PHYSICAL REVIEW E 79, 011914 (2009)

Noise shaping in neural populations

Oscar Avila I'C’\kelrbelrg]’2 and Maurice J. Chacron'*?
1Department of Physics, McGill University, 3655 Sir William Osler, Montréal, Québec, Canada, H3G-1Y6
Centre for Nonlinear Dynamics in Phyiology and Medicine, McGill University, 3655 Sir William Osler,
Montréal, Québec, Canada, H3G-1Y6
3Deparlmenl of Physiology, McGill University, 3655 Sir William Osler, Montréal, Québec, Canada, H3G-1Y6
(Received 7 October 2008; revised manuscript received 10 December 2008; published 21 January 2009)

Many neurons display intrinsic interspike interval correlations in their spike trains. However, the effects of
such correlations on information transmission in neural populations are not well understood. We quantified
signal processing using linear response theory supported by numerical simulations in networks composed of
two different models: One model generates a renewal process where interspike intervals are not correlated
while the other generates a nonrenewal process where subsequent interspike intervals are negatively correlated.
Our results show that the fractional rate of increase in information rate as a function of network size and
stimulus intensity is lower for the nonrenewal model than for the renewal one. We show that this is mostly due
to the lower amount of effective noise in the nonrenewal model. We also show the surprising result that
coupling has opposite effects in renewal and nonrenewal networks: Excitatory (inhibitory coupling) will
decrease (increase) the information rate in renewal networks while inhibitory (excitatory coupling) will de-
crease (increase) the information rate in nonrenewal networks. We discuss these results and their applicability

to other classes of excitable systems.
DOI: 10.1103/PhysRevE.79.011914

I. INTRODUCTION

The study of excitable systems has applications in various
fields such as semiconductor physics, laser physics, photode-
tection, and neural spike trains [1]. In particular, studying
models of spike train generation in neurons is critical for our
understanding of their information transmission properties
which is complicated by the fact that neurons will display
variability to repeated presentations of the same stimulus [2].
The role of this noise is still unclear. On the one hand, noise
can be used to enhance information transmission about rel-
evant stimuli through stochastic resonance [3] where the out-
put signal-to-noise ratio displays a maximum as a function of
the noise intensity. At the single neuron level, stochastic
resonance is exclusively seen in the subthreshold regime and
noise can thus only degrade information transmission in the
suprathreshold regime. From this point of view, noise should
be minimized in order to improve information transmission.

Our understanding of information transmission by neu-
rons is also complicated by the fact that many neurons dis-
play intrinsic dynamics such as bursting [4], oscillations [5],
and correlations between successive interspike intervals
[6,7]. In the case of intrinsic interspike interval correlations,
it was shown through numerical simulations that they could
enhance information transmission at the single neuron level
[8]. Recent theoretical studies [9,10] have shown that this
enhancement in information transmission occurred via noise
shaping: a process in which noise power is shifted from one
frequency range to another thereby improving signal trans-
mission in the former frequency range. Noise shaping was
originally proposed in the context of o-8 modulators [11]
and is thought to be used in the brain [12].

While noise shaping can occur at the individual neuron
level, it can also be an emergent property of neural networks
with inhibitory coupling [13]. As such, it is not clear how
coupling neurons that display noise shaping at the individual
level will affect their information transmission properties.
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We investigated the information transmission in neural net-
works composed of neurons that display noise shaping (non-
renewal) when considered in isolation and compared these to
neural networks where the neurons displayed no noise shap-
ing (renewal). The paper is organized as follows. We first
present the models in Sec. II. In Sec. III we present theoret-
ical calculations based on linear response theory [14] for the
information transmission [15] of neural networks [16]. We
then explore in Sec. IV the role of network size and noise
intensity. Finally, we explore how coupling affects informa-
tion transmission for networks composed of renewal and
nonrenewal neurons. We then discuss the potential implica-
tions of our results.

