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Firing statistics of a neuron model driven by long-range correlated noise

J. W. Middleton,* M. J. Chacron, B. Lindner, and A. Longtin
Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5

~Received 12 February 2003; published 28 August 2003!

We study the statistics of the firing patterns of a perfect integrate and fire neuron model driven by additive
long-range correlated Ornstein-Uhlenbeck noise. Using a quasistatic weak noise approximation we obtain
expressions for the interspike interval~ISI! probability density, the power spectral density, and the spike count
Fano factor. We find unimodal, long-tailed ISI densities, Lorenzian power spectra at low frequencies, and a
minimum in the Fano factor as a function of counting time. The implications of these results for signal
detection are discussed.
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I. INTRODUCTION

Long-range correlations are ubiquitous in nature@1#. For
example, it is known that natural images@2# as well as music
@3# display long-range correlations. These signals serve
natural stimuli to neurons in the visual and auditory syste
respectively. It is known that these neurons exhibit lon
range correlations in their spike trains@4,5#, and there is
much speculation as to the functional role these correlat
might serve. For example, it has been proposed that lo
range correlations in neurons provide some advantage
terms of matching the detection system to the expected
nal @5,6#.

The regularity shown by neural spike trains will have co
sequences on stimulus encoding and detection. It has
recently shown that both auditory neurons@5# and electrore-
ceptors of weakly electric fish display both short-range a
correlations and long-range correlations in the interspike
terval ~ISI! sequence@7,8#. Long-range correlations o
different kinds, namely, long-range anticorrelation, have a
been observed in paddlefish electroreceptors@9#.

It has been shown that short-range anticorrelation
long-range correlation could contribute to give a minimum
spike train variability as measured by the Fano fac
~variance-to-mean ratio of the spike count! at a behaviorally
relevant time scale@8#. In that study the minimum was nu
merically observed for a leaky integrate-and-fire neuron w
dynamic threshold~LIFDT! driven by periodic forcing and
weak long-range correlated noise. Our study focuses on
sufficient conditions under which such a minimum can
obtained in a neuron model. Our results show that dyna
threshold, leakage, and periodic forcing are not necessa
obtain a nonmonotonous Fano factor. A perfect integra
and-fire model driven by long-range correlated noise c
tains all the essential elements to reproduce a minimum
the Fano factor.

We also examine how the long-range correlated noise
fects ISI statistics and the spike train power spectrum. T
ISI densities and correlation measures are difficult to ob
analytically for the LIFDT, but are possible, with certain a
proximations, for the perfect integrate-and-fire neuron. U
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modal ISI densities with long tails are analytically obtaine
and the correlation present in the driving noise source
shown to carry over to the ISI correlation coefficients. T
structure of the power spectrum follows, as a consequenc
the Fano factor shape. Analytic results are compared w
results of numerical simulations throughout.

Section I presents the model system and outlines the
proximations used for the analytics as well as the param
regime under which they are valid. Section II characteriz
the ISI statistics and shows how their properties reflect
properties of the input to the neuron. In Secs. III and IV t
statistics of the output spike trains are analyzed by using
Fano factor, the spike-spike autocorrelation function, and
power spectral density. The analytic expression for the F
factor agrees with the simulation results, revealing a m
mum for this simple integrate-and-fire model. The implic
tions of these results are finally discussed.

