function of GON and GOFF. C)

Directional bias computed from the isolated spike train as a

function of GON and GOFF. D) Opposite direction selectivity index

(ODI) as a function of tON and tOFF.

(TIF)

Figure S2 The gains GON and GOFF influence movement
direction coding by bursts and isolated spikes with
gT = 0. A) Directional bias computed from the full spike train as a

function of GON and GOFF. B) Directional bias computed from the

burst spike train as a function of GON and GOFF. C) Directional

bias computed from the isolated spike train as a function of GON

and GOFF. D) Opposite direction selectivity index as a function of

GON and GOFF.

(TIF)
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