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EURAL HETEROGENEITIES AND STIMULUS PROPERTIES AFFECT

URST CODING IN VIVO
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bstract—Many neurons tend to fire clusters of action poten-
ials called bursts followed by quiescence in response to
ensory input. While the mechanisms that underlie burst
ring are generally well understood in vitro, the functional
ole of these bursts in generating behavioral responses to
ensory input in vivo are less clear. Pyramidal cells within the
lectrosensory lateral line lobe (ELL) of weakly electric fish
ffer an attractive model system for studying the coding
roperties of burst firing, because the anatomy and physiol-
gy of the electrosensory circuitry are well understood, and
he burst mechanism of ELL pyramidal cells has been thor-
ughly characterized in vitro. We investigated the coding
roperties of bursts generated by these cells in vivo in re-
ponse to mimics of behaviorally relevant sensory input. We
ound that heterogeneities within the pyramidal cell popula-
ion had quantitative but not qualitative effects on burst cod-
ng for the low frequency components of broadband time
arying input. Moreover, spatially localized stimuli mimick-
ng, for example, prey tended to elicit more bursts than spa-
ially global stimuli mimicking conspecific-related stimuli. We
lso found small but significant correlations between burst
ttributes such as the number of spikes per burst or the
nterspike interval during the burst and stimulus attributes
uch as stimulus amplitude or slope. These correlations were
uch weaker in magnitude than those observed in vitro.
ore surprisingly, our results show that correlations be-

ween burst and stimulus attributes actually decreased in
agnitude when we used low frequency stimuli that are ex-
ected to promote burst firing. We propose that this discrep-
ncy is attributable to differences between ELL pyramidal cell
urst firing under in vivo and in vitro conditions. © 2010

BRO. Published by Elsevier Ltd. All rights reserved.

ey words: weakly electric fish, neural coding, information
heory, burst firing.

nderstanding the neural code remains a central problem
n neuroscience. This understanding is in part complicated
y the fact that neurons in the brain are highly heteroge-
eous (Bannister and Larkman, 1995a,b; Bastian and
guyenkim, 2001; Häusser and Mel, 2003) and are not

Correspondence to: M. J. Chacron, Department of Physiology, McGill
niversity, McIntyre Medical Building, room 1137, 3655 Promenade
ir William Osler, Montréal, QC, H3G 1Y6, Canada. Tel: �1-514-398-
493; fax: �1-514-398-7452.
-mail address: maurice.chacron@mcgill.ca (M. J. Chacron).
m
bbreviations: DAP, depolarizing afterpotential; ELL, electrosensory

ateral line lobe; EOD, electric organ discharge.

306-4522/10 $ - see front matter © 2010 IBRO. Published by Elsevier Ltd. All right
oi:10.1016/j.neuroscience.2010.03.012

300
assive input-driven devices. Instead, they are capable of
ich intrinsic dynamics such as oscillations (Gray and
inger, 1989; Stopfer et al., 1997; Doiron et al., 2003a) and
ursting (i.e. the firing of packets of action potentials fol-

owed by quiescence) (Lemon and Turner, 2000; Sher-
an, 2001; Swensen and Bean, 2003; Krahe and Gabbi-
ni, 2004; Sabourin and Pollack, 2009). Although much is
nown about the intrinsic mechanisms that lead to burst
ring (Wang and Rinzel, 1995; Izhikevich, 2000; Krahe and
abbiani, 2004), the functional role of burst firing is less
ell understood. Studies have shown that bursts of action
otentials are critical for mediating cricket escape behavior

n response to threatening stimuli (Marsat and Pollack,
006). The function of burst firing is less well understood in
ertebrates: a variety of functions have been proposed

ncluding feature detection (Gabbiani et al., 1996; Metzner
t al., 1998; Sherman, 2001; Sherman and Guillery, 2002;
esica and Stanley, 2004), coding for stimulus slope
Kepecs et al., 2002; Kepecs and Lisman, 2003; Doiron et
l., 2007; Oswald et al., 2007) as well as amplitude (Doiron
t al., 2007; Oswald et al., 2007), and improving the reli-
bility of synaptic transmission (Izhikevich et al., 2003).

Studies conducted in simple systems with well-charac-
erized anatomy and relatively simple behaviors are likely
o yield significant insight into the mechanisms by which
ursts of action potentials code for behaviorally relevant
timuli. Here we focused on understanding how heteroge-
eities in a particular neural population can influence the
oding of stimulus attributes by burst firing in vivo in the
ell-characterized electrosensory system of the South
merican weakly electric fish Apteronotus leptorhynchus.
hese fish generate an electric field through electric organ
ischarge (EOD) and sense amplitude modulations of that
eld through an array of electroreceptor neurons located
n the animal’s skin (Bullock et al., 2005). Natural stimuli
omprise both spatially local and global stimuli: while prey
bjects or objects such as small rocks produce spatially

ocalized electric images on the skin of the fish and are
imited to low (�10 Hz) temporal frequencies (Nelson and

acIver, 1999), conspecific-related stimuli produce spa-
ially diffuse electric images on the skin of the fish that
ontain temporal frequencies in the range 0–300 Hz (Zu-
anc and Maler, 1993; Zakon et al., 2002). Every primary
lectrosensory afferent fiber trifurcates and makes synap-
ic contact unto pyramidal cells within the three tuberous
egments of the electrosensory lateral line lobe (ELL) of
he hindbrain (Heiligenberg and Dye, 1982). These topo-
raphic maps of the body surface are known as the cen-
romedial (CMS), centrolateral (CLS), and lateral (LS) seg-

ents. Pyramidal cells in these three maps differ in their

s reserved.
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esponses to input both in vivo (Shumway, 1989; Krahe et
l., 2008) and in vitro (Mehaffey et al., 2008b), which is
artly due to the differential distribution of various ion
hannels (Maler, 2009a,b). Further, lesion studies have
hown that the different maps mediate different electrosen-
ory behaviors (Metzner and Juranek, 1997).

Recent anatomical studies have shown that pyramidal
ells within each map can be subdivided into six classes
Maler, 2009a). Firstly, pyramidal cells can either be ex-
ited (E-type) or inhibited (I-type) by increases in EOD
mplitude, and these functional differences are correlated
ith anatomical differences: namely the presence or ab-
ence of a basilar dendritic bush, respectively (Maler,
979; Maler et al., 1981; Saunders and Bastian, 1984).
hese cell types correspond to ON and OFF cells found in
ther systems. Secondly, both E and I-type pyramidal cells
an be subdivided into three subclasses: superficial, inter-
ediate, and deep (Maler, 2009a). On one end, superficial
yramidal cells have large apical dendritic trees (Bastian
nd Nguyenkim, 2001), receive large amounts of plastic
eedback (Bastian et al., 2004; Chacron et al., 2005c),
ave receptive fields with a large surround area (Bastian et
l., 2002), display low rates of spontaneous firing in vivo
Bastian and Nguyenkim, 2001), and show the greatest
electivity in their responses to sensory input (Chacron et
l., 2005c; Chacron, 2006). At the other end, deep pyra-
idal cells are characterized by small apical dendritic trees

Bastian and Courtright, 1991; Bastian and Nguyenkim,
001), receive little feedback input that displays little plas-
icity (Bastian et al., 2004; Chacron et al., 2005c), have
eceptive fields with a small surround area (Bastian et al.,
002), display high rates of spontaneous firing in vivo
Bastian and Nguyenkim, 2001), and show little selectivity
o sensory input (Chacron et al., 2005c; Chacron, 2006).
ntermediate pyramidal cells have characteristics that lie in
etween those of superficial and deep pyramidal cells.
natomical studies have furthermore shown large differ-
nces in the distributions of several ion channels and

igand-gated ionotropic receptors between deep and su-
erficial pyramidal cells such as NMDA receptors (Harvey-
irard and Dunn, 2003; Harvey-Girard et al., 2007), small
onductance (SK) calcium-activated potassium channels
Ellis et al., 2007b, 2008), and IP3 receptors (Berman et
l., 1995).

