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Abstract. The operation of the nervous system relies in great part on the �ring activ-
ity of neurons. This activity exhibit signi�cant uctuations on a variety of time scales
as well as a number of memory e�ects. We discuss examples of stochastic and memory
e�ects that have arisen in our neuronal modeling work on a variety of systems. The
time scales of these e�ects range from milliseconds to seconds. Our discussion focusses
on 1) the e�ect of long-range correlated noise on signal detection in neurons, 2) the cor-
relations and multistability produced by propagation delays, and 3) the long time scale
\working memory" e�ects seen in cortex, and their interaction with intrinsic neuronal
noise. We describe both analytical and numerical approaches. We further highlight the
challenges of constraining theoretical analyses with experimental data, and of attribut-
ing functional signi�cance to correlations produced by noise and memory e�ects.

1 Introduction

The study of the nonlinear dynamical properties of excitable systems poses great
challenges. This is true from the single cell level all the way up to the macro-
scopic level of electric and magnetic �elds recordings from large numbers of cells.
The basic element of the nervous system is the nerve cell, or neuron, and its be-
havior is intrinsically nonlinear. Further, a single neuron is usually stimulated
(or \forced", in the nonlinear dynamics context) by time-dependent signals of
varying time scales and levels of stationarity, as well as by intrinsic noise sources
related to the other neurons and to the intrinsic function of synapses and ionic
conductances. The study of such stochastic nonlinear dynamics is at the fore-
front of research into nonlinear dynamics and how such dynamics are inuenced
by noise [26]. Further, in humans, there are on the order of 1010 nerve cells, and
1014 connections between them [27]. Basic groups of cells thought to perform
a speci�c function, such as hypercolumns in the visual cortex usually contain
thousands of cells. Yet even the study of two coupled neurons leads to a wealth
of new phenomena not found at the single cell level, such as synchronization.

Neural modelers are well aware of this fact, and try to adapt the complexity
of their models to the various phenomena they are interested in modeling, as
well as to the available data. One common challenge is to decide whether or
not to formulate the model in terms of Markovian dynamics such as ordinary
di�erential equations, or in terms of non-Markovian models such as integro-
di�erential models, or delay-di�erential equations which are a special case of
them and arise often in the modeling of neural feedback. The modeler keen
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to formulate nonlinear dynamical equations of motion for the assumed state
variables of the system must also decide on whether or not to couple stochastic
forces to deterministic models.

There are certainly philosophical issues underlying these choices. For exam-
ple, one can argue that the evolution of the whole dynamical system of the brain
relies only on the current state of all its components. And within this purview,
activity in a given cell or group of cells may display correlations because it in-
uenced the activity of another group of cells, which in turn later a�ect the
behavior of the �rst group. In other words, due to the spatially distributed na-
ture of the brain, activity recirculates in a more or less modi�ed form. To avoid
modeling the system as a whole, one may want to simplify using delayed dynam-
ical systems; this allows one to dispose of spatial dimensions and concentrate on
the time lag aspect of the recirculated activity [1,15,10]. Thus, non-Markovian
dynamics result as a consequence of a modeling simpli�cation. Another possi-
bility is that by restraining a model to a certain number of state variables, the
neglected ones which act on the system may do so in a non-stationary way,
i.e. they cause non-stationary uctuations on the time scale of the chosen state
variables.

Given the complexity of excitable cell assemblies such as those in the nervous
system of mammals, and even invertebrates, it is not surprising that long range
correlations appear in recordings from these systems. Nevertheless, our level of
understanding of the origin of these correlations is not well developed, and the
functional implications of these correlations are even less clear. One certainly
can think of many reasons why the nervous system should have long range
correlations in its �ring activity, such as for the storage and recall of signi�cant
experiences. The mechanisms governing this obvious potential use of long range
correlations are beginning to be understood, and there is growing consensus that
modi�cations of the strengths of connections between cells are implicated.

There are however many other kinds of nervous system activity that display
correlations. For example, the �ring of single cells in the auditory system, and
other senses as well, have been shown to display long term correlations (see e.g.
[47] for a review). Such correlations have been associated with various fractal
noises, and it has been suggested that such noises arise through the normal func-
tioning of the synaptic machinery that drives these cells. Also, as we mentioned
above, the propagation of neural activity may be deemed slow in comparison to
the time scale of the state variables of interest, or may not necessarily be slow,
but has to propagate to other parts of the nervous system before inuencing
the dynamics of interest. Thus, delay-di�erential models are commonly seen,
especially in the context of neural feedback and control [1,20].