A. Model

Here we look at a simple neuron model, the perfe
integrate-and-fire neuron, driven by Ornstein-Uhlenbe
~OU! noise,h(t). The dynamical equations describing o
system are

dv~ t !

dt
5m1h~ t !,

dh~ t !

dt
52

h~ t !

t
1A2D

t
j~ t !, ~1!

wherev(t) is the membrane voltage,m is a constant bias,t
andD are, respectively, the correlation time and variance
the OU process, andj(t) is Gaussian white noise with auto
correlation^j(t)j(t8)&5d(t2t8). The driving OU process
has a Gaussian stationary probability densityr(h)
5exp@2h2/2D#/A2pD and an exponential correlation func
tion ^h(t)h(t8)&5D exp@2ut2t8u/t#. The voltage is reset to
0 once it reaches a threshold valuev th , without resetting
h(t). For all numerical results, unless stated otherwise
use the parameter valuesv th52p and m51. The times at
which the voltage crosses threshold,$tk%, will be the spike
times of the resulting spike train given by the expression
©2003 The American Physical Society20-1
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x~ t !5(
k

d~ t2tk!. ~2!

The spike countN(t) @i.e., the number of spikes observed
a counting window (0,t)] is given by

N~ t !5E
0

t

dtx~ t !5 (
0,tk

Q~ t2tk!, ~3!

whereQ(t) is the Heaviside step function. Figure 1 shows
realization of the membrane voltagev(t) and its correspond
ing driving noiseh(t). This illustrates the slow modulatin
effects of the noise on the ISIs.

An equivalent spike train can be generated without
explicit reset of the voltage, but, instead, by incrementing
threshold byv th every time the voltage reaches it. Spikes a
generated each time the threshold is incremented. In this
ture, without explicit voltage reset, the spike count at timt
is equal to the threshold divided by the constantv th . The
freely evolving dynamics in Eq.~1! is equivalent to the
Brownian motion of a particle on an inclined plane. Variab
v(t) andm1h(t) are then viewed as the particle’s positio
and velocity, respectively. Provided we have a finite posit
bias, m.0, the average difference betweenv th„N(t)11…
and v(t) does not grow unbounded in time, whereas
standard deviation ofv(t) grows asAt, asymptotically. Con-
sequently, in the asymptotic limit, the statistics of the thre
old and of the counting processN(t) become indistinguish-
able from the statistics ofv(t), as seen in Fig. 2.

B. Quasistatic approximation

We wish to look at the effect of long-range correlat
noise, so we use a quasistatic approximation for the nois
t is much larger than the average ISI, then on short ti
scalesh is approximately constant. In this way we can rela
each ISI to a unique value of the OU process

FIG. 1. A sample spike train with subthreshold voltage var
tions and the corresponding driving noise. The variance of the n
was set to a large value,D51, which is used here to visually
discern the modulation of the interspike intervals. The time cons
used wast5100. The vertical bars on top of the voltage trace in t
upper panel is not from the dynamics in Eq.~1!, but were added to
illustrate spikes.
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I k5
v th

m1hk
, ~4!

wherek denotes the index in a sequence of ISIs, andhk is
the value ofh at the beginning of thekth interval. Equation
~4! is a good approximation as long ashk.2m and I k!t.
As hk approaches2m from above, the ISI obtained from th
static-noise approximation diverges and is negative forhk
,2m. This is problematic as negative ISIs have no physi
meaning. In order to minimize the occurrence of these val
we require that

D5^h2&!m2, ~5!

i.e., we use weak long-range correlated noise. Whenever
noise attains values close to or below2m, the ISI will be of
the order of magnitude of the correlation timet, during
which the OU process returns to values greater than2m.
Clearly, those ISI realizations are not captured by Eq.~4!;
however, their occurrence will be rare due to Eq.~5! and thus
their influence on the firing statistics is negligible.

Approximation ~4! not only allows us to write down a
conditional probability density function~PDF! betweenI k
andhk , but also allows us to reduce this conditional PDF
a d function due to the unique one-to-one corresponde
betweenhk and I k :

P~ I kuhk!5dS I k2
v th

m1hk
D . ~6!

