PHYSICAL REVIEW E 68, 021920 (2003
Firing statistics of a neuron model driven by long-range correlated noise
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We study the statistics of the firing patterns of a perfect integrate and fire neuron model driven by additive
long-range correlated Ornstein-Uhlenbeck noise. Using a quasistatic weak noise approximation we obtain
expressions for the interspike interv#bI) probability density, the power spectral density, and the spike count
Fano factor. We find unimodal, long-tailed ISI densities, Lorenzian power spectra at low frequencies, and a
minimum in the Fano factor as a function of counting time. The implications of these results for signal
detection are discussed.
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I. INTRODUCTION modal ISI densities with long tails are analytically obtained,
and the correlation present in the driving noise source is
Long-range correlations are ubiquitous in natlk¢ For  shown to carry over to the ISI correlation coefficients. The
example, it is known that natural image as well as music ~ structure of the power spectrum follows, as a consequence of
[3] display long-range correlations. These signals serve a$i¢ Fano factor shape. Analytic results are compared with
natural stimuli to neurons in the visual and auditory systemsfesults of numerical simulations throughout.
respectively. It is known that these neurons exhibit long- Section | presents the model system and outlines the ap-
range correlations in their spike traifig,5], and there is Proximations used for the analytics as well as the parameter
much speculation as to the functional role these correlationggime under which they are valid. Section Il characterizes
might serve. For example, it has been proposed that longhe IS statistics and shows how their properties reflect the
range correlations in neurons provide some advantages Rroperties of the input to the neuron. In Secs. lll and IV the
terms of matching the detection system to the expected sigtatistics of the output spike trains are analyzed by using the
nal[5,6]. Fano factor, the spike-spike autocorrelation function, and the
The regularity shown by neural spike trains will have con-power spectral density. The analytic expression for the Fano
sequences on stimulus encoding and detection. It has beéactor agrees with the simulation results, revealing a mini-
recently shown that both auditory neurdi§ and electrore- mum for this simple integrate-and-fire model. The implica-
ceptors of weakly electric fish display both short-range antitions of these results are finally discussed.
correlations and long-range correlations in the interspike in-

terval (ISI) sequence[7,8]. Long-range correlations of A. Model
different kinds, namely, long-range anticorrelation, have also )
been observed in paddlefish electrorecepkts Here we look at a simple neuron model, the perfect

It has been shown that short-range anticorrelation andltégrate-and-fire neuron, driven by Ornstein-Uhlenbeck
long-range correlation could contribute to give a minimum in(OU) noise, 5(t). The dynamical equations describing our
spike train variability as measured by the Fano factorSyStem are
(variance-to-mean ratio of the spike couat a behaviorally d

: o v(t)
relevant time scal¢8]. In that study the minimum was nu- =u+n(t),
merically observed for a leaky integrate-and-fire neuron with dt
dynamic thresholdLIFDT) driven by periodic forcing and
weak long-range correlated noise. Our study focuses on the dn(t) n(t) 2D
sufficient conditions under which such a minimum can be gt T+ \/Tg(t),
obtained in a neuron model. Our results show that dynamic
threshold, leakage, and periodic forcing are not necessary to
obtain a nonmonotonous Fano factor. A perfect integratewhereuv(t) is the membrane voltage, is a constant bias;
and-fire model driven by long-range correlated noise conandD are, respectively, the correlation time and variance of
tains all the essential elements to reproduce a minimum ithe OU process, ang(t) is Gaussian white noise with auto-
the Fano factor. correlation{£(t)£(t'))=8(t—t'). The driving OU process