Finally, it is known that nervous activity can be activated in a spatially spe-
ci�c manner, as occurs e.g. when we try to remember the spatial position where
we saw a light appear for a second. The memory of this position is important
e.g. if one wants to point to this position, either right away or after a minute.
Thus, the activation of a spatially speci�c group of cells can be \remembered"
by a spatially distributed model of the area of the brain involved in this so-called
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\working memory" task. This memory will be either strengthened or decay away,
and in any case inuence the activity of the associated neurons on a long time
scale. In this sense, it can be seen as a source of long range correlations. This
memory will also be subjected to the e�ect of neuronal noise, which a priori would
be considered as a limiting factor for the performance of this type of memory.
We will report below on a paradoxical �nding that suggests the opposite.

In this paper we present examples of neural dynamics that display long range
correlations, and describe what is known about the functional implications for
these correlations. We have a de�nite bias towards nonlinear dynamical models,
rather than in developing more sophisticated techniques to characterize the cor-
relations. In fact, the techniques discussed here to establish the presence and
basic properties of the correlations are well-known. Further, the phenomena we
have considered in our work operate at certain time and spatial scales, and do
not include for example the important �elds of ionic channel dynamics and neu-
rohumoral dynamics (associated with the modulation of the concentration of
various neurotransmitters and hormones on the time scale of seconds to days).

Our paper is organized as follows. In Section 2, we discuss the measurement,
analysis and modeling of long range correlated �ring in a class of neurons known
as electroreceptors; the results are of general interest for all neurons. We further
discuss how the correlations conspire to set up a time scale on which electrosen-
sory system may best perform signal discrimination tasks. Section 3 considers
the role of neural conduction delays in producing long range correlated activ-
ity, and briey summarize what is known about the inuence of noise on, and
theoretical analysis of, noise in systems with delays. Correlations due to short
term spatial memory, and their interaction with noise are the subject of Section
4. The paper is not meant to be comprehensive of long range correlated e�ects
in neural systems. It does illustrate however how such correlation can arise in
systems that range from the single cell level to the large scale spatial level. We
have also arranged our presentation so that there is a progression from the small
single cell spatial scale with \long range" correlations on the order of millisec-
onds, up to large spatial scales with longer range correlations on the order of
seconds. In all examples, the correlations can be considered \long" because their
time scale exceeds those of the dynamical components making up the systems.

2 Correlated Firing in Sensory Neurons

It is known that neural spike trains exhibit long range correlations [27,47] and
there has been much speculation about their presence [47]. To this day, their
functional role largely remains a mystery. However, many natural signals encoded
by sensory neurons exhibit such long range correlations (e.g. music [49]). It
has thus been speculated that long range correlations in neurons provides some
advantages in terms of matching the detection system to the expected signal
[46,47]. Many neural spike trains also exhibit short range correlations [36,42]. It
has been shown that the spike train variability of these same neurons displays
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a minimum as a function of the integration time. However, very little is known
about how this can be generated in a biophysical neuron model.

Here we study how such a minimum can be generated in a simpli�ed version
of a model that has been used to model weakly electric �sh electroreceptors
[6{8]. The core of the model resides in the addition of threshold fatigue after
an action potential to model refractory e�ects [19]. It is known that the model
under Gaussian white noise stimulation gives rise to negative interspike interval
(ISI) correlations that decay over short ranges [9]. We show that the addition of
correlated noise gives rise to positive long range ISI correlations in the spike train
generated by the model. These positive long range correlations lead to an increase
in spike train variability at long time scales similar to that seen experimentally.
They further interact with the short range negative ISI correlations to give rise to
a minimum in spike train variability as observed experimentally. The functional
consequences of both types of correlations is studied by considering their e�ects
on the detectability of signals.