ELL pyramidal cells also display an intrinsic burst
echanism that has been well characterized in vitro and

elies on a somatodendritic interaction (Lemon and Turner,
000; Doiron et al., 2001, 2002, 2003b; Noonan et al.,
003; Fernandez et al., 2005; Mehaffey et al., 2008a):
omatic action potentials backpropagate into the apical
endritic tree where they cause a dendritic action potential
hat propagates back to the soma, leading to a depolariz-
ng afterpotential (DAP) which can cause another somatic
ction potential. The strength of the DAP grows throughout
he burst, leading to a shortening of the interspike interval.
he burst terminates with a characteristic doublet when the

nterspike interval falls below the dendritic refractory pe-
iod, causing dendritic failure and a large burst afterhypo-

arization (bAHP) in the soma (Noonan et al., 2003). Stud- i
es performed in vitro have shown a strong relationship
etween burst and stimulus attributes: stimuli of higher
mplitude gave rise to bursts with shorter intraburst inter-
als (Doiron et al., 2007; Oswald et al., 2007). Additionally,

t was shown that bursts and isolated spikes encode dif-
erent features of sensory input: bursts were most respon-
ive to the low frequency components while isolated spikes
ere most responsive to the high frequency components
f time varying input (Oswald et al., 2004).

While much is known about pyramidal cell responses
o behaviorally relevant input in vivo (Bastian et al., 2002;
hacron et al., 2005a; Chacron and Bastian, 2008; Krahe
t al., 2008), comparatively little information is available
bout the coding properties of burst attributes with the
xception that it has been shown that burst firing of pyra-
idal cells within the lateral segment could code for certain

ommunication stimuli (Marsat et al., 2009). It is known
hat neurons within the torus semicircularis that receive
nput from ELL pyramidal cells respond specifically to
ursts of action potentials (Fortune and Rose, 1997) thus
uggesting that these bursts are important for neural cod-

ng. However, we do not know if neural coding by bursts is
ependent on pyramidal cell heterogeneities and whether
orrelations exist in vivo between burst and stimulus sim-

lar to those observed in vitro (Oswald et al., 2004, 2007;
oiron et al., 2007). In ELL pyramidal cells, it was shown in
ivo that synaptic bombardment causes calcium entry via
MDA receptors that activates dendritic SK channels. The

esulting afterhyperpolarization (AHP) after each spike
ounteracts the DAP and leads to a premature termination
f the burst before the characteristic doublet seen in vitro
Toporikova and Chacron, 2009). We therefore set out to
nvestigate the coding properties of bursts and isolated
pikes by different types of pyramidal cells in vivo using
imics of behaviorally relevant stimuli.

EXPERIMENTAL PROCEDURES

nimal housing

he weakly electric fish, Apteronotus leptorhynchus, was used
xclusively in these studies. Animals were obtained from commer-
ial suppliers and were housed in groups of four to eight in 50
al. tanks with continuous aeration. Water temperature was
aintained between 27 and 29 °C and water conductivity was
etween 200 and 1000 �S/cm as per published recommenda-

ions (Hitschfeld et al., 2009).

xperimental setup

he experimental procedures were described in detail previously
Bastian et al., 2002; Chacron et al., 2003a, 2005c; Chacron,
006; Ellis et al., 2007a; Chacron and Bastian, 2008; Toporikova
nd Chacron, 2009). Briefly, the animal was immobilized by i.m.

njection of D-tubocurarine chloride hydrate (Sigma, St-Louis, MO,
SA) and respirated with aerated water from its home tank at a
ow rate of �10 ml/min. Note that, because the electric organ of
pteronotus is neurogenic, the EOD persists after immobilization.
hese experiments were thus performed with the animal’s natural
OD being present. Water temperature in the experimental tank
as maintained between 27 and 29 °C. Lidocaine gel was applied

opically on the skin surface covering the skull. After 2 min, an

ncision was made to expose the skull as done previously (Bastian
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t al., 2002; Krahe et al., 2008; Toporikova and Chacron, 2009).
e then used cyanoacrylate to glue a metal post unto the skull for

tability. Finally, a microdrill was used to expose the hindbrain. All
rocedures were approved by McGill University’s animal care
ommittee.

ecording

ecording techniques were the same as used previously (Bastian
t al., 2002). Extracellular single unit recordings from pyramidal
ells in whole animals were made with metal-filled micropipettes
Frank and Becker, 1964). Recording sites as determined from
urface landmarks, recording depths, the dorso–ventral location of
he receptive field, and known physiological properties (Krahe et
l., 2008) were limited to the centrolateral segment only. The
xtracellular signal was amplified and band-pass filtered (300–
000 Hz; Differential Amplifier Model 1700; A-M Systems, Carls-
org, WA, USA) and A-D converted at 10 kHz (Power 1401,
ambridge Electronic Design. Cambridge, UK). Spikes were de-

ected offline using custom written routines in Matlab (The Math-
orks, Nattick, MA, USA).

timulation

he stimulation protocol consisted of random amplitude modula-
ions (RAM’s) of the animal’s own EOD. Typical contrasts (mod-
lation amplitude to baseline EOD amplitude ratio) were similar to

hose used in previous studies (Bastian et al., 2002; Chacron et
l., 2003a, 2005b,c; Chacron, 2006; Ellis et al., 2007a; Chacron
nd Bastian, 2008; Krahe et al., 2008). The RAMs were obtained
y multiplying a computer-generated low-pass filtered white noise
8-th order butterworth, cutoff frequency 120 or 10 Hz) with a
inusoid that is phase-locked to the animal’s own EOD. This signal
as then delivered via either local or global stimulation. With local
timulation (Fig. 1A), the stimulus was delivered using a small
ipole positioned lateral to the animal. With global stimulation (Fig.
B), the stimulus was delivered via two silver–silver-chloride elec-
rodes positioned on each side �25 cm away from the animal
Bastian et al., 2002).

yramidal cell classification

revious studies (Bastian and Courtright, 1991; Bastian and
guyenkim, 2001; Bastian et al., 2004) have established a strong
egative correlation between the firing rate and dendritic morphol-
gy of ELL pyramidal cells and have determined approximate
ring rate ranges for superficial, intermediate, and deep pyramidal
ells: cells whose firing rate was less than 15 Hz were termed
uperficial, cells with firing rates greater than 30 Hz were termed
eep, and cells with firing rates in between were termed interme-
iate (Chacron et al., 2005c; Chacron, 2006). We classified pyra-
idal cells as either E or I based on the average stimulus wave-

orm preceding spikes in response to RAMs as previously de-
cribed (Chacron et al., 2005c; Chacron, 2006; Chacron and
astian, 2008).

nalysis

ll analysis was performed in Matlab (The Mathworks, Nattick,
A, USA) using custom written routines. As a first step, the spike

rain was converted into a binary sequence with binwidth 0.5 ms
nd the RAM waveform was resampled at 2 kHz.

urst analysis

e used an interspike interval threshold (Oswald et al., 2004; Ellis
t al., 2007a; Chacron and Bastian, 2008) to separate the binary
equence obtained from all spikes into a binary sequence con-

isting of burst spikes and a binary sequence consisting of iso- s
ated spikes. Spikes separated by an interspike interval that is less
han the threshold are considered part of a burst and spikes that
re not part of a burst are termed isolated. The interspike interval
hreshold value, also termed the burst threshold, was computed
s done previously (Bastian and Nguyenkim, 2001; Chacron and
astian, 2008). The burst fraction was then computed as the

raction of interspike intervals that were less than or equal to the
urst threshold (Oswald et al., 2004; Ellis et al., 2007a; Chacron
nd Bastian, 2008).

In order to quantify the correlations between burst and stim-
lus attributes, we characterized bursts using two measures. The
urst length was simply defined as the number of spikes within
ach burst and the burst interval was determined as the time

nterval between the first two spikes of each burst. We note that
edefining the burst interval as the time interval between the last
wo spikes of each burst or as the mean interspike interval during
he burst did not qualitatively change our results (data not shown).

e quantified the stimulus attributes using the stimulus amplitude
nd slope. The stimulus amplitude was defined as the maximum
timulus value within the burst while the stimulus slope was de-
ned as the mean stimulus slope within the burst as used previ-
usly (Oswald et al., 2007). Note that the stimulus waveform was
hifted by 8 ms to account for axonal transmission delays (Cha-
ron et al., 2003a).

utual information analysis

nformation theory was developed in the context of communication
ystems (Shannon, 1948) and relies on a numerical quantity
ermed mutual information. The mutual information quantifies the
bility of a system to correctly discriminate between multiple stim-
li and is typically expressed in bits: a value of X bits implies that
he system can correctly discriminate between 2X stimuli. The
utual information rate is defined as the mutual information per
nit time. In the context of neural systems, investigators are
ypically interested in applying information theory in order to quan-
ify the ability of neural populations to discriminate between differ-
nt stimuli (Borst and Theunissen, 1999).