We also examine how the long-range correlated noise afias a Gaussian stationary probability ~densipy 7)
fects ISI statistics and the spike train power spectrum. The=exd —77/2D]/\/27D and an exponential correlation func-
ISI densities and correlation measures are difficult to obtaition (7(t) »(t"))=D exd —|t—t'|/7]. The voltage is reset to
analytically for the LIFDT, but are possible, with certain ap- 0 once it reaches a threshold valug,, without resetting
proximations, for the perfect integrate-and-fire neuron. Uni-z(t). For all numerical results, unless stated otherwise we

use the parameter valueg,=27 and u=1. The times at
which the voltage crosses threshofd,}, will be the spike
*Email address: jmidd620@science.uottawa.ca times of the resulting spike train given by the expression
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FIG. 1. A sample spike train with subthreshold voltage varia-

tions and the corresponding driving noise. The variance of the noise . )
was set to a large valu®=1, which is used here to visually FIG. 2. The freely evolving voltage(t) and the increment

discern the modulation of the interspike intervals. The time constarifiréshold variableupper panel driven by the OU process)(t)
used was-=100. The vertical bars on top of the voltage trace in the (lower pane). The difference between the threshold variable and the

upper panel is not from the dynamics in Ed), but were added to  Voltage is only noticeable on smaller sca(éssey.
illustrate spikes.

Uth

4

= ,
X(H=3 at-ty. @ HE Tk

. ' ' ~ wherek denotes the index in a sequence of ISIs, apds
The spike counN(t) [i.e., the number of spikes observed in the value ofy at the beginning of th&th interval. Equation

a counting window (@)] is given by (4) is a good approximation as long ag>—u andl, <.
. As 7, approaches- u from above, the ISI obtained from the
Nt = | dix(t)= t—t,), 3 static-noise approximation diverges and is negative #pr
® fo ® o;k (t=tJ @ < —u. This is problematic as negative ISIs have no physical

meaning. In order to minimize the occurrence of these values
where® (t) is the Heaviside step function. Figure 1 shows awe require that
realization of the membrane voltagét) and its correspond-
ing driving noisex(t). This illustrates the slow modulating D=(7?)<u?, (5)
effects of the noise on the ISlIs.

An equivalent spike train can be generated without thel e., we use weak long-range correlated noise. Whenever the
explicit reset of the voltage, but, instead, by incrementing ther'loi:’;e attains values close to or belews, the ISi will be of
threshold by, every time the voltage reaches it. Spikes are . - . .

. b . “the order of magnitude of the correlation time during
generated each time the threshold is incremented. In this PiChich the OU i ¢ | ter th
ture, without explicit voltage reset, the spike count at time whic e Process Teturns 1o values greater am.
is equal to the threshold divided by the constapi. The Elearly, thﬁs? ISl real|zat|0(1llsbare nog captured bi; E;]()l
freely evolving dynamics in Eq(l) is equivalent to the thoevivreﬁlrtyntenig %ﬁcméegﬁﬁ Wétat?strii;eisuneetoli %ign thus
Brownian motion of a particle on an inclined plane. Variables Approximation (4) not gnl low tg \?\/rit 'd wn
v(t) and u+ 7(t) are then viewed as the particle’s position bproximatio ot only alows us 1o € down a

and velocity, respectively. Provided we have a finite positivecondmon‘ell probability density functioPDF) betweenl

bias, u>0, the average difference betweep,(N(t)+ 1) and 7y, b_ut also allows us t_o reduce this conditional PDF to
N a ¢ function due to the unique one-to-one correspondence
and v(t) does not grow unbounded in time, whereas th

standard deviation af(t) grows as\t, asymptotically. Con- ebetweemyk andly:
sequently, in the asymptotic limit, the statistics of the thresh-
old and of the counting proce$§(t) become indistinguish-
able from the statistics af(t), as seen in Fig. 2.