II. THE MODELS
A. Renewal versus nonrenewal models

Both the renewal and nonrenewal models are perfect in-
tegrators of the input and the observable output v (e.g., the
membrane voltage) is given by [9,10]

v=pu+s(), (1)

where wu is a positive bias current and s(7) is the time-
dependent stimulus. Whenever v reaches a threshold 6, an
action potential is said to have occurred and v is reset to a
value 6. After each firing, a new value for 6 is drawn from
a uniform distribution [6,—D, 6,+D]. As such, a nonzero
value of D will lead to variability in the firing sequence. The
main difference between the models is the reset rule. In the
nonrenewal model, also referred as model A, v is decreased
by a fixed amount 6, immediately after an action potential
(i.e., Og=06-0,). This will lead to a uniform distribution of
reset values in the interval [-D,D]. With this, the mean in-
terspike interval (ISI) will be given by (I)= 6,/ u or, equiva-
lently, a stationary firing rate
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Fo=—_. (2)

It can be shown that the threshold value # and the subsequent
reset value 6 are perfectly correlated by the reset rule,
thereby correlating successive interspike intervals in the ab-
sence of a signal [9,10].

On the other hand, in the renewal model, also referred to
as model B, the voltage v is reset to f; with 6z drawn inde-
pendently from the uniform distribution [-D,D] after each
firing. In this way, since both the threshold and reset values
are completely independent, successive interspike intervals
will not be correlated. We note that model B will be more
random than model A as the former requires that two random
numbers be generated after each firing whereas the latter
only requires one [10].

Both models A and B share the same first order statistics
of threshold and reset values and therefore the first order
statistics will be the same, such as the stationary firing rate r
given by Eq. (2). We take the output of the neuron to be a
train of & functions centered on the times at which action
potentials occur:

x(1)=2 8t —1,). (3)

B. Network architecture

The neuron models described previously are then coupled
with the membrane voltage v of the ith neuron v; is given by

N Mj(t)
vi=,LL,~+S(l)+X,E E Kij‘y(t_t}n)s (4)

j=1 m=1

where w; is the bias current for neuron i, t;” is the mth spike
of neuron j, and M () is the spike count (i.e., the total num-
ber of action potentials) fired by neuron j at time ¢. K;; rep-
resents the coupling strength between neurons j and i and
(1) is the post-synaptic potential waveform given by

Y1) = O (e, (5)

where O(7) is the Heaviside function and 7, determines the
rate of decay. Throughout this study we will consider the
case of homogeneous networks such that K;;=K and u;=u.

III. THEORY OF SIGNAL TRANSMISSION BY
NETWORKS OF RENEWAL AND NONRENEWAL
NEURONS

In this section we derive an analytical expression for the
mutual information between the input s(z) and the output of
the network which we define as the average activity X(z):

N

X(0) =+ 3 x50, ©
Nici
Throughout this study, we will take that s(r) is zero mean
Gaussian white noise and spectral height « that is low-pass
filtered by an eighth-order Butterworth filter at cutoff fre-
quency fc.
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A. Information theory

Information theory was first developed by Shannon [17]
in the context of communications systems and has become a
standard measure to characterize information transmission
by excitable systems [15,18,19]. For systems driven by a
stimulus with a Gaussian probability distribution, a lower
bound on the rate of information transmission has been de-
rived and this lower bound is exact for a linear system
[15,18]

fc
M=

0

df log,[ SNR(f)], )

where the signal to noise ratio is related to the coherence by

SNR(f) = T (8)
and the coherence function C(f) is given by
_ |PXs(f)|2
D= PP ©)

where Pyy(f)=(X(f)]?) is the power spectrum of the aver-
aged network activity X(¢), Py (f)=(|5,(f)|?) is the power
spectrum of the stimulus s(7), and Py,(f) is the cross spec-
trum between the average network activity X(¢z) and the
stimulus s(7).