2.1 The Firing Model

A basic model for a neuron is the so-called integrate-and-�re model [27]: the
neuron integrates its input in a leaky fashion (due to the RC properties of the
membrane), and �res when the voltage reaches a �ring threshold. After a �r-
ing, the voltage is reset to a value (such as zero) and the process repeats. The
reset destroys all memory of past �ring events, i.e. it makes the dynamics a \re-
newal process". Here we consider the following model modi�ed integrate-and-�re
model:

dv

dt
= �(t � Trefrac) [�v=�v + I + �(t) + �(t)] if v(t) < s(t); (1a)

dw

dt
=

w0 � w

�w
if v(t) < w(t); (1b)

v(t+) = 0 if v(t) = w(t) (1c)

w(t+) = w(t) + dw if v(t) = w(t) ; (1d)

where v is the membrane voltage, w is the threshold, and I is the current. �(�) is
the Heaviside function (�(x) = 1 if x � 0 and �(x) = 0 otherwise). In between
action potentials, the threshold w decays exponentially with time constant �w
towards its equilibrium value w0. We say that an action potential occurred at
time t where v(t) = w(t). Immediately after (i.e. at time t+), we reset the voltage
v to zero while we increment the threshold by a positive constant dw. The voltage
v is kept equal to zero for the duration of the absolute refractory period Trefrac.

To model the intrinsic variability seen experimentally in neurons, we use two
noise sources in the model (for details and justi�cation see [7]): �(t) is zero mean
Gaussian white noise with variance D2. �(t) is zero mean Ornstein Uhlenbeck
(OU) noise [18] with time constant �� and variance E2. We take �� to be much
larger than the intrinsic neural time scales (�v and �w).
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Figure 1A illustrates the model dynamics. The noise sources �(t) and �(t)
are shown in Fig. 1B. Note that we chose the noise source �(t) to be two orders
of magnitude weaker than the noise source �(t). Also, �(t) varies over short time
scales while the noise �(t) varies over longer time scales.

2.2 Interspike Interval Correlations

From the spike time sequence ftigNi=1, one can de�ne the ISI sequence fIigni=1 =
fti+1 � tigN�1i=1 . The ISI serial correlation coeÆcients (SCC) %j are a measure of
linear correlations between successive ISIs. They are de�ned by

%j =
< InIn+j > � < In >2

< I2n > � < In >2
; (2)

where < : > denotes an average over the ISI sequence. The SCC %j is positive
if the jth ISI and the current one are both (on average) shorter or longer than
average. However, it is negative when the present ISI is shorter (longer) than
average while the jth ISI is longer (shorter) than average.

Figure 2 shows the SCC sequence obtained with the model (black curve).
One observes the presence of long range weak ISI correlations that decay expo-
nentially with increasing lag. These are due to the presence of the OU noise �(t)
[7]. The SCC sequence obtained in the absence of Ornstein-Uhlenbeck noise (i.e.
E = 0) does not show long range correlations (gray curve). The presence of long
range correlations can be explained intuitively in the following manner [7]. The
noise �(t) varies on a slower time scale than the neural dynamics: it can thus be
considered quasi-constant on the average ISI time scale. Thus, if the noise �(t)
is positive, it will stay positive for a long time (see �gure 1B): this will lead to
a long sequence of ISIs that will be shorter than average.

Note that in both cases (i.e. with and without OU noise), we have %1 < 0 (see
inset). This is due to the deterministic properties of the model [9]. Figure 1A
shows that if two spikes are �red during a relatively short time interval, there
tends to be a summation e�ect in the threshold and it becomes higher than
average. Consequently, the next ISI will tend to be long since the threshold takes
a longer time to decay. A similar argument holds if two spikes are separated by
a long time interval. Thus short ISIs will tend to be followed by long ISIs and
vice versa, and this will give rise to %1 < 0. This property can be studied by
looking at the model's deterministic response to perturbations [9].

We now explore the consequences of these short and long range ISI correla-
tions on spike train variability. We denote by p(n; T ) the probability distribution
of the number of action potentials obtained during a counting time T. p(n; T ) is
referred to as the spike count distribution [3,45]. The Fano factor [14] measures
the spike train variability on multiple time scales. It is de�ned by

F (T ) =
�2(T )

�(T )
; (3)
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where �(T ) and �2(T ) are the respective mean and variance of p(n; T ). The
asymptotic value of the Fano factor is related to the SCC sequence [11]

F (1) = CV 2

 
1 + 2

1X
i=1

%i

!
; (4)

where CV is the coeÆcient of variation: it is given by the ratio of the standard
deviation to the mean of the ISI distribution.