Uth
Mt

Pl m)= 5<|k_ (6)

B. Quasistatic approximation II. INTERSPIKE INTERVAL STATISTICS

We wish to look at the effect of long-range correlated
noise, so we use a quasistatic approximation for the noise. If
7 is much larger than the average ISI, then on short time The first quantity of interest is the stationary PDF of ISIs.
scalesy is approximately constant. In this way we can relateln order to obtain the stationary ISI PDF we can average the
each ISI to a unique value of the OU process conditional PDF betweeh, and #, over all values ofy,:

A. Stationary probability density function

021920-2
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P(l)= f_xd P m)p (7). ) =8
1
0

The statistics of the values of the OU process sampled at the ry
beginning of each ISly,, are not the same as for the con- & )
tinuous OU processy. Imagine we measure the noise value & I

at the beginning of each interspike interval of a long spike 0.25- i s
train. Then a higher value of noise leads to a shorter interval
and hence to more intervals within a given time period than
a lower value ofy. This problem is known as biased sam- | :
pling of a stochastic variablglO] and is resolved by a cor- ol esscksnll ~

rective factor given by the inverse interspike interys¢e 0 25 15 73 10
also Ref.[11]). Normalization of the corrected PDF yields

FIG. 3. Stationary ISI probability densities. Numerical simula-

e nE/ZD 7 tions for fixed 7=1000 and different values of varian@ along
p(m)= ( —) (8)  with the theoretical probability densiti€8). Note that the mean is
V27D M v/ in all cases.
For simplicity, this normalization as well as any integration B. Serial correlation coefficient

in the remainder of the paper is performed with respect to the
full range of noise values, including<<—u, since these
values will make a negligible contribution to the integrals we
perform. Inserting Eq(8) into Eq.(7) yields the PDF for the
interspike interval density:

The serial correlation coefficiefBCQ is a measure of
correlation between different elements in a sequence of ran-
dom events. The SC(@, in this case, is between two ISIs
separated by intermediate ones. The numbeis referred to

as the lag, and the SCC at lags given by

2
< Uth e”k/m( Uk) (N ) = (H) (1)
P(l :f d 5(|_ ) 1+ _ Ukt K/ A\ Tk
(I _4meo| 2t ) V27D P I 15— (12 , (10
- Vit e—nﬁ/zD
= dy 5( T~ —+M)—(M+7I )3 where the averages here are over an ensemble of ISI se-
j—w X P V2mDuphu “ quences. The mean values for tkth and the k+1)th ISIs

are the same if the process giving rise to these ISIs is sta-

vi,  exd —(ul—v)?(2D17)] tionary. A simple expression for these SCCs can be obtained

©)

27D u 13 first by taking the Taylor expansion of Eg4) about 7,
=0:

Using these densities the means for the sampled stationary
OU process and IS are, respectively,u andv,/w. Note, |~ ﬂ( 1— Tk (11)
however, that the PDF decays ai;ﬁ]ﬁbr largel, according K )’
to a power law, in contrast to the white noise driven case
[12]. This implies a divergence for the second and higher | - P T - T
moments revealing again that the approximation made is re- 1.2 @ ° o 1=1 T
stricted to ISIs smaller than. 1'_ o o s 1=10 | |

Figure 3a) shows the stationary PDF for fixedand sev- I o ° + =100 | ]
eral values ofD from both numerical simulation of Eq1) 0.8 o % - Il;e}(())l('))(') i
and the corresponding theoretical curves using(Bg.With = AgEh :
increasing noise the mean of the density does, in fact, remain E:O.6— fi"fﬁ' ° —
the same av.,/u, because the shift of the peak towards I i Y8 T
smaller ISI values is balanced out by the long tails for larger 0.4 f o %ag T

. : . ! N

ISI values. Even though we began with a weak noise condi- 0.2k I#A % . ]

tion (5), the theoretical densities agree with simulation re- | o o
sults very well beyond this condition. The agreement holds m&@ oL . B
even for higher noise valuése., D= 1), though not as well 5 7
for smaller noise values.