One important issue that one is faced with when computing
utual information is that it is in practice impossible to record
eural responses to every possible stimulus and it is thus neces-
ary to make approximations (Chacron et al., 2003b). A particu-
arly attractive approximation is to use Gaussian noise stimuli
ince the mutual information rate can then be computed from only
ne presentation of the stimulus (Rieke et al., 1996). Moreover, as
ensory stimuli are frequently characterized by their temporal
requency content, it is more informative to look at the mutual
nformation rate density (i.e. the mutual information rate per fre-
uency) rather than the mutual information rate. Previous studies
ave shown that a lower bound on the mutual information rate
ensity I(f) is given by (Rieke et al., 1996):

I(f )��log2(1�C(f ))

Where C(f ) is the coherence function given by:

C(f )�
|SR(f )|2

SS(f )RR(f )

Where SR(f ) is the cross-spectrum between the RAM wave-
orm S and the binary sequence R, SS(f) is the power spectrum of
he RAM waveform, and RR(f ) is the power spectrum of the binary
equence. We estimated all spectral quantities using multi-taper
stimation techniques (Jarvis and Mitra, 2001). We note that this
pproach has been used by previous studies (Borst and Theunis-
en, 1999; Chacron, 2006; Sadeghi et al., 2007; Krahe et al.,
008). Since the frequency components of Gaussian stimuli are

ndependent, it is possible to obtain the mutual information rate by

imply integrating the mutual information rate density (Rieke et al.,
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996). Since the stimuli used in our study had frequency content
etween 0 and 120 Hz or between 0 and 10 Hz, we integrated I(f)
etween 0 and 120 Hz or between 0 and 10 Hz to obtain the
utual information rate.

We have previously shown that the coherence function C(f)
an have a strong dependence on the stimulus’ spatial frequency
ontent (i.e. the coherence C(f) to a given stimulus depends on
hether it is presented with local vs. global stimulation geometry)

Chacron et al., 2003a, 2005c; Chacron, 2006). In this study, we
ant, in part, to test the hypothesis that this shift is due to changes
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y integrating the mutual information density between 40 and 80
z and then subtracted from MIhigh computed for local stimulation.
his difference was then normalized by the maximum mutual

nformation value reached by that specific cell. For �MIlow, we first
omputed MIlow integrating the mutual information density be-
ween 0 and 40 Hz for local stimulation and then subtracting the
alue obtained for global stimulation. This difference was then
ormalized by the maximum mutual information value reached by
hat specific cell. A positive value of the shift index indicates that
lobal stimulation led to higher information rate density at high
AM frequencies and/or lower densities at low RAM frequencies

han local stimulation.

RESULTS

e investigated the burst coding properties of ELL pyra-
idal cells in response to broadband stimuli of differing

patial extents. Local stimuli impinge on only a fraction of
he receptive field: their spatial extent mimics that of stimuli
aused by small objects such as prey, plants, and rocks
Fig. 1A). On the other hand, global stimuli impinge on
ost of the animal’s skin surface: their spatial extent mim-

cs that of stimuli encountered during social interactions
ith conspecifics (Bastian et al., 2002; Chacron et al.,
003a; Chacron, 2006) (Fig. 1B). Overall, we recorded

rom 48 pyramidal cells in 10 fish. 25 of these were clas-
ified as E-cells and the remaining 23 were classified as
-cells. It is important to note that the class of a given cell
an be determined purely from physiological properties
Bastian and Courtright, 1991; Bastian and Nguyenkim,
001; Bastian et al., 2002, 2004; Chacron et al., 2005c).
ndeed, whether a given cell is E or I-type can be deter-
ined from its response to sensory input (Chacron et al.,
005c). Moreover, its subclass (i.e. superficial, intermedi-
te, or deep) can be determined from the cell’s mean firing
ate under baseline (i.e. no stimulation) conditions (Bastian
nd Nguyenkim, 2001; Bastian et al., 2004). We therefore
sed these measurements to determine as to which class
nd subclass a given cell belonged to.

uperficial and deep pyramidal cells display
ifferential burst firing under local and global
timulation

e first quantified burst firing under local and global stim-
lation for superficial, intermediate, and deep pyramidal
ells. Fig. 1C, D show interspike interval histograms (ISIH)
rom example superficial and deep pyramidal cells under
ocal (gray) and global (black) stimulation. In both cases,
urst firing was assessed by the proportion of interspike

ntervals below the burst threshold (vertical bar). For the
uperficial cell (Fig. 1C), burst firing was greater under
ocal stimulation. In contrast, for the deep cell (Fig. 1D), the
SIHs under local and global stimulation were more similar
ith burst firing being only slightly greater under global
timulation. Overall, there were no significant differences
etween E and I-cells in terms of burst firing as quantified
y the burst fraction for either local (P�0.644, Wilcoxon’s
ank sum test, n�48) or global (P�0.961, Wilcoxon’s rank
um test, n�48) stimulation. Therefore, data from E and
-cells were pooled. At the population level, burst fractions

ere significantly greater under local stimulation than

c
(

lobal stimulation (Fig. 1E) (P��10�3, Signrank test,
�48), thereby confirming previous results (Chacron and
astian, 2008). This change in burst firing is seen in mea-
ures of spike train variability such as the coefficient of
ariation (CV) which was significantly greater under local
timulation (P�0.0036, Wilcoxon’s rank sum test, n�48).

While it is clear that ELL pyramidal cells as a popula-
ion display a greater propensity for burst firing under local
timulation (Chacron and Bastian, 2008), the examples
hown in Fig. 1C, D strongly suggest that stimulus-induced
hanges in burst firing are dependent on pyramidal cell
eterogeneities such as subclass (i.e. deep, intermediate,
r superficial). To test this, we plotted the change in burst
raction when transitioning from global to local geometry as

function of the cell’s firing rate under baseline (i.e. no
timulation) conditions. There was a significant positive
orrelation (R�0.4042, P�0.0048, n�48) between the
hange in burst fraction and firing rate with a negative
-intercept (Fig. 2A) indicating that the change in burst
raction was greater for superficial as opposed to deep
yramidal cells. Finally, we partitioned the data according
o E vs. I as well as superficial, intermediate, and deep cell
ubclasses. Our results show that there were significant
hanges in burst fraction contingent on stimulation geom-
try for superficial and intermediate but not for deep E and
-type pyramidal cells (Fig. 2B).

ig. 2. Effects of pyramidal cell heterogeneities on burst firing under
ocal and global stimulation. (A) Change in burst fraction (global-local)
s a function of the cell’s baseline firing rate. Superficial pyramidal
ells (i.e. cells whose firing rates are less than 15 Hz) display reduced
urst fraction under global stimulation but deep pyramidal cells (i.e.
ells whose firing rates are greater than 30 Hz) showed little change.
B) Population-averaged burst fractions for E and I-type pyramidal

ells of each class. “**” indicates statistical significance with P�0.01
see text for details).
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nformation transmission by bursts and isolated
pikes under local and global stimulation

e next segregated the spike train into burst spikes and
solated spikes using an interspike interval threshold as
one previously (Chacron and Bastian, 2008) and com-
uted the information rate densities for all spikes (solid
lack), bursts (solid gray), and isolated spikes (dashed
lack) for local and global stimulation for all six pyramidal
ell classes as done previously (Oswald et al., 2004).

Superficial E-cells (Fig. 3A, B) showed large differ-
nces in the mutual information densities computed from
ll spikes (solid black line), burst spikes (solid gray line),
nd isolated spikes (dashed black line) contingent on stim-
lation geometry. The mutual information density com-
uted from all spikes showed characteristic shifts in tuning
rom low to higher frequencies as we transitioned from
ocal to global stimulation (Chacron et al., 2005c; Chacron,
006). Even greater changes were observed for burst
pikes that displayed almost no information content for
lobal stimulation and greater mutual information density
t low frequencies for local stimulation. The mutual infor-
ation density of isolated spikes was very similar to that of
ll spikes for global stimulation (Fig. 3A, compare solid and
ashed black lines) and displayed more broadband tuning

ig. 3. Bursts and Isolated spikes code for different stimulus attributes
nder local and global stimulation for E-cells. Population-averaged
utual information rate densities for all spikes (black), bursts (gray),
nd isolated spikes (dashed) for superficial E-cells under global stim-
lation (A), for superficial E-cells under local stimulation (B), for inter-
ediate E-cells under global stimulation (C), for intermediate E-cells
n
nder local stimulation (D), for deep E-cells under global stimulation
E), and for deep E-cells under local stimulation (F).
or local stimulation (Fig. 3B, dashed black line). Overall,
imilar trends were observed for intermediate E-cells (Fig.
C, D, dashed black line). In contrast, deep pyramidal cells
howed almost no change in frequency tuning contingent
n stimulation geometry (Chacron et al., 2005c; Chacron,
006). In both cases, burst spikes were mostly tuned to low
requencies while isolated spikes were mostly tuned to
igh frequencies (Fig. 3E, F, solid dashed line).