We plot the resulting Fano factor curves (Fano factor versus counting time)
for the model in Fig. 3A. The Fano factor curve obtained in the absence of OU
noise (triangles) decreases monotonically. However, the presence of the weak OU
noise a�ects the spike train variability at long time scales by increasing the Fano
factor (squares). Due to the �nite correlation time of the OU process, the Fano
factor saturates to a �nite value. We now explain the phenomenon in more detail.
Let us assume the following form for the SCC's with i > 1:

%i = �0:34355Æ1i + 0:007 exp(�i=347:768) ; (5)

where Æij is the Kronecker-delta (Æij = 1 if i = j and 0 otherwise). This was
obtained by an exponential �t of the data in Fig. 2 with OU noise as well as
adding the value of %1. Substituting (5) into (4) yields an asymptotic expression
(upper black horizontal line) for the Fano factor that is close to that observed
numerically. This justi�es our assumptions about exponentially decaying ISI
correlations.

We compare the results with the Fano factor obtained from the randomly
shu�ed ISI sequence; the shu�ing eliminates all ISI correlations and a renewal
process results (circles). The Fano factor F (T ) now decreases monotonically
towards the asymptotic value given by CV 2 (\CV 2" line in Fig. 3A). This is in
accordance with (4). We observe that the presence of short term negative ISI
correlations decreases spike train variability at long time scales. However, weak
long range ISI correlations will give an increase in spike train variability at long
time scales. This is consistent with the predictions from (4).

Figure 3B shows the corresponding mean (open squares) and variances of the
spike count distribution obtained under all three conditions. It is observed that
the reduction in the Fano factor caused by negative ISI correlations is primarily
due to the fact that the variance is reduced at long time scales in comparison
with a renewal process (compare �lled circles and open triangles). The noise �(t)
is too weak to have any noticeable e�ect on the mean. However, it signi�cantly
increases the variance of the spike count distribution at long time scales (�lled
squares).

It is thus an interaction between negative and positive ISI correlation coeÆ-
cients that gives rise to the minimum in the Fano factor curve. This minimum
counting time depends upon the strength E and time constant �� of the OU pro-
cess [7]: it is possible to change the counting time at which the minimum occurs
by changing the parameter E [7]. Furthermore, the counting time at which the
saturation occurs depends on �� : the saturation point can be set to arbitrarily
large counting times by increasing ��.
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2.3 Detection of Weak Signals

We now discuss the use of signal detection theory [21] to assess the consequences
of ISI correlations on the detectability of signals. This is based on the optimal
discrimination of spike count distributions in the absence and presence of a
stimulus (P0(n; T ) and P1(n; T ), respectively). Let us suppose that the �ring
rate is f0 in the absence of stimulus and that it is f1 in the presence of a
stimulus. If the stimulus is weak and excitatory, it will give an increase in the
mean of the spike count distribution without signi�cantly increasing the variance
[42,7]. Thus, we assume �20(T ) = �21(T ) and �1(T ) = (f1=f0)�0(T ). One can then
quantify the discriminability between P0(n; T ) and P1(n; T ) by [21]

d0 =
�0(T )jf1=f0 � 1jp

2 �0(T )
: (6)

The situation is illustrated in Fig. 4A. The discriminability d0 is inversely
related to the amount of overlap between the distributions P0(n; T ) and P1(n; T ).
To quantify the changes in d0 caused by both types of ISI correlations, we form
the di�erence between d0 obtained from the ISI sequence with ISI correlations
and the d0 obtained for the corresponding renewal process (i.e. the shu�ed ISI
sequence); we will use the symbol �d0 to denote this di�erence. Figure 4B shows
the measure �d0 as a function of counting time T . A maximum can be seen
around T = 200. Note that this corresponds to the counting time at which
the Fano factor F (T ) is minimal. Thus, the improvement in signal detectability
is maximal when spike train variability (as measured by the Fano factor) is
minimal.

2.4 Discussion of Correlated Firing

We have shown that a simple model with correlated noise can give rise to both
short and long range ISI correlations. The dynamic threshold could model synap-
tic plasticity [16], recurrent inhibition [13], or intrinsic ionic conductances that
lead to adaptation [32]. The e�ects discussed here can thus originate from very
di�erent physiological and biophysical mechanisms. Deterministic properties of
the model have been shown to lead to negative interspike interval correlations at
short lags. These negative ISI correlations lead to lower spike train variability at
intermediate time scales: they thus regularize the spike train at long time scales.