_ Figure 4 shows the simulation and theoretical PDFs for  gg. 4. stationary ISI probability densities. Numerical simula-
fixed D and various values of. The numerical results agree tjons ford=0.01 and different values of the correlation timeThe
well with the theory, but the agreement breaks down when theoretical result9) is independent of because of the quasistatic
is on the order of the mean ISI. For shorter values,ofe.,  approximation. The quasistatic approximation is not valid for small
v/ m, the quasistatic approximation is no longer valid. values ofr.

o S
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FIG. 5. The serial correlation coefficient from numerical simu- FIG. 6. The numerical resultsolid line§ of the Fano factor for
lation (symbolg and theoretical resu(iL3) (solid lineg. Results for different noise intensities witlr=1000 for the system of EqZ).

three values of the noise correlation time are shown. The varianoclahe dashed lines are the theoretical curves obtained fronf15y
of the noise used in simulations 3= 0.01; the theoretical curves This theory is valid only in the large counting time limit. The ar-

are independent of the driving noise strength. rows indicate the positions of the minimum in the Fano factor as
. . . ) iven by Eq.(23).
provided assumptioni5) still holds. We may then approxi- 9 y a3

mate the serial correlation coefficient by inserting Etl)  sefyl for determining on which time scales the process is

into Eq. (10): most regular. As discussed in the Introduction, the spike
5 count process is equivalent to the freely evolving dynamics

i~ (1) = (0 —c () (12  of a particle executing Brownian motion on an incline in the

() —(m)? e asymptotic time limit. In this limit we can use the statistics

of the two processes interchangeably, so that we can use the
which is simply the autocorrelation function of the sampledwell-known Fano factor for Brownian motidri4] as an ap-
OU process. For low noise, the timgs., at which the pro- proximation for the Fano factor of the spike count for large
cess is sampled do not deviate much fropt-I(l). This  times:

allows us to estimate the ISI correlation: 5
r

,
1-— —(1—e“7)}. (15)
UthM t

pi~C,, (N~C,(I(1)) Flargd )=
=ex;{ I It is readily seen that for moderate tintes 7, the Fano fac-

T T tor is Fiage=Dt (no 7 dependende whereas fort—c we

. o . _ o haveF ,4~D7 (i.e., saturation Hence, the linear growth of
Although this formula is just a simple estimate, it fits the the Fano factor in timécorresponding to the ballistic phase
simulation data, Flg 5, rather well. Deviations become apof Brownian motion is determined On|y by the variance of
parent for moderate values of the correlation tim@.e., in noise values, while the correlation sets where the ballistic
Fig. 5, 7=10~(l)) and for larger values of the noise vari- phase terminates. Figure 6 shog{t) for different vari-
ance (not shown. Numerical simulations have shown that ances of the OU process with=10°. Theoretical curves
for extremely large correlation times the noise variance15) converge toward the numerical results for a sufficiently
needs to be scaled down appropriately in order to maintaifbng counting time. The convergence is faster for intermedi-
agreement with the theoretical expression, 8¢). Details  ate noise values, as seen in Fig. 6. The Fano factor curves
will be given elsewhere. Apart from these small deviationsreach an asymptotic value, given by
we can state that for weak long-range correlated noise, the

. (13

exponential correlation of the noise carries over to the ISI ) ) 2Dr
statistics and that the “correlation lag(i.e., the discrete lim Fjagd t) = lim F(t)Zm- (16)
counterpart of a correlation timés given by e e !
T TH B. Short-time analytic approximation
|corr:m = (14 . .
Uth The Fano factor of the random point process described by
our neuron with long-range noisd) approaches 1 in the
lll. FANO FACTOR limit t—0, which is the Poissonian limfifL0]. Equation(15)

is only valid in the large time limit and fails to capture the

discrete nature of the point process, which becomes apparent
The Fano factof13] F(t) is the variance to mean ratio of at small timegsee Fig. 6. If an approximation of the Fano

a counting processl(t) for a given counting timd. It is  factor for short counting windows times can be found, we

A. Large-time analytic approximation

021920-4
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FIG. 7. Aregularly spaced spike traif.is the fraction of an ISI —— Theory
that remains after taking out the largest number of ISIs from the | — Simulation| |
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can use this expression as well as the large time approxima-
tion (15) to interpolate values of the Fano factor at interme-
diate time scales.