B. Linear response theory

Linear response theory [14] assumes that both the stimu-
lus s(z) as well as the activity of other neurons in the network
are perturbations of the baseline activity of the single neuron
xo(t) given by setting K;;=0 and s(¢)=0. Thus, we have

N
400 =50+ XPSN + XDKSH S 6. (10
n=1

where #(f) is the Fourier transform of y(¢) given by

1
W) =——"""— 11
M= iomy (1)
and x(f) is the susceptibility. Previous studies have found
that the susceptibility of models A and B are equal and given
by [9,10]

1
X(f)=go- (12)

We note that Eq. (10) is only valid for small values of K and
s(f).

By averaging both sides of Eq. (10) and isolating for X(f)
we obtain

N

v S 050

D=~ )= L)
NE T kg

The power spectrum of the network activity can thus be ob-

tained by computing (XX*), where the average () is per-
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formed over realizations. By substituting Egs. (11) and (12)
into Eq. (13) and performing the averaging we get

1+ (2m7f)? 1

1
o= {ﬁPmm + gzpsm], (14

where Py (f)=(|%|*) is the baseline spectrum of a single neu-
ron which is given by [9,10]

2 ®
POOA(f)=r0—Sl?ﬁ;ﬁf)<ro—r%_2 5(f—”ro)), (15)
Poos(f) = rol(Bf)* = sin*(BAHIT (16)

I'=(Bf)* = 2(Bf)* sin®(Bf)cos(2mfIry) + sin*(Bf),
(17)

where B=2md/ .
The cross-spectrum can be found by evaluating Py,(f)

=(X5*):
_ xX(f) »
1-XOKHH ™

and the coherence is given by

Bl

(18)

Xs

PSS (.f)

= 9
D= RO Parth) ()
substituting Eq. (14) into Eq. (19) gives
B X(£)*Py(f)
C(f) = 1 ) , (20)
]T]POO(f) + X(f) sz(f)

where Pyo(f) =Poos(f) or Poop(f). Which is then used in Egs.
(7) and (8) to evaluate the mutual information rate MI.

As in previous studies [16,20], we decompose the input
from other neurons into constant and time-dependent com-
ponents. The constant part gives a net bias current u’ given
by

M= p+ Krro(p') (21)
substituting ro(u’)=pu'/ 6, and solving for u' gives

w=—"
)

(22)
1

which is then used in the theoretical expressions (15) and
(16).

IV. RESULTS
A. Renewal versus nonrenewal networks

We first compare the baseline [i.e., s(f)=0 and K=0]
power spectra of the two models for N=1. Figure 1 shows
the power spectrum of the baseline activity of both renewal
and nonrenewal single neurons which are similar to those
found in previous studies [9,10]. We note two important dif-
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FIG. 1. Power spectrum of the baseline of a single renewal and
nonrenewal neuron. Numerical simulations are represented with the
symbols and were averaged between 50 trials. The theoretical value
is represented as a black dashed line. The parameters used were
=290, 6y=4, d=0.7.

ferences between the curves: (1) the power spectrum of the
nonrenewal neuron model approaches 0 as f— 0 whereas the
power spectrum of the renewal neuron model tends towards
a nonzero positive value; (2) the peaks in the power spec-
trum of the nonnenewal neuron are sharper than those of the
renewal neuron. Both observations (1) and (2) stem from the
fact that successive ISIs are negatively correlated in the non-
renewal neuron whereas they are uncorrelated in the renewal
neuron [9,10]. The power spectrum at f=0 is related to the
coefficient of variation and the ISI correlation coefficients by
V2(1+227,p,)/{I) [21] where (I) is the mean interspike in-
terval and the coefficient of variation V is the same for both
models since they have identical ISI distributions and p;=0
for i>1 for both models [9,10]. The only difference is that
p;=-0.5 for the nonrenewal model and p,=0 for the renewal
model which gives

Pya(0) =0. (23)

Pyop(0) = Eyr, (24)
6o

Parameter values for the numerical simulations where
chosen such as to give baseline firing rates ry= 100 which
was inspired by the firing rates (in Hz) of neurons that tend
to display negative ISI correlations experimentally [8,22].
We varied K and used large values in our numerical simula-
tions in order to test the limits of the linear response theory
that we presented above.