II. INTERSPIKE INTERVAL STATISTICS

A. Stationary probability density function

The first quantity of interest is the stationary PDF of IS
In order to obtain the stationary ISI PDF we can average
conditional PDF betweenI k andhk over all values ofhk :

-
se

nt

FIG. 2. The freely evolving voltagev(t) and the increment
threshold variable~upper panel! driven by the OU processh(t)
~lower panel!. The difference between the threshold variable and
voltage is only noticeable on smaller scales~inset!.
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P~ I k!5E
2`

`

dhkP~ I kuhk!r~hk!. ~7!

The statistics of the values of the OU process sampled a
beginning of each ISI,hk , are not the same as for the co
tinuous OU process,h. Imagine we measure the noise val
at the beginning of each interspike interval of a long sp
train. Then a higher value of noise leads to a shorter inte
and hence to more intervals within a given time period th
a lower value ofh. This problem is known as biased sam
pling of a stochastic variable@10# and is resolved by a cor
rective factor given by the inverse interspike interval~see
also Ref.@11#!. Normalization of the corrected PDF yields

r~hk!5
e2hk

2/2D

A2pD
S 11

hk

m D . ~8!

For simplicity, this normalization as well as any integrati
in the remainder of the paper is performed with respect to
full range of noise values, includingh,2m, since these
values will make a negligible contribution to the integrals w
perform. Inserting Eq.~8! into Eq.~7! yields the PDF for the
interspike interval density:

P~ I k!5E
2`

`

dhkdS I k2
v th

m1hk
De2hk

2/2D

A2pD
S 11

hk

m D
5E

2`

`

dhkdS hk2
v th

I k
1m D e2hk

2/2D

A2pDv thm
~m1hk!

3

5
v th

2

A2pDm

exp@2~mI k2v th!2/~2DI k
2!#

I k
3

. ~9!

Using these densities the means for the sampled statio
OU process and ISI are, respectively,D/m andv th /m. Note,
however, that the PDF decays as 1/I k

3 for large I k according
to a power law, in contrast to the white noise driven ca
@12#. This implies a divergence for the second and hig
moments revealing again that the approximation made is
stricted to ISIs smaller thant.

Figure 3~a! shows the stationary PDF for fixedt and sev-
eral values ofD from both numerical simulation of Eq.~1!
and the corresponding theoretical curves using Eq.~9!. With
increasing noise the mean of the density does, in fact, rem
the same atv th /m, because the shift of the peak towar
smaller ISI values is balanced out by the long tails for lar
ISI values. Even though we began with a weak noise con
tion ~5!, the theoretical densities agree with simulation
sults very well beyond this condition. The agreement ho
even for higher noise values~i.e., D51), though not as well
for smaller noise values.

Figure 4 shows the simulation and theoretical PDFs
fixed D and various values oft. The numerical results agre
well with the theory, but the agreement breaks down whet
is on the order of the mean ISI. For shorter values oft, i.e.,
t,v th /m, the quasistatic approximation is no longer vali
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B. Serial correlation coefficient

The serial correlation coefficient~SCC! is a measure of
correlation between different elements in a sequence of
dom events. The SCC,r l in this case, is between two ISI
separated byl intermediate ones. The numberl is referred to
as the lag, and the SCC at lagl is given by

r l5
^I kI k1 l&2^I k&^I k1 l&

^I k
2&2^I k&

2
, ~10!

where the averages here are over an ensemble of ISI
quences. The mean values for thekth and the (k1 l )th ISIs
are the same if the process giving rise to these ISIs is
tionary. A simple expression for these SCCs can be obtai
first by taking the Taylor expansion of Eq.~4! about hk
50:

I k.
v th

m S 12
hk

m D , ~11!

FIG. 3. Stationary ISI probability densities. Numerical simul
tions for fixed t51000 and different values of varianceD along
with the theoretical probability densities~9!. Note that the mean is
v th /m in all cases.