The situation for I-cells was overall similar for superfi-
ial, intermediate, and deep types. The mutual information
ensities computed from all spikes (solid black line) were
ostly broadband under global stimulation for superficial

Fig. 4A), intermediate (Fig. 4C), and deep (Fig. 4E) cell
ypes. For superficial and deep cells, the full spike trains
ontained the lowest and highest amounts of information,
espectively. The mutual information densities computed
rom all spikes were greater at low frequencies under local
timulation for superficial (Fig. 4B), intermediate (Fig. 4D),
nd deep (Fig. 4F). In all cases, burst spikes were mostly
uned to low frequencies (compare solid gray lines) while
solated spikes were tuned to high frequencies (compare
ashed black lines). It is interesting to note that isolated
pikes showed a much greater change in tuning contingent
n stimulation geometry than burst spikes did (Fig. 4). We

ig. 4. Bursts and Isolated spikes code for different stimulus attributes
nder local and global stimulation for I-cells. Population averaged
utual information rate densities for all spikes (black), bursts (gray),
nd isolated spikes (dashed) for superficial I-cells under global stim-
lation (A), for superficial I-cells under local stimulation (B), for inter-
ediate I-cells under global stimulation (C), for intermediate I-cells
nder local stimulation (D), for deep I-cells under global stimulation
E), and for deep I-cells under local stimulation (F).
ote that, while both E and I cells showed strong changes
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n peak frequency tuning under global vs. local stimulation,
he causes for this change are quite different. Indeed, while
oth E and I-cells tend to show decreased lower informa-

ion rate density at low (�40 Hz) frequencies for global
timulation, only E cells show a concomitant increase in
he information rate density for high (�40 Hz) frequencies
Figs. 3 and 4). As such, the increased frequency tuning of
-cells under global stimulation is really a reflection of their
verall decreased response to such stimuli.

We next quantified these results by computing for each
ell the frequency at which the information tuning curve
as maximal, the peak frequency, for all spikes, burst
pikes, and isolated spikes. We investigated the effects of
yramidal cell heterogeneities on these quantities by com-
uting the correlation coefficient between the peak fre-
uency and the mean firing rate under baseline conditions
or each cell (E or I) under local and global stimulation. The
esults are shown in Table 1.

Overall, we found that deep E-cells had a higher peak
requency than superficial E-cells under local stimulation
nd this was reflected in the burst and isolated spike trains
nd can be seen in Fig. 3 as well. The isolated spikes of
eep E-cells also displayed a larger peak frequency than
hose of superficial E-cells under global geometry. We also
ound that the isolated spikes of deep I-cells displayed a
arger peak frequency than those of superficial I-cells un-
er local geometry (Table 1).

We next looked at the putative dependence of the
utual information rate of all spikes, burst spikes, and

solated spikes on the cell’s mean firing rate under baseline
ctivity by again computing cross-correlation coefficients.
owever, because it is known that the mutual information

ate increases linearly with firing rate (Borst and Haag,
001), we normalized the information rates by the respec-
ive firing rates (i.e. the mutual information rate obtained for
urst spikes was normalized by the mean number of burst
pikes per unit time during stimulation). After this normal-
zation, we did not find any statistically significant correla-
ion coefficients between the mutual information rate and
he mean firing rate under any condition (data not shown).
his indicated that the larger mutual information rates dis-
layed by deep pyramidal cells were purely a conse-
uence of their larger firing rates.

Because of the relative constancy of coding of bursts
nd isolated spikes for either E or I-cells under either local
r global stimulation, we pooled our data over deep, inter-
ediate, and superficial types. We found that the peak

requency from all spikes, bursts, and isolated spikes was
lways higher under global stimulation for both E and

able 1. Summary of correlation coefficients between the peak frequ
ndicated in parentheses

All spikes

-cells global 0.2215 (0.2874)
-cells local 0.6896 (�10�3)

-cells global 0.2661 (0.2313)
-cells local 0.1443 (0.5218)
-cells (Fig. 5A). Moreover, the peak frequency for bursts
s
P

as significantly lower than that computed from isolated
pikes (P�10�3, paired t-test, n�94), indicating that the
wo trains code for different frequency ranges under both
ocal and global stimulation. We also computed the mutual
nformation rates associated with bursts and isolated
pikes. E-cells showed increased information rate under
lobal stimulation. Segregation of the spike train into burst
nd isolated spikes revealed that it is increased informa-
ion from the isolated spikes that is responsible (Fig. 5B).
or I-cells, the information rate under global stimulation is
ignificantly lower than under local stimulation (Fig. 5B),
eflecting decreased tuning to low frequencies (Fig. 4).
egregation of the spike train into bursts and isolated

d the cell’s mean firing rate under baseline conditions. P-values are

Burst spikes Isolated spikes

�0.0535 (0.7994) 0.7142 (�10�3)
0.5982 (0.0016) 0.8481 (��10�3)

�0.2892 (0.1917) 0.4101 (0.058)
0.2096 (0.3492) 0.6299 (0.0017)

ig. 5. Summary of changes in pyramidal cell frequency tuning under
ocal and global stimulation. (A) Population-averaged peak frequency
uning as measured by the mutual information rate density curves for

and I-type pyramidal cells of all three classes. (B) Population-
veraged mutual information rates for all spikes, bursts, and isolated
pikes obtained for E and I-type pyramidal cells of all three classes. (C)
opulation-averaged firing rate, burst rate, and isolated spike rate for
and I-type pyramidal cells of all classes. “*” indicates statistical
ency an
ignificance with P�0.05 and “**” indicates statistical significance with
�0.01 (see text for details).
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pikes revealed that it was decreased information trans-
ission by bursts that is responsible (Fig. 5B). Finally, we
anted to see whether changes in the burst or isolated
pike rates would underlie changes in the information rate.
e found that, for I-cells, the spike rate associated with

ursts (i.e. the number of spikes per unit time belonging to
ursts) was significantly lower under global stimulation
Fig. 5C). Therefore, the decreased information rate seen
n I-cells under global stimulation is due to decreased
nformation transmitted by bursts, which is in turn due to
ecreased burst spike rate. There was also a small but
ignificant increase in the isolated spike rate for I-cells as
e transitioned from local to global stimulation (Fig. 5C).

What can be concluded from these results? We show
hat bursts consistently code for lower frequencies than
solated spikes irrespective of stimulation geometry or py-
amidal cell heterogeneities. While cells with higher firing
ates tended to have larger burst and isolated spike rates,
ach spike coded for roughly the same amount of informa-
ion irrespective of pyramidal cell heterogeneity for either E
r I-cells under either local or global stimulation. Neverthe-

ess, there are changes in burst firing contingent on stim-
lation geometry and these are mostly seen in superficial
yramidal cells that also show the greatest changes in
requency tuning (Figs. 3 and 4). This suggests that
hanges in burst firing are correlated with changes in
requency tuning.

hanges in bursting are correlated with changes in
requency tuning

ur results demonstrate that bursts tended to code for the
ow frequency components of the stimulus irrespective of
timulus geometry or cell type. Next, we quantified the
hange in frequency tuning caused by the change in stim-
lation geometry by computing a shift index as before
Chacron et al., 2005c). This shift index is a measure of the
ell’s change in tuning to both low and high frequencies
see methods). We found a strong correlation between the
hift index computed from all spikes and the cell’s sponta-
eous firing rate (Table 2). Since the shift index is influ-
nced by changes in the information at both low and high
requencies, we also quantified the relative changes in
nformation density for the low and high frequency ranges.

e found a significant correlation between the change in
urst fraction and the change in low frequency (0–40 Hz)
utual information rate computed for all spikes (Fig. 6A,
�0.3035, P�0.01). However, the change in burst fraction
as not correlated with the change in high frequency

able 2. Summary of obtained correlation coefficients and P-values
etermined from all spikes, burst spikes, and isolated spikes and the

All spikes

hift index 0.3972 (0.005
nformation change low frequencies 0.3035 (0.01)
nformation change high frequencies 0.1012 (0.498

N�47 in all cases.
40–80 Hz) mutual information rate (Fig. 6B, R�0.1012,
f
P

�0.4983). We also separately quantified the changes in
he low frequency and high frequency information trans-
itted by bursts and isolated spikes. While there was a

ery strong correlation between the change in low fre-
uency information transmitted by bursts and the change

n burst fraction (R�0.6041, P��10�3), all the other cor-
elation coefficients were not statistically significant at the
�0.01 level and are summarized in Table 2.