B. Network size

We first explored the effects of increasing the network
size N in networks of uncoupled renewal and nonrenewal
neurons receiving common input. Figure 2 shows the coher-
ence of the networks for a stimulus with f-=10 as the net-
work size N is varied. It is seen that the coherence increases
as a function of the number of neurons in the network for
both models. However, there are qualitative differences:
Whereas in the renewal model the coherence has a constant
value in the frequency range [0,f], for the nonrenewal
populations the coherence has a fixed value of 1 at f=0 and
decreases monotonically for f>0. These differences are due
to the differing baseline power spectra [9,10]: In the absence
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(a) renewal

FIG. 2. Coherence C(f) as function of frequency f for different
values of the network size N with renewal (a) and nonrenewal (b)
neurons. In both panels the number of neurons from bottom to top:
3,10,25,50 neurons. Solid color shows simulation and dashed line
the theory. Dark gray represents the mean from ten trials surrounded
in light gray by the standard error. The parameter values are as
follows: 6y=4, d=0.7, 7,=0.001, f-=10, u=290, I=5, K=0.

of any stimulus, the baseline power spectrum in Fig. 1 can be
thought as the power carried by the intrinsic noise of the
neurons. When the stimulus is added, the coherence between
the stimulus and the response can be computed as in Eq. (20)
which shows that the coherence is related to the inverse of
the power spectrum of a single neuron. As such, since the
baseline power spectrum of model A goes to zero as f—0,
the coherence of the network activity for model A at f=0 is
thus one according to Eq. (20).

We then computed the mutual information from the co-
herence function using Eq. (7). Although networks of nonre-
newal neurons had larger mutual information rate than net-
works of renewal neurons, there were differences in the rate
at which this quantity increases as a function of network size.
The range at which this is more evident is from 1 to 25
neurons where the rate is higher for the nonrenewal neurons
that for the renewal ones. After 25 neurons, the rate of in-
crease appears to be the same for both models. However, the
fractional increase of MI which stands for MI normalized to
its value with one neuron is greater for the renewal network
than for the nonrenewal network Fig. 3. We shall return to
these differences later when we investigate the effects of the
noise intensity D.

C. Internal noise intensity

We now explain the qualitative differences in the variation
of the mutual information rate MI as a function of network
size N and stimulus intensity / seen in renewal and nonre-
newal networks. Specifically, we hypothesize that these dif-
ferences are primarily due to a lower effective noise in the
nonrenewal model. Thus, we explore the effect of varying
the amount of intrinsic noise as set by the noise intensity D
on the information transmission properties of renewal and
nonrenewal networks.
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FIG. 3. Mutual information as a function of the number of neu-
rons in the network. In (a) both models are shown together, nonre-
newal (triangles up) and renewal (triangles down) neurons. The
triangles represent the simulations and dashed line the theoretical
results. The standard error is less than the height of the triangles.
The plots in (b) show MI for each of the models normalized to the
value of MI for one neuron. Parameter values are the same as in
Fig. 2.

1. Suprathreshold stochastic resonance

First we computed the mutual information rate MI as a
function of the noise intensity D for networks with different
sizes. Figures 4(a) and 4(b) show MI as a function of internal
noise intensity for renewal and nonrenewal networks, respec-
tively. The symbols represent numerical simulations and the
dashed line the theoretical results. There is a disagreement
between theory and simulations for low values of noise in-

renewal

MI (bits)

FIG. 4. Mutual information as a function of noise intensity D for
renewal (a) and nonrenewal (b) networks for different network
sizes. From top to bottom we used N=20, 10, 5, and 1. Symbols
represent simulations and dashed lines theoretical values. Inset
shows the MI for D between 0 to 0.1 to better show the MI peaks
for different values of N.
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tensity. While the theory predicts that MI should decrease
monotonically as a function of noise intensity, the simula-
tions show that MI reaches a maximum value at D # 0. The
behavior of both models is similar. When D=0, MI has the
same value independent of the model chosen as both models
have completely similar dynamics. When increasing D, MI
increases and reaches a maximum value for a nonzero value
of D after which it monotonically decreases. The maximum
value of MI is dependent on network size N as well as the
model used. For networks with higher number of neurons,
MI is higher and its maximum is achieved at higher values of
D. Using the same parameters in both models, MI of the
renewal model reaches a maximum for lower values of D
[Fig. 4(a), inset] as compared to the nonrenewal model.