The intensity of the long-range correlated noise is small Inalong with the complete short- and long-time theoretical Fano fac-

our approximation. Consequently, over short counting times, . ¢,om Eqs.(15) and (21) for D=10"2 and r=1000. The arrow

the spike train appears very regular. Because of this regulafgicates the position of the minimum in the Fano factor, as given
ity the Fano factor for a deterministic spike train will be a by Eq.(23). The numerical data is the same as in Fig. 6.

good approximation. Figure 7 shows such a spike train with
a given counting time. The variableA [used here as short-
hand for mod{,(1))] is the difference in time betweerand
the largest number of integer multiples(@} thatt contains.
We shall refer to this largest integer kswhich gives ust
=k(I)+A. As Fig. 7 shows, for a given the spike counN
can take on only one of the two values:or k+1. The

counting time

FIG. 8. Comparison of the numerically obtained Fano factor

of 1/4 located at every odd multiple ¢f)/2. Because the
variance does not grow past a finite value in time, the Fano
factor is damped out by the linearly increasing mean and
becomes negligible at large time scales.

probabilities of observing these counts are C. Full-range approximation
A The sum of the short-time and the long-time approxima-
1-—, i=k tions, F(t)=_Fsma|(t)+ F!arge(t), provides a good fit to dat_a
(" from numerical simulations over the full range of counting
P(i)={ A ) (17)  windows, as can be seen in Fig. 8. Figure 6 shows that for a
m, i=k+1 finite range of noise intensities the Fano factor exhibits a
. minimum, and it is noteworthy that this crude approxima-
0, otherwise, tion, Fymai(t) + Fragdt), gives a very good estimate for the

position of the minimum in the Fano factor. By minimum we
mean the first local minimum encountered in going from
large time values to small ones. It was previously shown that
a minimum in the Fano factor indicates an optimal time scale
t on which to detect two distinct signdl8,15]. Since the vari-
(ny=-— (18)  ance of the deterministic spike train, H0), is confined to
M the interval[ 0,1/4], the small time Fano curve can be ap-
proximated by the envelope of its oscillations;qma
=(1)4t=v/4ut. This agrees with our previous definition
A of the minimum of the Fano factor. This envelope and the
I

wherei is the index of the spike in the deterministic spike
train. FromP(i) we can obtain the mean and variance of the
spike count:

and

A . . -
—+ (19 large time Fano factor can be used to determine a minimum,

(O

and thus the variance becomes d

dt

(n?)=2 i?P(i)=k?+2k
i=0 ) given by

v 2Dt
Ztho,
4pt  vihp

(l—%(l—e“T)”:O. 22)

A A
M= =m 11w/ (20
Since the position of the minimum is, in general, much
From this, we can obtain an expression for the Fano factogmaller thanr, we can expand the exponential in EB2) to
for small counting times: second order and differentiate. Solving the resulting equation
yields the approximate position of the minimum of the Fano
o
1--—]. (21
(1

factor:
The variance of the deterministic regular spike train is a pe- = 23)
riodic sequence of inverted parabolas with a local maximum 2D

2\ _ 2 A
Fsmalft) = %: T
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Because we consider large correlation timeghe times at
which the sum off¢,,(t) and Fi,qdt) gives a minimum
occur only in the ballistic region of Brownian motion. Here,
neitherFgyna(t) nor Fi,dt) depend onr. Hence, the mini-
mum is determined by the only remaining parameter, namely
the noise variance.