These results show that changes in burst firing are
orrelated with a decrease in the low frequency mutual

nformation rate but not with the increase in high frequency
nformation that is predominantly found in E-cells as we
ransition from local to global stimulation.

theses) for the relationship between changes in frequency tuning as
ntaneous mean firing rate

Bursts Isolated spikes

0.2631 (0.074) 0.0858 (0.5662)
0.6041 (��10�3) �0.1126 (0.4513)

�0.2832 (P�0.097) 0.1906 (0.1994)

ig. 6. Correlating changes in burst firing to changes in frequency
uning. (A) The change in low frequency (0–40 Hz) mutual information
ate (local-global) plotted as a function of the cell’s change in burst
raction (local-global) showed a significant correlation (R�0.3035,
�0.01, n�47). (B) The change in high frequency (40–80 Hz) mutual

nformation rate (local-global) as a function of the change in burst
(in paren
cell’s spo

7)

3)
raction (local-global) showed no significant correlation (R�0.1012,
�0.4983, n�47).
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orrelations between burst and stimulus attributes

s mentioned previously, information theory aims to quan-
ify a system’s ability to transmit information about a stim-
lus ensemble. However, information theory by itself does
ot provide us with the transformations that occur in the
ystem in question. One approach to resolve this problem
s to look for correlations between attributes of the stimulus
nd neural response (i.e. the neural spike train) as these
orrelations will imply that information is being transmitted.
n this case, we are interested in characterizing putative
orrelations between burst and stimulus attributes.

Previous studies have shown that bursts signal partic-
lar features in the sensory environment (Gabbiani et al.,
996; Metzner et al., 1998; Sherman, 2001; Sherman and
uillery, 2002; Lesica and Stanley, 2004; Oswald et al.,
004; Marsat et al., 2009). We therefore turned our atten-
ion towards elucidating the features of the stimulus that
re encoded by bursts. Moreover, we are interested in
nderstanding how bursts code for these features: recent
esults obtained in vitro have shown that the interspike
nterval within a burst (the “burst interval”) was correlated
ith the maximum stimulus amplitude between the spikes

Doiron et al., 2007; Oswald et al., 2007). Alternatively, it
as been shown that the number of spikes in a burst (the
burst length”) was correlated with stimulus attributes such
s the stimulus’ slope (Kepecs et al., 2002; Kepecs and
isman, 2003).

We therefore quantified putative correlations be-
ween burst and stimulus attributes in our dataset. The
urst attributes analyzed were burst length and burst

nterval and the stimulus attributes were the maximum

ig. 7. Correlating burst attributes to stimulus attributes for a repres
timulus amplitude for an example cell showing a weak but significan
f stimulus slope showing a weak but significant correlation (R��0.09

�3
significant correlation (R�0.3611, P��10 ). (D) Average interspike interva
ositive correlation (R�0.4239, P��10�3).
timulus value during the burst (stimulus amplitude) and
he average stimulus slope during the burst (stimulus
lope). Thus, we computed four correlation coefficients:
1) burst length vs. amplitude, (2) burst length vs. slope,
3) burst interval vs. amplitude, (4) burst interval vs.
lope.

These quantities are shown for a representative I-cell
nder local stimulation in Fig. 7. We found a significant
egative correlation between the burst length and stimulus
mplitude (R��0.3367, P��10�3) (Fig. 7A). The corre-

ation coefficient between burst length and stimulus slope
as much weaker in magnitude but nevertheless signifi-
ant (R��0.0934, P�0.0054) (Fig. 7B). The correlation
oefficients between the burst interval and stimulus ampli-
ude and slope were significantly greater than zero (ampli-
ude: R�0.3611, P��10�3; slope: R�0.4239, P��10�3;
ig. 7C, D). While this may appear surprising at first, we
ote that I-cells are actually inhibited by increases in the
OD amplitude. The signs of the correlation coefficients

eflect this fact and are expected to be opposite to those
hat would be obtained if the cell were excited by increases
n EOD amplitude.

We next explored how these correlation coefficients
aried with cell class and stimulation geometry. As we
ound no significant relationship between the correlation
oefficient and the cell’s firing rate at the P�0.01 level
data not shown), the data were pooled across deep, in-
ermediate, and superficial pyramidal cells. Overall, we
ound significant correlation coefficients that were weak
�0.2) in magnitude between burst length and stimulus
mplitude for E (Fig. 8A) and I (Fig. 8B) cells. As expected

I-cell. (A) Number of spikes per burst (burst length) as a function of
correlation (R��0.3367, P��10�3). (B) Burst length as a function

.0054). (C) Burst interval as a function of stimulus amplitude showing
entative
t negative
34, P�0
l during a burst as a function of stimulus slope showing a significant
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rom the above argument, E and I-cells had opposite cor-
elations between burst length and stimulus amplitude. We
ound that the correlations between burst length and stim-
lus slope were not significant for either cell class. We also

ound significant correlations between burst interval and
timulus amplitudes as well as between burst interval and
timulus slope for E (Fig. 8A) and I (Fig. 8B) cells. In
eneral, correlation coefficients were slightly larger in mag-
itude under local stimulation than under global stimula-

ion, which probably reflects the fact that pyramidal cells
ypically respond more strongly to the low frequency com-
onents of time varying stimuli when these are presented
ith local geometry (Bastian et al., 2002). This is because
timuli presented with global geometry will activate feed-
ack pathways that attenuate pyramidal cell responses
Bastian et al., 2004; Chacron et al., 2005c; Chacron,
006).

Our results nevertheless show that correlations be-
ween burst and stimulus attributes were much weaker in
agnitude than those predicted from modeling studies in

ig. 8. Summary of population-averaged correlation coefficients obta
(B) cells. The correlation coefficients obtained for 0–10 Hz stimuli for
t the P�0.01 and 0.05 levels using a signrank test, respectively.
he case of burst length vs. stimulus amplitude and slope t
Kepecs et al., 2002) or observed experimentally in vitro in
he case of burst interval vs. stimulus amplitude and slope
Oswald et al., 2007). How can this discrepancy be ex-
lained? It could be argued that the stimuli we used con-
ained higher frequencies than those used previously as it
as shown that the high frequency components of a time
arying sensory stimulus can interfere with burst firing
Oswald et al., 2004). In order to address this issue, we
sed Gaussian noise stimuli that had a cutoff frequency of
0 Hz. Therefore, the stimulus’ temporal frequency content
ell completely within the coding range of bursts and would
licit the most bursting in vitro (Oswald et al., 2004). We
omputed the correlation coefficients between burst length
r interval and stimulus amplitude or slope for this low
requency stimulus.

While one might expect that using such stimuli would
ncrease the magnitude of correlations between burst and
timulus attributes based on the above argument, our re-
ults show that this is not the case (Fig. 8C, D). Indeed,
orrelation coefficients between burst and stimulus at-

een burst and stimulus attributes for 0–120 Hz stimuli for E (A) and
I (D) cells are also shown. “**” and “*” indicate statistical significance
ined betw
ributes computed for 0–10 Hz noise stimuli were largely
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imilar in magnitude to those computed for 0–120 Hz noise
timuli for both E (compare Fig. 8A, C) and I (compare Fig.
B, D) cells.

The correlation coefficients between burst length and
timulus amplitude as well as between burst length and
timulus slope were significant for E-cells under local stim-
lation (Fig. 8C). There was furthermore a weak but sig-
ificant negative correlation between burst interval and
timulus slope for E-cells under local stimulation. Surpris-
ngly, all correlation coefficients obtained for I-cells were
ot significant. Even more surprisingly, the correlation co-
fficients between burst interval and stimulus amplitude
nd slope were actually weaker in magnitude for 0–10 Hz
timuli than those obtained for 0–120 Hz stimuli.

Finally, we note that the correlation coefficients were
gain larger in magnitude under local stimulation than
lobal stimulation for the reasons mentioned above. Nev-
rtheless, the correlation coefficients between burst inter-
al and either of stimulus amplitude or slope remained
uch smaller than those observed in vitro for either of local
r global stimulation. We also only found a significant
orrelation between burst interval and stimulus amplitude
or local stimulation (R��0.7344, P�0.0065, n�12).