It was further shown that the addition of a very weak noise with long range
correlations could induce exponentially decaying long range positive ISI correla-
tions in the model. These positive ISI correlations were shown to lead to increased
spike train variability at long time scales. This increase in spike train variability
at long time scales has been observed in many neural spike trains [47,27]. It
has been observed that synaptic vesicle release rates display long range corre-
lations [37] and our OU process �(t) could model these uctuations. The noise
�(t) could then model uctuations occurring on very short time scales such as
channel and/or synaptic noise.
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We have shown that both short range negative and long range positive ISI
correlations interact to give a minimum in spike train variability at an intermedi-
ate counting time. This minimum has been observed experimentally in auditory
�bers [36] as well as in weakly electric �sh electroreceptors [42]. We have previ-
ously reproduced this e�ect using a detailed electroreceptor model [7]. However,
the present study shows that similar e�ects can be obtained in a simple model
with dynamic threshold and correlated noise. The functional consequences of
this minimal counting time were assessed using signal detection theory. It was
shown that the model under Gaussian white noise stimulation displayed only
short range negative ISI correlations [6,9]. That result was reproduced here. It
was further shown that negative ISI correlations reduced spike train variability
as measured by the Fano factor at long time scales.

Using signal detection theory, we have shown that the improvement in signal
detectability was maximal, as compared to a renewal process, when the Fano
factor was minimal. It has been shown in weakly electric �sh electroreceptors
that the counting time at which the Fano factor is minimal corresponds to the
behavioral time scale for prey detection [39]. Animals must make decisions in
short amounts of time (usually less than a second) in order to survive (i.e. to
detect prey or avoid predators). Thus, the presence of short term negative ISI
correlations might serve to increase signal detectability while long term positive
ISI correlations will give rise to an integration time at which spike train variabil-
ity is minimal. It could be that the animal does not want to integrate the signal
over longer time scales for which the spike train variability increases again.

3 Delayed Neurodynamical Systems

We now turn to the role of delays in inducing long range correlations. Even
though we focus on neural systems, given our past work on such systems, the
ideas we will be discussing are suÆciently general to be applicable to many other
areas where delays are important such as laser physics and economics. We will
discuss how delayed dynamics arise, and focus on how they generate correlations
that outlast the delay (which is the intrinsic memory of the system) and on
how to approach their analysis in the presence of noise, which is of particular
importance in the nervous system [27].

3.1 Delay-di�erential Equations

We focus on correlations in delay-di�erential equations (DDEs) of the general
form

dx

dt
= f (x(t); x(t � �);�; �(t)) : (7)

We will restrict ourselves to such �rst order delay equations, and in particular, to
those having only one delay. We will also discuss speci�c instances of this equa-
tion in the context of neuronal modeling, statistical physics of bistable systems
and atmospheric physics. The DDE (7) can be seen as a dynamical system that
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combines aspects of ordinary di�erential equations (ODEs) and discrete time
maps. This equation can also be seen as a special case of the integro-di�erential
system

dx

dt
= f(z(t);�) (8)

with

z(t) =

Z t

�1

K(t� s)x(s) ds : (9)

In this more general case, the kernel K(t) weighs the past values of x(t) that
inuence the dynamics of dx=dt in the present. If the function f is linear, the
problem is completely solvable, e.g. using Laplace transforms. The solutions are
of the same types as for any other linear ordinary di�erential equation. However,
note that since a DDE is an in�nite-dimensional dynamical system, even though
there appears to be only one dynamical variable, the class of equations above can
exhibit oscillatory solutions, which are not possible in one-dimensional ODEs.
For the linear case, such solutions are either continually growing or decaying in
amplitude, or are marginally stable (pure imaginary eigenvalues).