The resonance in the mutual information as a function of
noise intensity is a phenomenon previously described as su-
prathreshold stochastic resonance [23] which is only ob-
served in population of two or more excitable systems. We
note that this phenomenon cannot be explained with linear
response theory which predicts an infinite mutual informa-
tion for zero noise intensity.

2. Effective noise intensity

The dependence on noise intensity D of the mutual infor-
mation rate MI is qualitatively similar for both models ex-
cept that the maximum in information is achieved for lower
values of D for the renewal model (Fig. 4). This suggests that
both models should behave the same way if we scale the
value of D appropriately in order to have the same effective
noise intensity. In order to test this, we computed MI as a
function of network size N and stimulus intensity / for dif-
ferent values of D (data not shown). It was found empirically
that for a certain relation of the noise intensity of both mod-
els, the information transmission behaves in a similar fashion
as seen below. Namely, there exists a number a such that
D,=aD, where D, is the noise intensity of the nonrenewal
model and D, of the renewal model for which MI as a func-
tion of stimulus intensity and network size N agree for both
models, for the parameters used throughout this study we
found that a=4.44.

Figures 5(a) and 5(b) show the mutual information rate
MI as a function of network size N and stimulus intensity 7,
respectively. With the parameter values chosen as in Fig. 2
and by suitable values of D, and D,, MI, the mutual informa-
tion rate MI behaves in a quantitatively similar manner as a
function of both stimulus intensity and network size for both
models. As such, the qualitative differences seen previously
were primarily due to differences in the effective noise in the
models at frequencies for which the stimulus has power.

D. Excitatory and inhibitory coupling

We now explore the effects of coupling in both networks
by varying the coupling strength K. It was shown by Mar
et al. [13] that introducing inhibitory coupling in the network
can give rise to noise shaping and thereby increase the
signal-to-noise ratio.

The effect of varying the amount of coupling K can be
seen in Fig. 6. Figures 6(a) and 6(b) show the mutual infor-
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FIG. 5. Renewal and nonrenewal models behave similarly for
different values of the noise intensity D. Mutual information rate
MI as a function of network size N (a) and stimulus intensity / (b)
Here D,=0.7, D,=0.158 while other parameters have the same
value as in Fig. 4. Up and down triangles represent simulations for
nonrenewal and renewal networks, respectively, and the dashed
lines the theoretical values.

mation rate as a function of coupling for nonrenewal and
renewal networks, respectively. It can be seen that MI de-
creases as a function of increasing K for the renewal net-
work. Surprisingly, the behavior for the nonrenewal network
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FIG. 6. Mutual information as a function of coupling strength K
of renewal (a) and nonrenewal (b) networks. The triangles represent
the simulations and the dashed line the theoretical values. (c) Shows
MI normalized to the value of coupling at K=0. A clear qualitative
difference can be seen for both models.
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FIG. 7. Mutual information rate as a function of coupling
strength for renewal and nonrenewal models with different noise
intensities. Here we set N=20, /=40, D,=0.4, D,=1.78 with other
parameters having the same value as in Fig. 6.

is opposite: MI increases for increasing K. The absolute val-
ues of MI are greater for the nonrenewal than for the renewal
network. In order to make a clear comparison between both
models, MI was normalized to its value at K=0. Figure 6(c)
shows the normalized MI for both models. The theory
(dashed lines) predicts the behavior seen in the simulations.
However, the theory best predicts the simulations for values
of K close to zero. For larger K, nonlinear effects take place
and the agreement between simulations and theory becomes
only qualitative with the theory overestimating the numerical
values of mutual information. This overestimation of infor-
mation rate by linear response theory has been seen previ-
ously [16].