DISCUSSION

ummary of results

e have investigated the coding properties of ELL pyra-
idal cell bursts and isolated spikes in vivo in response to
imics of prey and conspecific-related stimuli. We found

hat pyramidal cells of different classes responded differ-
ntially to the two stimulus categories. Specifically, super-
cial and intermediate pyramidal cells had greater tenden-
ies to burst for local stimulation while deep pyramidal cells
ad similar tendencies to burst under both stimulation
egimes. In order to understand which features of the
timulus elicited burst firing, we partitioned the spike train
nto bursts and isolated spikes. We found that, under both
ocal and global stimulation, bursts tended to code for the
ow frequency components of the stimulus while isolated
pikes tended to code for a much broader frequency range
rrespective of pyramidal cell heterogeneities. We found a
orrelation between changes in pyramidal cell burst firing
roperties and their frequency tuning under local and
lobal stimulation. Namely, the difference in low frequency
utual information rate between both stimulus categories
as correlated with the difference in burst fraction. We also

ound that burst length (i.e. the number of spikes per burst)
as correlated with stimulus amplitude but not slope.
hile the burst interval did display significant correlation
ith stimulus amplitude and slope, these correlations were
uch weaker in magnitude than those observed in vitro

Oswald et al., 2007).

omparison between burst coding in vitro and
n vivo

e have shown that the correlation coefficients between
urst and stimulus attributes were weak in vivo. This is

ontrary to what has been observed in vitro where the t
urst interval codes for stimulus slope (Doiron et al., 2007;
swald et al., 2007). The coding properties of burst length
ave been previously investigated in mathematical models
f burst firing where it was found that burst length could
ode for input slope (Kepecs et al., 2002). Our experimen-
al results show, however, that this is not the case in ELL
yramidal neurons. This difference is most likely due to the
act that Kepecs et al. (2002) considered burst dynamics
hat were slightly different than those found in ELL pyra-
idal neurons under in vivo conditions. Our results thus

howed important differences between the coding proper-
ies of burst firing in ELL pyramidal cells in vitro and in vivo.

How does one explain such differences? One possible
xplanation is that the in vitro recordings by Oswald et al.
2007) were mostly from a different ELL map than our in
ivo recordings. While this fact could a priori explain some
f the differences, it is unlikely to explain all of them for two
easons: (1) Another study performed in vitro has shown
hat the bursting mechanism of ELL pyramidal cells was
he same in all three maps (Mehaffey et al., 2008b); (2) A
ecent study performed in vivo has also shown similar
urst firing as quantified by the burst fraction for ELL
yramidal cells across all three maps (Krahe et al., 2008).
urther studies involving recordings from other ELL maps

n vivo are however needed to fully test this hypothesis.
Another explanation would be that Oswald et al. (2007)

sed the last two spikes of each burst to define the burst
nterval whereas we used the first two. However, we saw
o qualitative difference in our results when we used the

ast two spikes or the average interspike interval during the
urst (data not shown), which strongly speaks against this
ossibility. We furthermore note that the weak correlation
etween burst interval and stimulus amplitude entails poor
iscriminability between different burst intervals caused by
ifferent stimulus amplitudes and it is thus expected that
he signal detection analysis that Oswald et al. (2007) used
ould give poorer discriminability between interspike inter-
als if applied to our data.

Yet another possible explanation is that the burst dy-
amics of ELL pyramidal cells are quite different in vivo
nd in vitro as recently pointed out (Toporikova and Cha-
ron, 2009). This seems to be most consistent with our
esults. For example, previous studies have shown that
LL pyramidal cell bursts are characterized in vitro by a
ecreasing interspike interval throughout the burst (Lemon
nd Turner, 2000) whereas no such patterning is seen in
ivo (Bastian and Nguyenkim, 2001). Finally, in vitro stud-

es predict that using stimuli with lower frequency content
ill promote burst firing that will code for these low fre-
uencies (Oswald et al., 2004). However, our results
howed that using 0–10 Hz stimuli led to correlation coef-
cients between burst and stimulus attributes that were
eaker in magnitude than those obtained for 0–120 Hz
timuli, which further supports the hypothesis that the dif-
erent burst dynamics seen in vivo may explain the dis-
repancies between our results and those obtained in vitro.

Nevertheless, we did see that bursts in ELL pyramidal
ells tended to code for the low frequency components of

he stimulus for both local and global stimulation, which is



s
2
b
l
2
p
t
t
a
d
a
S
G

h
q
r
m
f
j
c
o
2
2
s

R
p

W
s
c
f
h
p
t
n
2
a
g
fi
E
s
w
e
c

a
2
c
g
l
r
n
i
c
b
d
r

C

O
t
d
t
2
n
a
h
t
a
2
a
s
v
s
r
2
m
(
l
M
t
i
2
n
n
r
p

O
e
c
t
l
t
q
a
a
l
t
i
d
c
t
d
u

A
t
F
(
(

O. Ávila-Åkerberg et al. / Neuroscience 168 (2010) 300–313 311
imilar to what was seen previously in vitro (Oswald et al.,
004). Coding of low frequency stimuli by bursts has also
een seen in thalamic relay neurons of the lateral genicu-

ate nucleus (Lesica and Stanley, 2004; Lesica et al.,
006). This property of burst firing thus appears to be
reserved in vivo as well as across sensory systems and
hus appears to be a general property of excitable systems
hat is independent of particular burst dynamics (Oswald et
l., 2004). This property is also consistent with bursts
etecting particular features of sensory input (Gabbiani et
l., 1996; Metzner et al., 1998; Chacron et al., 2001, 2004;
herman, 2001; Krahe et al., 2002, 2008; Sherman and
uillery, 2002).

Our results also show that effects of pyramidal cell
eterogeneities on the coding of information by bursts are
uantitative rather than qualitative. This is a surprising
esult because heterogeneities in terms of dendritic tree
orphology or distributions of ion channels can have pro-

ound consequences on burst firing (Mainen and Se-
nowski, 1996; Häusser and Mel, 2003) and ELL pyramidal
ells display large morphological and physiological heter-
geneities (Bastian and Nguyenkim, 2001; Bastian et al.,
002, 2004; Harvey-Girard and Dunn, 2003; Chacron,
006; Ellis et al., 2007b, 2008; Maler, 2009a,b). Further
tudies are needed to understand this surprising result.

ole of bursts in information coding by ELL
yramidal cells

e observed burst firing more prominently under local
timulation as compared with global stimulation and this
hange was correlated with the greater response to low
requencies seen under local stimulation. Previous studies
ave shown that indirect feedback unto pyramidal cells via
arallel fibers from the caudal lobe of the cerebellum ac-
ively attenuates responses to the low frequency compo-
ents of global stimuli (Bastian et al., 2004; Chacron et al.,
005c; Chacron, 2006; Chacron and Bastian, 2008) and is
lso likely responsible for the attenuated burst firing under
lobal stimulation. As such, our results suggest that burst
ring in pyramidal cells of the centrolateral segment of the
LL seen in vivo serves to signal the presence of a local
timulus (prey or rock) in the environment, in agreement
ith previous results showing that correlated bursts might
ncode this type of stimulus at the population level (Cha-
ron and Bastian, 2008).

It was recently shown that pyramidal cell bursts can
lso reliably detect the occurrence of chirps (Marsat et al.,
009), which are a particular type of fast, high frequency,
ommunication signal emitted by Apteronotus during ag-
ressive and courtship encounters that occur on top of a

ow-frequency beat (Zakon et al., 2002). The ability to
espond with bursts to these high frequency features of
atural stimuli is, however, limited to E-type pyramidal cells

n the lateral segment of the ELL. Pyramidal cells in the
entrolateral segment, which were investigated here, fire
ursts only in response to low-frequency events and have
ifferent physiological properties than lateral segment py-

amidal cells (Krahe et al., 2008). n
ontrol of burst firing in ELL pyramidal cells

ur present results confirm previous ones that have shown
hat pyramidal cell responses to sensory input are highly
ynamic and are controlled by specialized neural circuitry
hat includes glutamatergic (Bastian, 1986; Chacron et al.,
005c; Chacron, 2006) as well as cholinergic and seroto-
ergic feedback pathways (Johnston et al., 1990; Ellis et
l., 2007a; Mehaffey et al., 2008a). At the cellular level, it
as been demonstrated that pyramidal cell burst firing is
ightly regulated by inhibition (Mehaffey et al., 2005, 2007)
s well as voltage-gated conductances (Doiron et al.,
003b; Noonan et al., 2003; Fernandez et al., 2005; Ellis et
l., 2007b). Small conductance calcium-activated potas-
ium channels have been shown to regulate burst firing in
itro (Ellis et al., 2007b), which is particularly interesting
ince a recent study has shown that these channels also
egulate burst dynamics in vivo (Toporikova and Chacron,
009). Cholinergic and serotonergic neuromodulatory
echanisms regulate SK channels in other systems

Nicoll, 1988; Villalobos et al., 2005) and such neuromodu-
atory inputs are known to be present in the ELL (Phan and

aler, 1983; Johnston et al., 1990). Although the effects of
he cholinergic pathway are beginning to be understood
ncluding a potential modulation of SK channels (Ellis et al.,
007a; Mehaffey et al., 2008a), the effects of the seroto-
ergic pathway are still unknown. Further studies are
eeded to determine the roles played by these pathways in
egulating burst firing and information processing by ELL
yramidal cells.