Below we focus on discrete delays. However, it is important to realize that
in most situations, the delay is actually distributed. In laser cavities, it is a
good approximation to make the delay �xed, as it corresponds to the travel
time of light around some optical path. DDEs are also an approximation to the
whole dynamics governing propagation of e�ects in various media. For example,
in physiology, delays are often introduced to take the maturation time of cell
populations into account simply, rather than having extra compartments (and
associated dynamical equations) for the maturation process. Likewise in neural
systems, delays represent propagation times along axons, as well as synaptic
delays. A description of such processes in terms of delays avoids the complexities
of partial di�erential equations for the propagation of action potentials along
the nerve, and extra ordinary di�erential equations associated with synaptic
activation and release processes.

It is important to include delays in the description of a physical process when
it is of a magnitude comparable to or larger than the other time scales found
in the system. For example, if the relaxation of a system to its steady state is
dominated by a time scale �sys, then it is important to take into account any
delays on the order of or larger than �sys.

3.2 Correlations

Delays induce correlations. This can be simply understood by considering the
time evolution of the dynamical system: x(t+ dt) depends on x(t) and on x(t�
�). For example, if for the current value of x(t), the derivative f(x(t); x(t �
�)) is positive, x(t) will increase. Since x(t � �) inuences the sign of f , there
can be a positive or negative correlation between x(t) and x(t � �). The linear
correlation between these two quantities can be measured using the standard
autocorrelation function hx(t)x(t� �)i. If the solution is chaotic, it will typically
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display peaks at multiples of the delay, superimposed on an overall decaying
background [38]. Such structure will also be seen if noise is incorporated into the
dynamical equations, leading to a \stochastic delay-di�erential system" (SDDE)
in the latter case. Of course, the peaks will be repeated periodically, along with
all the rest of the autocorrelation function, if the solution is periodic.

Usually, there is suÆcient knowledge about the system under study to con-
clude the presence of delays. However, sometimes that fact is not clear, or the
value of the delay is not known, or there could be more than one delay. There
exist time series methods that allow the detection of delays, as well as estimation
of these delays [25].

3.3 Delayed Neural Control

Delays arise often in the context of neural control, such as in the control of
light ux on the retina in the pupil light reex (PLR). This reex is in fact
a paradigm of neural control systems [44]. This system is interesting from an
experimental point of view because it can be manipulated non-invasively using
infrared video-pupillometry coupled with special light stimulation. In past work
on the human pupil light reex [33], we have been able to study the onset of
oscillations as the gain of this control system is arti�cially increased. We have
been quickly confronted with noisy uctuations in the analysis and modeling of
this system. This is not surprising given that this reex naturally exhibits ongo-
ing uctuations (\hippus") in healthy humans under constant light stimulation.
Such baseline uctuations are in fact common in neural and physiological con-
trol, and their origin and meaning is a subject of great interest and debate [20].
They just happen to be especially prominent in the light reex. The origin of
these uctuations there is still elusive, but our modeling using a �rst order DDE
strongly suggests that they are the manifestation of neuronal noise injected into
the reex arc. The delayed negative feedback dynamics of this system can be
simply modeled by

dA

dt
= ��A(t) + f(A(t� �)) = ��A(t) + C

�n

�n +An(t� �)
+K ; (10)

where A is the pupil area. A supercritical Hopf bifurcation occurs as the param-
eter n, controlling the slope of the feedback function (i.e. the feedback gain),
or the �xed delay � , are increased. This model correctly predicts the oscillation
frequency, as well as the slow variation and robustness of this frequency across
the bifurcation. It does not exhibit other bifurcations as the gain is increased
from zero (open-loop) or as � is increased at �xed gain. Also, the fact that hip-
pus occurs in open-loop signi�es that its origin is not deterministic chaos arising
from the nonlinear delayed feedback, as seen for example in the Mackey-Glass
equation [20]. The noisy oscillations may then arise because neural noise per-
turbs the dynamics of the PLR. This hypothesis has been tested by introducing
noise on K (additive noise) or on C (multiplicative noise) in (10). The ques-
tions we are ultimately seeking to answer are, is it noise, and if so, what is the
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origin of this noise, its spectrum before entering the reex arc, and its coupling
to the reex arc? Any progress along this line would be of great interest given
that the pupil reects brainstem function as well as higher brain function such
as attention and wakefulness, and any better discrimination of the associated
states using non-invasive monitoring of the pupil size can yield important new
diagnostics.