It is possible that this qualitatively different behavior is
due to the different effective noise intensities in both models.
As such, we scaled the values of D, and D,, as done previ-
ously and compared the effects of coupling. Figure 7 shows
the mutual information rate MI as a function of coupling
strength K for both model and is qualitatively similar to Fig.
6(c). MI for the renewal model decreases as K is increased.
On the contrary, MI for the nonrenewal model increases as K
increases up to a certain value (K= 1500) after which it de-
creases. The theory predicts the behavior of both models for
a region close to K=0 where nonlinear effects are not too
large. The drop of MI for the nonrenewal model is not pre-
dicted by the theory and is most probably due to strong non-
linear synchronization for large positive values of coupling
strength K. However, our results show that the opposite ef-
fects of coupling persist even when both models have similar
effective noise values in a neighborhood of K=0.

We now explain this counterintuitive result: Direct exami-
nation of the expression for the coherence C(f) shows that
the only difference between the models is the baseline power
spectrum Py (f) as seen from inspection of Eq. (20). We
furthermore note that coupling will introduce changes in the
effective value of the bias current u used in the theory which
are due to the changes in firing rate that are caused by cou-
pling as explained above. Moreover, the power spectrum of a
single neuron [Egs. (16) and (15)] is a function of w for both
renewal and nonrenewal models. As such, we explored the
effects of varying the baseline firing rate ry=u/ 6, on the
power spectra of single isolated renewal and nonrenewal
models while keeping 6, constant.

Figures 8(a) and 8(b) show the power spectra of single
renewal and nonrenewal neurons, respectively. An increase
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FIG. 8. Power spectrum of a single renewal (a) and nonrenewal
(b) neuron as a function of stationary firing rate. Symbols represent
numerical simulations. Crosses represents ro=25, circles ry=75,
and diamonds ry=125. Dashed lines represent the theoretical values
accordingly. Other parameters of the single neuron are the same as
in Fig. 1.

(decrease) in firing rate would correspond to positive (nega-
tive) coupling. For the renewal neuron it can be seen that as
the firing rate increases the power spectrum also increases.
The situation for the nonrenewal neurons is exactly opposite:
as the firing rate increases the power spectrum decreases.
This explains why the mutual information is greater for the
nonrenewal network when introducing positive coupling as
compared to an uncoupled network or equivalently the mu-
tual information increasing when a negative coupling is in-
troduced in a network of renewal neurons.

We now turn our attention towards the differential behav-
ior of the baseline power spectra of each model as u is
increased. In order to better understand the behavior of each
spectrum at low frequencies we performed Taylor series ex-
pansions of Egs. (15) and (16) around f=0 and obtained

Poous(f) = Gap(p) + Hy g(w)f* + O(fY), (25)
Gu(p) =0, (26)
2D*7?
IE 306, (27)
uCV? 2Dy
Gp(p) = 0 - 38 (28)

— 40D° + 12D*7* 6 + 30D* 7> 6,

1356; 29)

Hp(p) =

Figure 9 shows G, 3(u) and H, g(u) as a function of u.
The zeroth order term of the renewal model increases lin-
early with u, whereas the zeroth order term of the nonre-
newal model is zero. In both models the second order terms
decay as 1/u. For the renewal model, the behavior of the

baseline power spectrum near f=0 is dominated by the ze-
roth order term Gg(u) which increases linearly with u. For
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FIG. 9. First and second coefficients of the Taylor expansion of
the power spectra Py, and Pyop. Both second order terms decrease
as u increases while the zeroth-order term is nonzero only for
model B and increases linearly with u. Here 6y=4, D=0.7, and p
=290.

the nonrenewal model, the behavior of the baseline power
spectrum near f=0 is dominated instead by the second order
term H,(u) which decreases as 1/u since G,4(u)=0. This
explains the results of Fig. 8.