FIG. 4. Stationary ISI probability densities. Numerical simul
tions forD50.01 and different values of the correlation timet. The
theoretical result~9! is independent oft because of the quasistati
approximation. The quasistatic approximation is not valid for sm
values oft.
0-3
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MIDDLETON et al. PHYSICAL REVIEW E 68, 021920 ~2003!
provided assumption~5! still holds. We may then approxi
mate the serial correlation coefficient by inserting Eq.~11!
into Eq. ~10!:

r l'
^hkhk1 l&2^hk&

2

^hk
2&2^hk&

2
[Chk

~ l !, ~12!

which is simply the autocorrelation function of the sampl
OU process. For low noise, the timestk1 l at which the pro-
cess is sampled do not deviate much fromtk1 l ^I &. This
allows us to estimate the ISI correlation:

r l'Chk
~ l !'Ch~ l ^I &!

5expF2
lv th

mt G5expF2
l ^I &
t G . ~13!

Although this formula is just a simple estimate, it fits th
simulation data, Fig. 5, rather well. Deviations become
parent for moderate values of the correlation timet ~i.e., in
Fig. 5, t510'^I &) and for larger values of the noise var
ance ~not shown!. Numerical simulations have shown th
for extremely large correlation times the noise varian
needs to be scaled down appropriately in order to main
agreement with the theoretical expression, Eq.~13!. Details
will be given elsewhere. Apart from these small deviatio
we can state that for weak long-range correlated noise,
exponential correlation of the noise carries over to the
statistics and that the ‘‘correlation lag’’~i.e., the discrete
counterpart of a correlation time! is given by

l corr5
t

^I &
5

tm

v th
. ~14!

III. FANO FACTOR

A. Large-time analytic approximation

The Fano factor@13# F(t) is the variance to mean ratio o
a counting processN(t) for a given counting timet. It is

FIG. 5. The serial correlation coefficient from numerical sim
lation ~symbols! and theoretical result~13! ~solid lines!. Results for
three values of the noise correlation time are shown. The varia
of the noise used in simulations isD50.01; the theoretical curve
are independent of the driving noise strength.
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useful for determining on which time scales the process
most regular. As discussed in the Introduction, the sp
count process is equivalent to the freely evolving dynam
of a particle executing Brownian motion on an incline in t
asymptotic time limit. In this limit we can use the statisti
of the two processes interchangeably, so that we can use
well-known Fano factor for Brownian motion@14# as an ap-
proximation for the Fano factor of the spike count for lar
times:

F large~ t !5
2Dt

v thm F12
t

t
~12e2t/t!G . ~15!

It is readily seen that for moderate time,t,t, the Fano fac-
tor is F large'Dt ~no t dependence!, whereas fort→` we
haveF large'Dt ~i.e., saturation!. Hence, the linear growth o
the Fano factor in time~corresponding to the ballistic phas
of Brownian motion! is determined only by the variance o
noise values, while the correlation sets where the balli
phase terminates. Figure 6 showsF large(t) for different vari-
ances of the OU process witht5103. Theoretical curves
~15! converge toward the numerical results for a sufficien
long counting time. The convergence is faster for interme
ate noise values, as seen in Fig. 6. The Fano factor cu
reach an asymptotic value, given by

lim
t→`

F large~ t !5 lim
t→`

F~ t !5
2Dt

v thm
. ~16!

B. Short-time analytic approximation

The Fano factor of the random point process described
our neuron with long-range noise~1! approaches 1 in the
limit t→0, which is the Poissonian limit@10#. Equation~15!
is only valid in the large time limit and fails to capture th
discrete nature of the point process, which becomes appa
at small times~see Fig. 6!. If an approximation of the Fano
factor for short counting windows times can be found, w

ce

FIG. 6. The numerical results~solid lines! of the Fano factor for
different noise intensities witht51000 for the system of Eq.~1!.
The dashed lines are the theoretical curves obtained from Eq.~15!.
This theory is valid only in the large counting time limit. The a
rows indicate the positions of the minimum in the Fano factor
given by Eq.~23!.
0-4
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can use this expression as well as the large time approx
tion ~15! to interpolate values of the Fano factor at interm
diate time scales.