We do not have the space to provide details about our analysis here. In sum-
mary, we have found by numerical integration of (10) that pupil area uctuations
can arise from the coupling of the PLR to colored neural noise of Ornstein-
Uhlenbeck type with a correlation time of one second. This fact is based on
the ability of the model to reproduce key features of the time series (beyond
the frequency), such as the behavior, as a function of gain, of the mean and
variance of the period and amplitude of the uctuations [33]. Thus the hypoth-
esis of feedback dynamics coupled to noise as in (10) seems very appropriate.
The experimental data are insuÆcient however to establish the proportions of
additive and multiplicative noise. Also, the analysis highlights the diÆculty of
pinpointing the gain value at which the Hopf bifurcation occurs. The problem
is that oscillations are always visible due to the noise, even when the system
should exhibit a �xed point if the noise were not present. The power spectra
of area time series do not exhibit critical behavior. In fact, the behavior of this
system at a Hopf bifurcation under the inuence of noise does not di�er from
that of nonlinear stochastic ODEs near such a bifurcation.

The usual way around this problem of pinpointing a bifurcation when noise
is present is to devise an order parameter which does exhibit critical behavior,
and that can be calculated theoretically. An order parameter that has been pro-
posed for a noisy Hopf bifurcation [26,33] is based on the invariant density of
the state variable. The order parameter is the distance between the two peaks
of this density, i.e. it measures its bimodality. The density is unimodal on the
�xed point side, and bimodal on the limit cycle side, with the peaks roughly
corresponding to the mean maximal and minimal amplitude of a stochastic os-
cillation. The behavior of this parameter can be compared between simulations,
theory (stationary density of the Fokker-Planck equation) and actual measured
data.

Unfortunately, Fokker-Planck analysis is not possible for DDEs such as (10),
because they are non-Markovian. Furthermore, such an approach requires many
data points to resolve the peaks, and thus compute the order parameter, es-
pecially in the vicinity of the deterministic bifurcation. Thus the approach is
limited for physiological data. However, numerics reveal the interesting fact that
noisy oscillations look qualitatively similar to the data as a function of the gain.
Simulations also reveal the fact that additive or multiplicative noise on (10) ac-
tually move the onset of the bifurcation point towards the limit cycle side [33,34].
From the point of view of the order parameter, there is a \postponement" of the
Hopf bifurcation in the �rst order DDE (10) (see the general discussion of such
e�ects in [26]). From the time series point of view, even though the order param-
eter is still zero, the time series is clearly oscillatory, with the mean oscillation
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amplitude increasing with the gain parameter, while the frequency varies little
across the stochastic bifurcation.

Even though it is not possible to compute the invariant density for (10) due
to the delay, its solutions are useful to validate hypotheses about noise. One
can, for example, compute various statistics about the noisy oscillations and
compare them between model and data. This approach allows us to state that
additive or multiplicative lowpass Gaussian noise injected in the pupil light reex
can explain the results seen as the gain is varied. This approach is interesting
because it allows one to put the noise under the magnifying glass, given that
noise dominates the behavior of systems in the vicinity of bifurcations where the
usual dominant linear terms are weak or vanish. What the approach does not
give is the origin of this noise, although it can be used to test for some of its
properties, such as its variance and possibly higher order moments, and what
its correlation structure is. In fact, the best results occurred in our comparative
study when the noise had a correlation time on the order of 300 msec (lowpass
�ltered Gaussian white noise, i.e. Ornstein Uhlenbeck noise, was used). Better
data would allow to better pinpoint the correlation time, which in turn can give
more insight about its origin. For example, it could be fast synaptic noise, slow
retinal adaptation noise, or slow neural discharge activity from the reticular
activating system that governs wakefulness and which is injected in the PLR at
the brainstem level.

There have been recent e�orts at analyzing noise in DDEs, and the �eld
is wide open and rife with potential Ph.D. projects. We have done a system-
atic study of stochastic DDEs in the low noise limit using Taylor expansions
of the ow, and indicated the limits of validity of this approach [22]. The Tay-
lor expansions allow one to use the Fokker-Planck formalism. The agreement
between analytical approximations and the numerical simulations are good for
small delays. However, the agreement decreases when the underlying dynamics
are oscillatory; in particular, this arises when the characteristic equation that
arises from the linearization around a �xed point has complex eigenvalues. The
Taylor expansions of �rst order DDEs can only produce �rst order ODEs, which
can not have complex eigenvalues, thus the limitation of this approach.