V. DISCUSSION

We have compared information transmission in networks
of renewal and nonrenewal neurons. Our results show theo-
retically and through numerical simulations that both net-
works will behave in a similar manner when stimulus inten-
sity, network size, and cutoff frequency are varied although
the fractional increase in mutual information rate was higher
for the renewal network. Both networks were shown to dis-
play suprathreshold stochastic resonance when the noise in-
tensity was varied although the maximum for the renewal
network was obtained for a lower noise intensity than the
nonrenewal network. We then hypothesized that the differ-
ences seen between both networks where primarily due to a
lower “effective” noise in the nonrenewal network. To test
that hypothesis, we compared the mutual information rates of
both networks for different noise intensities. Our results
showed that, for noise intensities that would give similar
information rates at the single neuron level, the behavior of
the information rate for both networks was essentially the
same. We then looked at the effects of coupling on both
renewal and nonrenewal networks and found opposite ef-
fects: While inhibitory coupling increased information trans-
mission for the renewal network, it actually decreased infor-
mation transmission for the nonrenewal network.
Examination of the theoretical results leads to the fact that
the influence of the quality of the coupling is done directly
through a an effective baseline current that the neurons re-
ceive. The power spectrum of a single neuron has a qualita-
tive different dependence on the bias current. The noise
power is reduced when decreasing u for the renewal model
and is increased for the nonrenewal one. The effect is oppo-
site. when increasing u. This results suggest that intrinsic
properties of the neurons such as spike patterning are impor-
tant when attempting to transmit a signal through a network.
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Our results for uncoupled networks show that the infor-
mation rate will fractionally increase more slowly as a func-
tion of network size for nonrenewal networks. This result has
important applications for peripheral sensory neurons that
display negative interspike interval correlations and that are
not coupled. This is the case for electroreceptor neurons of
weakly electric fish [7] which must detect the weak signals
emitted by prey stimuli that impinge on only a small portion
of their sensory epithelium [24]. The fact that the informa-
tion does not increase as much suggests that only a few of
these electroreceptor neurons would be sufficient for trans-
mitting information about prey stimuli.

Our results make predictions for the behavior of the
power spectrum at low frequencies as a function of bias cur-
rent. For neurons displaying negative interspike interval cor-
relations, the power spectrum should decrease as a function
of increasing bias current whereas, for neurons that do not
display interspike interval correlations, the power spectrum
should increase. This prediction can be directly tested experi-
mentally in intracellular recordings in which the bias current
can be varied. As experimental results have shown values of
0=p,>-0.5 [6], the value of the power spectrum for such
neurons at f=0 is then proportional to the firing rate times
the coefficient of variation squared [21]. In order for this
quantity to decrease as a function of increasing bias current,
it is sufficient for the coefficient of variation to decrease
faster than 1/\r with r the mean firing rate. Previous experi-
mental studies have shown that the coefficient of variation
will decrease as a power law for sufficiently high firing rates
although the power law exponent remains to be measured
[25]. Incidentally, a recent experimental study has shown that
neurons displaying negative interspike interval correlations
tended to have larger firing rates than neurons that did not
[22]. Further experimental studies are needed to verify this.

Our results show that coupling can have profound conse-
quences on information transmission depending on the in-
trinsic dynamics of the neurons from which the network is
comprised of. Indeed, it was found by Mar et al. [13] that
inhibitory coupling would lead to an increased signal-to-
noise ratio for networks of integrate-and-fire neurons. Our
results for the renewal model were consistent with those of
Mar et al. and we have extended their results using informa-
tion theory. However, our results show that it is excitatory
coupling, and not inhibitory coupling, that will lead to in-
creased information transmission for the nonrenewal model.
Anatomical studies have found that the majority of synaptic
connections between neurons are excitatory [26] and that
neurons can display intrinsic interspike interval correlations
experimentally [6,7]. As such, our results suggest that noise
shaping may occur at the network level in the brain. Further
theoretical studies should incorporate other forms of intrinsic
dynamics such as resonance [27], time delays, as well as
burst firing [4] to look at their effects on information trans-
mission.
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