CONCLUSION

ur results have shown that neural heterogeneities gen-
rally had quantitative rather qualitative effects on the
oding of sensory information by bursts of action poten-
ials: bursts of action potentials tended to be elicited by the
ow frequency components of time varying stimuli irrespec-
ive of these heterogeneities. Similar coding of low fre-
uencies is observed across sensory modalities and thus
ppears to be a general feature of coding by bursts of
ction potentials. However, we also observed weak corre-

ations between burst and stimulus attributes: this is con-
rary to what is observed in vitro or predicted from model-
ng studies. Our results suggest that these differences are
ue to the fact that the burst dynamics of ELL pyramidal
ells are different in vivo and in vitro. Thus, it will be critical
o determine the influence of in vivo conditions on burst
ynamics that have been characterized in vitro in order to
nderstand the functional role of burst firing in the CNS.

cknowledgments—This research was supported by grants from
he Canadian Institutes of Health Research (CIHR), the Canada
oundation for Innovation (CFI) and the Canada Research Chairs
CRC) program to MJC, the Mexican science foundation
CONACyT) to OAA, and from the Natural Sciences and Engi-

eering Research Council (NSERC) and CFI to RK.



B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

D

D

D

D

D

E

E

E

F

F

F

G

G

H

H

H

H

H

I

I

J

J

K

K

K

K

K

L

O. Ávila-Åkerberg et al. / Neuroscience 168 (2010) 300–313312
REFERENCES

annister NJ, Larkman AU (1995a) Dendritic morphology of CA1
pyramidal neurones from the rat hippocampus: I. branching pat-
terns. J Comp Neurol 360:150–160.

annister NJ, Larkman AU (1995b) Dendritic morphology of CA1
pyramidal neurones from the rat hippocampus: II. spine distribu-
tions. J Comp Neurol 360:161–171.

astian J (1986) Gain control in the electrosensory system mediated
by descending inputs to the electrosensory lateral line lobe. J Neu-
rosci 6:553–562.

astian J, Chacron MJ, Maler L (2002) Receptive field organization
determines pyramidal cell stimulus-encoding capability and spatial
stimulus selectivity. J Neurosci 22:4577–4590.

astian J, Chacron MJ, Maler L (2004) Plastic and non-plastic cells
perform unique roles in a network capable of adaptive redundancy
reduction. Neuron 41:767–779.

astian J, Courtright J (1991) Morphological correlates of pyramidal
cell adaptation rate in the electrosensory lateral line lobe of weakly
electric fish. J Comp Physiol A 168:393–407.

astian J, Nguyenkim J (2001) Dendritic modulation of burst-like firing
in sensory neurons. J Neurophysiol 85:10–22.

erman NJ, Hincke MT, Maler L (1995) Inositol 1,4,5-trisphosphate
receptor localization in the brain of a weakly electric fish (Apter-
onotus leptorhynchus) with emphasis on the electrosensory sys-
tem. J Comp Neurol 361:512–524.

orst A, Haag J (2001) Effects of mean firing on neural information
rate. J Comput Neurosci 10:213–221.

orst A, Theunissen F (1999) Information theory and neural coding.
Nat Neurosci 2:947–957.

ullock TH, Hopkins CD, Popper AN, Fay RR (2005) Electroreception.
New York: Springer.

hacron MJ (2006) Nonlinear information processing in a model sen-
sory system. J Neurophysiol 95:2933–2946.

hacron MJ, Bastian J (2008) Population coding by electrosensory
neurons. J Neurophysiol 99:1825–1835.

hacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003a) Non-
classical receptive field mediates switch in a sensory neuron’s
frequency tuning. Nature 423:77–81.

hacron MJ, Longtin A, Maler L (2001) Simple models of bursting and
non-bursting P-type electroreceptors. Neurocomputing 38:129–139.

hacron MJ, Longtin A, Maler L (2003b) The effects of spontaneous
activity, background noise, and the stimulus ensemble on informa-
tion transfer in neurons. Network 14:803–824.

hacron MJ, Longtin A, Maler L (2004) To burst or not to burst?
J Comput Neurosci 17:127–136.

hacron MJ, Longtin A, Maler L (2005a) Delayed excitatory and
inhibitory feedback shape neural information transmission. Phys
Rev E Stat Nonlin Soft Matter Phys 72(5 Pt 1):051917.

hacron MJ, Maler L, Bastian J (2005b) Electroreceptor neuron dy-
namics shape information transmission. Nat Neurosci 8:673–678.

hacron MJ, Maler L, Bastian J (2005c) Feedback and feedforward
control of frequency tuning to naturalistic stimuli. J Neurosci
25:5521–5532.

oiron B, Chacron MJ, Maler L, Longtin A, Bastian J (2003a) Inhibitory
feedback required for network oscillatory responses to communi-
cation but not prey stimuli. Nature 421:539–543.

oiron B, Laing C, Longtin A, Maler L (2002) Ghostbursting: a novel
neuronal burst mechanism. J Comput Neurosci 12:5–25.

oiron B, Longtin A, Turner RW, Maler L (2001) Model of gamma
frequency burst discharge generated by conditional backpropaga-
tion. J Neurophysiol 86:1523–1545.

oiron B, Noonan L, Lemon N, Turner RW (2003b) Persistent Na�
current modifies burst discharge by regulating conditional back-
propagation of dendritic spikes. J Neurophysiol 89:324–337.

oiron B, Oswald AM, Maler L (2007) Interval coding. II. Dendrite-
dependent mechanisms. [see comment]. J Neurophysiol 97:

2744–2757.
llis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ (2007a)
Muscarinic receptors control frequency tuning through the down-
regulation of an A-type potassium current. J Neurophysiol 98:
1526–1537.

llis LD, Maler L, Dunn RJ (2008) Differential distribution of SK chan-
nel subtypes in the brain of the weakly electric fish Apteronotus
leptorhynchus. J Comp Neurol 507:1964–1978.

llis LD, Mehaffey WH, Harvey-Girard E, Turner RW, Maler L, Dunn
RJ (2007b) SK channels provide a novel mechanism for the control
of frequency tuning in electrosensory neurons. J Neurosci 27:
9491–9502.

ernandez FR, Mehaffey WH, Turner RW (2005) Dendritic Na� cur-
rent inactivation can increase cell excitability by delaying a somatic
depolarizing afterpotential. J Neurophysiol 94:3836–3848.

ortune ES, Rose G (1997) Passive and active membrane properties
contribute to the temporal filtering properties of midbrain neurons in
vivo. J Neurosci 17:3815–3825.

rank K, Becker MC (1964) Microelectrodes for recording and stimu-
lation. In: Physical techniques in biological research, part A Vol. 5,
pp 23–84. New York: Academic Press.

abbiani F, Metzner W, Wessel R, Koch C (1996) From stimulus
encoding to feature extraction in weakly electric fish. Nature
384:564–567.

ray C, Singer W (1989) Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex. Proc Natl Acad Sci U S A
86:1698–1702.

arvey-Girard E, Dunn RJ (2003) Excitatory amino acid receptors of
the electrosensory system: the NR1/NR2B N-methyl-D-aspartate
receptor. J Neurophysiol 89:822–832.

arvey-Girard E, Dunn RJ, Maler L (2007) Regulated expression of
N-methyl-D-aspartate receptors and associated proteins in teleost
electrosensory system and telencephalon. J Comp Neurol 505:
644–668.

