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Transmembrane proteins are critical, not only for cell survival,

but also for a myriad of physiological functions in multicellular

organisms. It is therefore necessary to have mechanisms that

regulate the number of these proteins present on the cellular

membrane at any given time. One such mechanism involves

protein trafficking, or constitutive cycling, in which transmem-

brane proteins are continuously transferred between a pool located

within the endoplasmic reticulum and the membrane surface by

shuttle proteins (Figure 1) [1]. The actual number of proteins at

the membrane surface is controlled by the rate of exocytosis (i.e.,

the rate at which proteins are inserted into the membrane) as well

as the rate of endocytosis (i.e., the rate at which proteins are

removed from the membrane). A higher rate of exocytosis will

increase the number of proteins at the membrane surface, whereas

a lower rate of exocytosis will decrease that number [1–3].

Receptor Trafficking as a Mechanism for the
Regulation of Transmembrane Proteins

Both exocytosis and endocytosis of transmembrane proteins

involve distinct agents, including chaperones, glycosylases, micro-

tubule systems, actin, as well as myosin [1], and can be

independently regulated by several known mechanisms [1–3],

including circulating hormones [4,5]. Ever since its proposal in the

1970s in the context of gastric acid regulation [6,7], protein

trafficking has been shown to have a crucial role in a variety of

physiological functions, including the regulation of gastric acid

[6,7], osmolarity through water transport [8], glucose levels [9],

and regulation of various ionic concentrations [10–12].

In particular, protein trafficking has also been shown to occur in

excitable cells such as cardiac myocytes [2,3] and neurons [13,14].

The hippocampus has received perhaps the most attention in this

regard; trafficking has been demonstrated to have a critical role in

determining the synaptic dynamics involved in synaptic plasticity,

which is thought to underlie learning and memory. Increases and

decreases in AMPA receptor trafficking are correlated with long-

term potentiation and depression of synapses, respectively.

Further, ion channels can be inserted in and out of the neuronal

membrane in a continuous fashion along with receptors during

plasticity [15,16].

As the molecular basis for channel and receptor trafficking are

studied, we need to be cognizant of the cellular and organismal

consequences of these mechanisms. Continuous channel and

receptor trafficking appears to be a ubiquitous mechanism in

both vertebrate and invertebrate animals. At first glance, this sort

of trafficking of transmembrane proteins appears to be metabol-

ically costly. What benefits, if any, do these trafficking

mechanisms afford physiological systems over other mechanisms

such as protein synthesis and degradation? Answering this

important question will require an integrative approach that

relates the molecular basis of trafficking to changes in cell

function and behavior. Specialized animal model systems have

historically proven to be useful in such multilevel integrative

studies [17–19].

Weakly Electric Fishes as a Model System for the
Study of Receptor Trafficking

Weakly electric fish have a suite of simple physiological and

behavioral adaptations that make them ideal for studying the

physiological basis and evolution of behavior. These adaptations

relate to these fishes’ ability to generate an electric field (the

electric organ discharge, or EOD) around their body, which is

detected by electroreceptors in the skin (Figure 2) [20]. This active

electric sense is used in a wide variety of evolutionary and

ecologically important functions, including prey location and

capture [19] and communication with conspecifics [21,22].

The EOD results from the sum of ionic currents produced by

specialized excitable cells in the electric organ called electrocytes,

which are modified muscle cells [23]. In Sternopygus macrurus, a species

of South American gymnotiform weakly electric fish commonly

known as longtail or goldline knifefish, a detailed description of the

ionic and molecular basis for the generation of the sinusoidal electric

field has been achieved [24]. The electrocytes use a combination of

specialized excitatory sodium channels and potassium channels to

generate one action potential per EOD cycle: the kinetics and

relative distribution of these channels are the sole determinants of

EOD magnitude and duration [25,26]. The EOD duration is used

to communicate the sex and social status of an individual fish [27],

whereas the EOD amplitude will effectively determine the animal’s

sensing volume (i.e., the volume around its body within which it can

detect objects such as prey or conspecifics) as well as the emission

volume of communication signals (Figure 2) [28]. Previous studies

have shown that various hormones such as androgens and estrogens

will modulate EOD duration through the regulation of both sodium
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and potassium conductances in electrocytes [29]. This level of detail

between ion channel regulation in excitable cells and an easily

measured behavioral output has not been described in other

vertebrate systems.

A New Functional Role for Receptor Trafficking
and a New Mechanism for Its Regulation

In this issue of PLoS Biology, Markham et al. [30] found that

social and circadian environmental factors result in dramatic

changes in the amplitude of the electric field of individual

Sternopygus: specifically, they found that Sternopygus increases its

EOD amplitude at nighttime, when the animal is most active,

hunting for prey and interacting with conspecifics.

The authors then examine the hierarchy of mechanisms that

underlie this organismal-level phenomenon. Because circadian

variations in the pituitary adrenocorticotropic hormone (ACTH)

have been observed in a variety of vertebrate species [31],

Markham et al. hypothesized that the circadian variations in the

EOD amplitude of Sternopygus were due to changing levels of

ACTH as was observed for another species of weakly electric fish,

Brachyhypopomus pinnicaudatus [32]. The authors found that injection

of exogenous ACTH into the animal leads to increases in the EOD

amplitude during the day. This phenomenon can be reproduced

in isolated electrocytes from these animals: the application of

ACTH causes an increase in the amplitude of the action potential,

which directly determines EOD amplitude.