The positions of the minimum, as given by E&3), are 0.01F
indicated by arrows in Figs. 6 and 8, which agree very well :
with the apparent positions of the minimum given by the
numerical simulations. We have thus shown that &g .ex- 0.001
hibits a minimum in the Fano factor, and that the position of i e NG L]
this minimum does not depend on the correlation timia 0.001 0.01 0.1
this quasistatic approximation, but is entirely determined by f

the variance of the noise. FIG. 9. The low frequency power spectrum derived from the
large time Fano factor approximation E45) compared with simu-
IV. SPIKE TRAIN POWER SPECTRUM lation results of Eq(1). Results for three values of the noise corre-
lation time are shown. The variance of the noise used in the simu-
We now derive correlation and spectral properties of thaations isD=0.1. For reference, the frequency corresponding to the
spike train generated by E@l). The relation between the inverse ISI isf=0.159.
Fano factor and the spike autocorrelation function is given
by [10]

=100

o Simulation
— Theory

0.1f

S(f)

2D
S(f)=

1 )
: (28)
2 2
Rex(S), (24) v2 1+ 27fr)

2 (t S

F(t):1+?f ds(l—f
0

Just as the spike-spike autocorrelation function displays

wheref = u/vy, is the mean firing rate of the point process properties of the input co_rrelation, the low frequency power
and R} () is the autocorrelation function of the spike train SPectrum of the spike train has the same Lorenzian form as
for t>0 (not including thes function at the origii We can the OU input. Figure 9 shows the theoretical low frequency

invert this relation to findR}, in terms of the Fano factor power spectral curves for ;everal input noise correlation
XX times compared with simulation results.

"

+ = ——
Rux(1) = 2ut dt

d
tzﬁ':(t))- (29) V. CONCLUSIONS

) The effects of correlated noise have been of interest in the
The power spectrum can be calculated by the Fourier transs—tudy of many stochastic systentsee, e.g., Refd1,16—

form of the autocorrelation function 20)). In this study, we have seen how long-range correlated
noise can influence the spike train, I1SI, and spike count sta-

_ (" i27ft tistics in a perfect integrate-and-fire model. Using a quasi-

S(M) J_mdte Road D). 26 static approximation, analytical expressions for the ISI den-

sity were obtained. It was seen that the exponential

Due to the linearity of the differential operator acting on thecorrelations in the noise led to exponential correlations in

Fano factor in Eq(25), the correlation can be expressed as aPoth the ISI sequence and the spike train at long lags. As a
sum of two contributions: one coming from the small time consequence, the power spectrum of the spike train had a
approximation of the Fano factor and the other from the largd-orenzian shape at low frequencies.

time approximation. The discontinuities in the derivatives of An expression for the Fano factor curve was then ob-

the small time approximation make the integration of its cor-tained. In particular, long-range correlated noise was shown
responding correlation function analytically difficult. If we to0 increase the Fano factor at long time scales. Due to the
limit our focus to the correlation function at large times finite correlation time used in the OU process, the Fano fac-
(Coming from the |arge time Fano fac)o,we can describe tor eventually saturates to a finite value. Such a saturation
the power spectrum at low frequencies. Substituting the exbas been observed experimentd#y. An interesting finding

pression for the large-time Fano factor, E45), will give us ~ Of our study is the fact that a minimum in spike train vari--
the autocorrelation function for large times: ability as measured by the Fano factor can be obtained in this

simple model. While the perfect integrate-and-fire neuron
D model used here has no explicit absolute refractory period,
R, (1)= _Ze*t/T_ (27 there is a relative refractory period that arises due to the
Vth small noise and the fact that it takes a finite tifos the
order of the average I5for the voltage to reach threshold
Inserting this expression into ER6) gives us a Lorenzian from the reset value. It is the interaction between this refrac-
spectrum: toriness, which decreases the Fano factor for small times,