äusser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neu-
robiol 13:372–383.

eiligenberg W, Dye J (1982) Labelling of electrosensory afferents in
a gymnotid fish by intracellular injection of HRP: the mystery of
multiple maps. J Comp Physiol A 148:287–296.

itschfeld ÉM, Stamper SA, Vonderschen K, Fortune ES, Chacron MJ
(2009) Effects of restraint and immobilization on electrosensory
behaviors of weakly electric fish. ILAR J 50:361–372.

zhikevich EM (2000) Neural excitability, spiking, and bursting. Int J
Bifurcat Chaos 10:1171–1269.

zhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts
as a unit of neural information: selective communication via reso-
nance. Trends Neurosci 26:161–167.

arvis MR, Mitra PP (2001) Sampling properties of the spectrum and
coherency of sequences of action potentials. Neural Comput
13:717–749.

ohnston SA, Maler L, Tinner B (1990) The distribution of serotonin in
the brain of Apteronotus leptorhynchus: an immunohistochemical
study. J Chem Neuroanat 3:429–465.

epecs A, Lisman J (2003) Information encoding and computation
with spikes and bursts. Netw Comput Neural Syst 14:103–118.

epecs A, Wang XJ, Lisman J (2002) Bursting neurons signal input
slope. J Neurosci 22:9053–9062.

rahe R, Bastian J, Chacron MJ (2008) Temporal processing across
multiple topographic maps in the electrosensory system. J Neuro-
physiol 100:852–867.

rahe R, Gabbiani F (2004) Burst Firing in sensory systems. Nat Rev
Neurosci 5:13–23.

rahe R, Kreiman G, Gabbiani F, Koch C, Metzner W (2002) Stimulus
encoding and feature extraction by multiple sensory neurons.
J Neurosci 22:2374–2382.

emon N, Turner RW (2000) Conditional spike backpropagation gen-
erates burst discharge in a sensory neuron. J Neurophysiol

84:1519–1530.



L

L

M

M

M

M

M

M

M

M

M

M

M

M

M

N

N

N

O

O

P

R

S

S

S

S

S

S

S

S

S

T

V

W

Z

Z

O. Ávila-Åkerberg et al. / Neuroscience 168 (2010) 300–313 313
esica NA, Stanley GB (2004) Encoding of natural scene movies by
tonic and burst spikes in the lateral geniculate nucleus. J Neurosci
24:10731–10740.

esica NA, Weng C, Jin J, Yeh CI, Alonso JM, Stanley GB (2006)
Dynamic encoding of natural luminance sequences by LGN bursts.
PLoS Biol 4:e209.

ainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on
firing patterns in model neocortical neurons. Nature 382:363–366.

aler L (1979) The posterior lateral line lobe of certain gymnotiform
fish:quantitative light microscopy. J Comp Neurol 183:323–363.

aler L (2009a) Receptive field organization across multiple elec-
trosensory maps. I. Columnar organization and estimation of re-
ceptive field size. J Comp Neurol 516:376–393.

aler L (2009b) Receptive field organization across multiple elec-
trosensory maps. II. Computational analysis of the effects of re-
ceptive field size on prey localization. J Comp Neurol 516:
394–422.

aler L, Sas EK, Rogers J (1981) The cytology of the posterior lateral
line lobe of high frequency weakly electric fish (Gymnotidae): den-
dritic differentiation and synaptic specificity in a simple cortex.
J Comp Neurol 195:87–139.

arsat G, Pollack GS (2006) A behavioral role for feature detection by
sensory bursts. J Neurosci 26:10542–10547.

arsat G, Proville RD, Maler L (2009) Transient signals trigger syn-
chronous bursts in an identified population of neurons. J Neuro-
physiol 102:714–723.

ehaffey WH, Doiron B, Maler L, Turner RW (2005) Deterministic
multiplicative gain control with active dendrites. J Neurosci
25:9968–9977.

ehaffey WH, Ellis LD, Krahe R, Dunn RJ, Chacron MJ (2008a) Ionic
and neuromodulatory regulation of burst discharge controls fre-
quency tuning. J Physiol Paris 102:195–208.

ehaffey WH, Fernandez FR, Maler L, Turner RW (2007) Regulation
of burst dynamics improves differential encoding of stimulus fre-
quency by spike train segregation. J Neurophysiol 98:939–951.

ehaffey WH, Maler L, Turner RW (2008b) Intrinsic frequency tuning
in ELL pyramidal cells varies across electrosensory maps. J Neu-
rophysiol 99:2641–2655.

etzner W, Juranek J (1997) A sensory brain map for each behavior?
Proc Natl Acad Sci U S A 94:14798–14803.

etzner W, Koch C, Wessel R, Gabbiani F (1998) Feature extraction
by burst-like spike patterns in multiple sensory maps. J Neurosci
18:2283–2300.

elson ME, MacIver MA (1999) Prey capture in the weakly electric fish
Apteronotus albifrons: sensory acquisition strategies and elec-
trosensory consequences. J Exp Biol 202:1195–1203.

icoll RA (1988) The coupling of neurotransmitter receptors to ion
channels in the brain. Science 241:545–551.

oonan L, Doiron B, Laing C, Longtin A, Turner RW (2003) A dynamic
dendritic refractory period regulates burst discharge in the elec-

trosensory lobe of weakly electric fish. J Neurosci 23:1524–1534.
swald AM, Doiron B, Maler L (2007) Interval coding. I. Burst inter-
spike intervals as indicators of stimulus intensity. [see comment].
J Neurophysiol 97:2731–2743.

swald AMM, Chacron MJ, Doiron B, Bastian J, Maler L (2004)
Parallel processing of sensory input by bursts and isolated spikes.
J Neurosci 24:4351–4362.

han M, Maler L (1983) Distribution of muscarinic receptors in the
caudal cerebellum and electrosensory lateral line lobe of gymno-
tiform fish. Neurosci Lett 42:137–143.

ieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1996)
Spikes: exploring the neural code. Cambridge, MA: MIT Press.

abourin P, Pollack GS (2009) Behaviorally relevant burst coding in
primary sensory neurons. J Neurophysiol 102:1086–1091.

adeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural vari-
ability, detection thresholds, and information transmission in the
vestibular system. J Neurosci 27:771–781.

aunders J, Bastian J (1984) The physiology and morphology of two
classes of electrosensory neurons in the weakly electric fish Apter-
onotus leptorhynchus. J Comp Physiol A 154:199–209.

hannon CE (1948) The mathematical theory of communication. Bell
Syst Tech J 27:379–423, 623–656.

herman SM (2001) Tonic and burst firing: dual modes of thalamo-
cortical relay. Trends Neurosci 24:122–126.

herman SM, Guillery RW (2002) The role of the thalamus in the flow
of information to the cortex. Philos Trans R Soc Lond B Biol Sci
357:1695–1708.

humway C (1989) Multiple electrosensory maps in the medulla of
weakly electric Gymnotiform fish. I. Physiological differences.
J Neurosci 9:4388–4399.

topfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour
discrimination on desynchronization of odour-encoding neural as-
semblies. Nature 390:70–74.

wensen AM, Bean BP (2003) Ionic mechanisms of burst firing in
dissociated Purkinje neurons. J Neurosci 23:9650–9663.

oporikova N, Chacron MJ (2009) Dendritic SK channels gate infor-
mation processing in vivo by regulating an intrinsic bursting mech-
anism seen in vitro. J Neurophysiol 102:2273–2287.

illalobos C, Beique JC, Gingrich JA, Andrade R (2005) Serotonergic
regulation of calcium-activated potassium currents in rodent pre-
frontal cortex. Eur J Neurosci 22:1120–1126.

ang XJ, Rinzel J (1995) Oscillatory and bursting properties of neu-
rons. In: The handbook of brain theory and neural networks (Arbib,
MA, ed), pp 686–691. Cambridge, MA: MIT Press.

akon HH, Oestreich J, Tallarovic S, Triefenbach F (2002) EOD
modulations of brown ghost electric fish: JARs, chirps, rises, and
dips. J Physiol Paris 96:451–458.

upanc GKH, Maler L (1993) Evoked chirping in the weakly electric
fish Apteronotus leptorhynchus: a quantitative biophysical analy-

sis. Can J Zool 71:2301–2310.
(Accepted 7 March 2010)
(Available online 15 March 2010)


	NEURAL HETEROGENEITIES AND STIMULUS PROPERTIES AFFECT BURST CODING IN VIVO
	EXPERIMENTAL PROCEDURES
	Animal housing
	Experimental setup
	Recording
	Stimulation
	Pyramidal cell classification
	Analysis
	Burst analysis
	Mutual information analysis

	RESULTS
	Superficial and deep pyramidal cells display differential burst firing under local and global stimulation
	Information transmission by bursts and isolated spikes under local and global stimulation
	Changes in bursting are correlated with changes in frequency tuning
	Correlations between burst and stimulus attributes

	DISCUSSION
	Summary of results
	Comparison between burst coding in vitro and in vivo
	Role of bursts in information coding by ELL pyramidal cells
	Control of burst firing in ELL pyramidal cells

	CONCLUSION
	Acknowledgments
	REFERENCES