What are the mechanisms that underlie increased action

potential height? One hypothesis is that this phenomenon is due

to an increased number of sodium channels at the membrane

surface, which could be due to a higher rate of channel exocytosis.

Markham et al. [30] show that ACTH affects a cAMP/PKA

pathway to up-regulate two distinct ionic currents, a Na+ current

and an inward rectifier K+ current, by increasing exocytosis of the

two transmembrane molecules that mediate these currents. A

Figure 1. Schematic diagram of the processes involved in the
trafficking of transmembrane proteins using ion channels as a
example. Ion channels from a pool within the endoplasmic reticulum
are moved to the membrane surface via shuttle proteins, a process
called exocytosis. Ion channels can also be moved from the membrane
surface back to the endoplasmic reticulum via different shuttle
proteins, a process called endocytosis. Both endocytosis and exocyto-
sis occur continuously, and one thus characterizes them by their rates,
which are simply the number of transmembrane proteins being
removed and inserted from the membrane per unit time, respectively.
Both rates can be independently regulated.
doi:10.1371/journal.pbio.1000211.g001

Figure 2. Principles of electroreception by weakly electric fish.
(A) Electrogenesis in Sternopygus macrurus. Adult fish are on the order
of tens of centimeters in length. The electric organ is located along the
tail and produces a quasisinusoidal electric field whose frequency
varies between 40 and 200 Hz. The electric organ, which is roughly
located where the white stripe on the side of the fish appears, is
composed of electrocytes with voltage-gated sodium and potassium
channels that are concentrated on the caudal aspect of the cell
membrane, arranged in series (inset). The currents generated by these
channels summed over all electrocytes give rise to a potential
difference between the inside and outside of the fish that propagates
through the water at the speed of light. The colors surrounding the
photograph of the fish correspond to the relative strength of the
electric field. In this snapshot of the electric field, the region around
the body and head is positive (blue colors) and the region around the
tail is negative (red colors). At other times, the positive and negative
areas are reversed. This field is detected by electroreceptors that are
embedded in the skin. (B) Sternopygus at night or after social
interactions. These conditions lead to an increase in the circulating
ACTH, which increases the rate of exocytosis of channels in the
electrocytes, thereby increasing their density (inset). This, in turn,
increases the intensity of the electric field and, therefore, the distance
at which the electric field propagates in the water. As a result, salient
objects like prey items (purple dot) may be detected at greater
distances. (C) Sternopygus during the day or in solitary conditions.
Under these circumstances, there is a smaller rate of exocytosis due to
lower levels of ACTH and thus fewer channels in the electrocytes
(inset). As a result, the fish produces a weaker electric field that will
decay over smaller distances. Because electrosensory perception is
dependent on the detection of voltage differences in the water, this
reduced electric field is less effective for detecting prey and for
communicating to nearby conspecifics. Sternopygus photograph
courtesy of Scott Shulz.
doi:10.1371/journal.pbio.1000211.g002
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delayed rectifier K+ current that is also found in these cells is not

regulated by this mechanism. Thus, social cues lead to increased

circulating ACTH, which modulates intracellular cAMP/PKA,

which in turn increases the rate of sodium channel insertion into

the membrane of the electrocyte. This increase in sodium channels

leads to an increase in EOD amplitude, which will improve the

distance at which detection of behaviorally relevant stimuli will

occur [28].

Organismal Approaches to Understanding
Channel and Receptor Trafficking

The results of Markham et al. are an example of how an

organismal perspective can be used to elucidate the functional

roles of subcellular phenomena in evolutionarily relevant behav-

iors. This work has shown new modes for the regulation of ion

channel trafficking, including circadian and social cues. This has

important implications for the study of protein trafficking in

general as environmental factors can now be used as an additional

tool to study this phenomenon in other systems. Of particular

interest are cardiac myocytes, which display many similarities with

electrocytes [23], and sodium channel trafficking [2,3], which can

also be regulated by hormones [4].

Interestingly, Markham et al. [30] show that only two of the

three ion channels present in electrocytes are up-regulated by

ACTH, raising an important question regarding specificity: What

makes a particular transmembrane protein a target for up-

regulation or down-regulation? Furthermore, can different trans-

membrane proteins be trafficked by the same shuttle protein?

Further studies are needed to address these issues.

The work of Markham et al. [30] also begins to address the

important question of identifying the putative advantages of

having constitutive cycling of transmembrane proteins, which is

metabolically costly to the organism [1]. One possible advantage is

that constitutive cycling permits responsiveness to circulating levels

of hormones on a relatively short timescale that does not need

protein synthesis [33–35]. We can expect that many animal

systems have behaviors in which hormone titers can be expected to

regulate cell excitability on a relatively fast timescale. For example,

social conditions and song production are known to modulate

circulating levels of hormones in songbirds [36]. These hormones,

which can be regulated by the animal’s behavior, in turn affect

animal behavior, forming a feedback circuit from brain mecha-

nisms through behavior. In this context, studies that examine the

interplay between molecular mechanisms and behavior using the

same sort of organismal approach that was used by Markham and

colleagues are likely to make significant progress towards this goal.
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