The intensity of the long-range correlated noise is smal
our approximation. Consequently, over short counting tim
the spike train appears very regular. Because of this regu
ity the Fano factor for a deterministic spike train will be
good approximation. Figure 7 shows such a spike train w
a given counting timet. The variableD @used here as short
hand for mod(t,^I &)] is the difference in time betweent and
the largest number of integer multiples of^I & that t contains.
We shall refer to this largest integer ask, which gives ust
5k^I &1D. As Fig. 7 shows, for a givent, the spike countN
can take on only one of the two values:k or k11. The
probabilities of observing these counts are

P~ i !55
12

D

^I &
, i 5k

D

^I &
, i 5k11

0, otherwise,

~17!

where i is the index of the spike in the deterministic spi
train. FromP( i ) we can obtain the mean and variance of t
spike count:

^n&5
t

^I &
~18!

and

^n2&5(
i 50

`

i 2P~ i !5k212k
D

^I &
1

D

^I &
~19!

and thus the variance becomes

^n2&2^n&25
D

^I & S 12
D

^I & D . ~20!

From this, we can obtain an expression for the Fano fa
for small counting times:

Fsmall~ t !5
^n2&2^n&2

^n&
5

D

t S 12
D

^I & D . ~21!

The variance of the deterministic regular spike train is a
riodic sequence of inverted parabolas with a local maxim

FIG. 7. A regularly spaced spike train.D is the fraction of an ISI
that remains after taking out the largest number of ISIs from
counting timet.
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of 1/4 located at every odd multiple of^I &/2. Because the
variance does not grow past a finite value in time, the Fa
factor is damped out by the linearly increasing mean a
becomes negligible at large time scales.

C. Full-range approximation

The sum of the short-time and the long-time approxim
tions, F(t)5Fsmall(t)1F large(t), provides a good fit to data
from numerical simulations over the full range of countin
windows, as can be seen in Fig. 8. Figure 6 shows that f
finite range of noise intensities the Fano factor exhibits
minimum, and it is noteworthy that this crude approxim
tion, Fsmall(t)1F large(t), gives a very good estimate for th
position of the minimum in the Fano factor. By minimum w
mean the first local minimum encountered in going fro
large time values to small ones. It was previously shown t
a minimum in the Fano factor indicates an optimal time sc
on which to detect two distinct signals@8,15#. Since the vari-
ance of the deterministic spike train, Eq.~20!, is confined to
the interval@0,1/4#, the small time Fano curve can be a
proximated by the envelope of its oscillations,Fsmall
.^I &/4t5v th/4mt. This agrees with our previous definitio
of the minimum of the Fano factor. This envelope and t
large time Fano factor can be used to determine a minim
given by

d

dt F v th

4mt
1

2Dt

v thm S 12
t

t
~12e2t/t! D G50. ~22!

Since the position of the minimum is, in general, mu
smaller thant, we can expand the exponential in Eq.~22! to
second order and differentiate. Solving the resulting equa
yields the approximate position of the minimum of the Fa
factor:

tmin.
v th

2AD
. ~23!

e

FIG. 8. Comparison of the numerically obtained Fano fac
along with the complete short- and long-time theoretical Fano f
tor from Eqs.~15! and ~21! for D51022 andt51000. The arrow
indicates the position of the minimum in the Fano factor, as giv
by Eq. ~23!. The numerical data is the same as in Fig. 6.
0-5
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MIDDLETON et al. PHYSICAL REVIEW E 68, 021920 ~2003!
Because we consider large correlation timest, the times at
which the sum ofFsmall(t) and F large(t) gives a minimum
occur only in the ballistic region of Brownian motion. Her
neitherFsmall(t) nor F large(t) depend ont. Hence, the mini-
mum is determined by the only remaining parameter, nam
the noise variance.