021920-6
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S R the plateau, there is little improvement in the accuracy of
107, ---- Theory . spike count estimation. However, the relative error can be
\ — Simulation reduced to arbitrarily small values by taking increasing
counting times greater than the correlation time of the OU
process,r. A sensory system, using observed spike count to
determine the presence or absence of prey, would encounter
the problem of having to wait long periods of time for the
lowest possible spike count relative error. By the time a de-
cision is made on the presence or absence of prey, any action
based on that decision would be irrelevant as the prey would
have escaped in the meantime. The Fano factor might al-
ready implicitly factor in the cost of waiting too long. It is
proportional to the relative error squared multiplied by
counting time. The rise due to the factor of counting time
FIG. 10. The relative spike count errBi(t)/t as a function of  implicitly accounts for the cost of indecision. If the Fano
counting time. The simulation results from integrating Fhj. are  factor were actually an inverse measure of the benefit from
compared with the theory from the full range Fano factor approxi-the most accurate estimation in the shortest possible time,
mation,F sma(t) + Flargdt), WhereF (1) is given by Eq(15) and  then its minimum would be the optimal time on which to
Fsman iS given by the envelope approximatiog,/4ut. Results are  perform computations used for signal detection, as has been
shown for7= 1000 and for two different values of noise;=0.01  observed experimentally in electric fish electroreceptors
andD=1. The arrows indicate the onset of the plateau region, a§7 27.
given by Eq.(23). In each case the plateau persists until about the An accurate electroreceptor mod@8] driven by long-
_correlation'timer._ While on the plateau there is very little change range correlated noise and periodic forcing was shown to
in the relative spike count error. reproduce this observed minimui@)]. This result was later
reproduced in a simpler leaky integrate-and-fire model with
and the long-range correlated noise that will increase it foynamic threshold15] driven by both white and correlated
large times that causes the minimum. noises without periodic forcing. In that study, negative ISI
It was shown that synaptic vesicle release observed igorrelations, present due to a dynamic thresh28j, further
Xenopusneuromuscular junctions and in rat hippocampa|decreased the Fano factor, from the value obtained with a
synapses displayed long-range correlatipd$]. Our slow renewal process, while the positive ISI correlations due to
noise could thus model the synaptic current fluctuations rethe slow noise increased it, giving rise to a minimum where
ceived by a neuron. The Fano factor minimum has been obsignal detection with respect to an equivalent renewal pro-
served in the experimental data in both auditory fijé;§]  cess was greateft5]. Here we have found that the simple
and weakly electric fish electrorecept¢@. Our study thus generic perfect integrate-and-fire driven by long-range corre-
suggests that the Fano factor increase, and consequently tiied noise is sufficient to observe the Fano minimum. In
minimum, observed in many neurof§22—-26 could be due  particular, the counting time at which the minimum occurred
to long-range correlations in the neurotransmitter secretiovaries with noise intensity, possibly explaining the experi-
rate. mentally observed variability in the position of the minimum
There is much speculation as to the significance of a miniin weakly electric fish electroreceptofg]. While the mini-
mum in spike train variabilityf7,8,15. For weakly electric mum arising from the perfect integrate-and-fire neuron is not
fish electroreceptors, the time scale at which the minimun@s pronounced as that from the LIFDT, it is perhaps a less
occurred matched the observed time scale at which these fighstrictive model. Because of this, it may be useful for the
capture prey27], giving a behavioral relevance to this mini- phenomenological description of the Fano factor and its
mum. It can be shown that the discriminabiliybetween minimum, and thus signal detection time scales in various
spike counts arising from distinct signal distributions is in- Sensory system experiments.
versely proportional t§F(t)/t]*2[8,15]; this latter quantity
is also the relative error of an observed spike count. Figure
10 shows the relative spike count erieft)/t as a function
of counting timet for a single value ofr and two different The authors would like to thank Brent Doiron for his
noise intensities. The minimum of the Fano factors from Eqcomments on and discussion about the manuscript. This
(23) indicates the beginning of a plateau in the relative errorwork was supported by NSERC Canada and the Premier’s
It is apparent that by increasing the counting time, while onResearch Excellence Award from the government of Ontario.

F(t)/t
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