The positions of the minimum, as given by Eq.~23!, are
indicated by arrows in Figs. 6 and 8, which agree very w
with the apparent positions of the minimum given by t
numerical simulations. We have thus shown that Eq.~1! ex-
hibits a minimum in the Fano factor, and that the position
this minimum does not depend on the correlation timet in
this quasistatic approximation, but is entirely determined
the variance of the noise.

IV. SPIKE TRAIN POWER SPECTRUM

We now derive correlation and spectral properties of
spike train generated by Eq.~1!. The relation between the
Fano factor and the spike autocorrelation function is giv
by @10#

F~ t !511
2

f E0

t

dsS 12
s

t DRxx
1 ~s!, ~24!

where f 5m/v th is the mean firing rate of the point proce
and Rxx

1 (t) is the autocorrelation function of the spike tra
for t.0 ~not including thed function at the origin!. We can
invert this relation to findRxx

1 in terms of the Fano factor

Rxx
1 ~ t !5

m

2v tht

d

dt S t2
d

dt
F~ t ! D . ~25!

The power spectrum can be calculated by the Fourier tra
form of the autocorrelation function

S~ f !5E
2`

`

dtei2p f tRxx~ t !. ~26!

Due to the linearity of the differential operator acting on t
Fano factor in Eq.~25!, the correlation can be expressed a
sum of two contributions: one coming from the small tim
approximation of the Fano factor and the other from the la
time approximation. The discontinuities in the derivatives
the small time approximation make the integration of its c
responding correlation function analytically difficult. If w
limit our focus to the correlation function at large time
~coming from the large time Fano factor!, we can describe
the power spectrum at low frequencies. Substituting the
pression for the large-time Fano factor, Eq.~15!, will give us
the autocorrelation function for large times:

Rxx
1 ~ t !5

D

v th
2

e2t/t. ~27!

Inserting this expression into Eq.~26! gives us a Lorenzian
spectrum:
02192
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S~ f !5
2Dt

v th
2 S 1

11~2p f t!2D . ~28!

Just as the spike-spike autocorrelation function displ
properties of the input correlation, the low frequency pow
spectrum of the spike train has the same Lorenzian form
the OU input. Figure 9 shows the theoretical low frequen
power spectral curves for several input noise correlat
times compared with simulation results.

V. CONCLUSIONS

The effects of correlated noise have been of interest in
study of many stochastic systems~see, e.g., Refs.@1,16–
20#!. In this study, we have seen how long-range correla
noise can influence the spike train, ISI, and spike count
tistics in a perfect integrate-and-fire model. Using a qua
static approximation, analytical expressions for the ISI d
sity were obtained. It was seen that the exponen
correlations in the noise led to exponential correlations
both the ISI sequence and the spike train at long lags. A
consequence, the power spectrum of the spike train ha
Lorenzian shape at low frequencies.

An expression for the Fano factor curve was then o
tained. In particular, long-range correlated noise was sho
to increase the Fano factor at long time scales. Due to
finite correlation time used in the OU process, the Fano f
tor eventually saturates to a finite value. Such a satura
has been observed experimentally@4#. An interesting finding
of our study is the fact that a minimum in spike train va
ability as measured by the Fano factor can be obtained in
simple model. While the perfect integrate-and-fire neur
model used here has no explicit absolute refractory per
there is a relative refractory period that arises due to
small noise and the fact that it takes a finite time~on the
order of the average ISI! for the voltage to reach threshol
from the reset value. It is the interaction between this refr
toriness, which decreases the Fano factor for small tim

FIG. 9. The low frequency power spectrum derived from t
large time Fano factor approximation Eq.~15! compared with simu-
lation results of Eq.~1!. Results for three values of the noise corr
lation time are shown. The variance of the noise used in the si
lations isD50.1. For reference, the frequency corresponding to
inverse ISI isf 50.159.
0-6
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and the long-range correlated noise that will increase it
large times that causes the minimum.

It was shown that synaptic vesicle release observed
Xenopusneuromuscular junctions and in rat hippocamp
synapses displayed long-range correlations@21#. Our slow
noise could thus model the synaptic current fluctuations
ceived by a neuron. The Fano factor minimum has been
served in the experimental data in both auditory fibers@5,6#
and weakly electric fish electroreceptors@7#. Our study thus
suggests that the Fano factor increase, and consequentl
minimum, observed in many neurons@5,22–26# could be due
to long-range correlations in the neurotransmitter secre
rate.

There is much speculation as to the significance of a m
mum in spike train variability@7,8,15#. For weakly electric
fish electroreceptors, the time scale at which the minim
occurred matched the observed time scale at which these
capture prey@27#, giving a behavioral relevance to this min
mum. It can be shown that the discriminabilityd between
spike counts arising from distinct signal distributions is
versely proportional to@F(t)/t#1/2 @8,15#; this latter quantity
is also the relative error of an observed spike count. Fig
10 shows the relative spike count errorF(t)/t as a function
of counting timet for a single value oft and two different
noise intensities. The minimum of the Fano factors from E
~23! indicates the beginning of a plateau in the relative er
It is apparent that by increasing the counting time, while

FIG. 10. The relative spike count errorF(t)/t as a function of
counting time. The simulation results from integrating Eq.~1! are
compared with the theory from the full range Fano factor appro
mation,Fsmall(t)1F large(t), whereF large(t) is given by Eq.~15! and
Fsmall is given by the envelope approximationv th/4mt. Results are
shown fort51000 and for two different values of noise,D50.01
andD51. The arrows indicate the onset of the plateau region
given by Eq.~23!. In each case the plateau persists until about
correlation timet. While on the plateau there is very little chang
in the relative spike count error.
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the plateau, there is little improvement in the accuracy
spike count estimation. However, the relative error can
reduced to arbitrarily small values by taking increasi
counting times greater than the correlation time of the O
process,t. A sensory system, using observed spike coun
determine the presence or absence of prey, would encou
the problem of having to wait long periods of time for th
lowest possible spike count relative error. By the time a
cision is made on the presence or absence of prey, any a
based on that decision would be irrelevant as the prey wo
have escaped in the meantime. The Fano factor might
ready implicitly factor in the cost of waiting too long. It i
proportional to the relative error squared multiplied
counting time. The rise due to the factor of counting tim
implicitly accounts for the cost of indecision. If the Fan
factor were actually an inverse measure of the benefit fr
the most accurate estimation in the shortest possible ti
then its minimum would be the optimal time on which
perform computations used for signal detection, as has b
observed experimentally in electric fish electrorecept
@7,27#.

An accurate electroreceptor model@28# driven by long-
range correlated noise and periodic forcing was shown
reproduce this observed minimum@8#. This result was later
reproduced in a simpler leaky integrate-and-fire model w
dynamic threshold@15# driven by both white and correlate
noises without periodic forcing. In that study, negative I
correlations, present due to a dynamic threshold@29#, further
decreased the Fano factor, from the value obtained wit
renewal process, while the positive ISI correlations due
the slow noise increased it, giving rise to a minimum whe
signal detection with respect to an equivalent renewal p
cess was greatest@15#. Here we have found that the simp
generic perfect integrate-and-fire driven by long-range co
lated noise is sufficient to observe the Fano minimum.
particular, the counting time at which the minimum occurr
varies with noise intensity, possibly explaining the expe
mentally observed variability in the position of the minimu
in weakly electric fish electroreceptors@7#. While the mini-
mum arising from the perfect integrate-and-fire neuron is
as pronounced as that from the LIFDT, it is perhaps a l
restrictive model. Because of this, it may be useful for t
phenomenological description of the Fano factor and
minimum, and thus signal detection time scales in vario
sensory system experiments.
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