The noise-induced transitions between the two wells of a delayed bistable
system have also been investigated following the same formalism and show the
same quality of agreement and intrinsic limitations [23]. That delayed dynamical
system reads

dx

dt
= x(t� �) � x3(t� �) + �(t) ; (11)

where �(t) is Gaussian white noise. There has also been recent work by Ohira [40]
that approximates this DDE by a special random walk. From this walk, approxi-
mations to the stationary density, correlation functions and even an approximate
Fokker-Planck equation have been obtained. There has also been work applying
the ideas of two-time scale perturbation theory to stochastic DDEs [28]. Finally,
a master equation in which the transition rates are delay-dependent has been
recently proposed [48] for a stochastic DDE which is the standard quartic system
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(particle in a bistable potential) with linear additive feedback and noise

dx

dt
= x(t) � x3(t) + �x(t� �) + �(t) =; ; (12)

where � is a constant. In [48], the authors actually solve only for the case where
x(t��) is replaced by its sign, thereby losing information on the precise dynamics
within the wells. However, this formalism is very promising as it allows the
computation of the mean switching time between the wells as a function of
the delay � and the feedback strength �. It is left to be seen how well the
formalism works for a wider range of parameters, since we have recently shown
that the deterministic dynamics of (12) are rather complex, and involve a Takens-
Bogdanov bifurcation [43]. It should be mentioned that this equation is of special
interest in the atmospheric physics literature as well, where it has been used as
a toy model of the El Ni~no Southern Oscillation phenomenon (see a discussion
of this in [43] and references therein). Another interesting study of a stochastic
delay equation in the context of neurology with comparison to experiments can
be found in [10].

Finally, let us mention two other aspects where delays and noise are bound to
be increasingly under scrutiny in the future. One has to do with neural dynam-
ics at the single neuron level, and involves delays of a few milliseconds. When a
neuron �res at its soma, the e�ect is propagated to other neurons it is connected
to, but also to the dendritic tree of the neuron. Depending on the ionic channels
in this tree, the spike may propagate back down, inuencing and even causing
further spiking at the soma. This can lead to temporally correlated sequences
of spikes, such as bursting patterns [12]. The modeling of such phenomenon is
complex, given the spatio-temporal nature of the problem in complex geometry,
resulting in partial di�erential equations that must be solved numerically. How-
ever, we have recently shown that the resulting correlation and memory e�ects
on the millisecond time scale that occur in such backpropagation of action po-
tentials from the soma to the dendrites can be modeled with a DDE [31]. We
suspect that such dynamics, in combination with noise, can yield long range
correlations as well. Also, systems in which the delay is larger than the system
response time can often exhibit multistability, i.e. coexistence of deterministic
attractors, each with their own basin of attraction. This implies that two di�er-
ent initial functions may yield di�erent steady state behaviors [2]. Further, noise
will kick the trajectories from one attractor to another, which may also produce
long range correlations. A discussion of this multistability in the neural context
can be found in [15].

4 Noise Induced Stabilization of Bumps

4.1 Background

There has been much recent interest in spatially-localized regions of active neu-
rons (\bumps") as models for feature selectivity in the visual system [4,5] and
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working memory [24,29,50], among others. Working memory involves the hold-
ing and processing of information on the time scale of seconds. For these mod-
els, which involve one-dimensional arrays of neurons, the position of a bump is
thought to encode some relevant aspect of the computational task. Simple ver-
sions of these models do reproduce the basic experimental aspects of short term
memory [24,29].

One problem, however, is that more realistic models of the neurons involve
what are known as adaptation e�ects. Spike frequency adaptation, in which the
�ring frequency of a neuron slowly declines when it is subject to a constant
stimulus, is ubiquitous in cortical neurons [32]. It is known that including such
adaptation in a general model for bump formation destabilizes stationary bumps,
causing moving bumps to be stable instead [30]. This was shown in [30], for a
particular model, to be due to a supercritical pitchfork bifurcation in bump
speed as the strength of adaptation was increased. The bifurcation occurred for
a non-zero value of adaptation strength. The implication of this destabilization
is that, while the bump may initially be at the position that codes for the spatial
stimulus, the movement of the bump will destroy this information, thus degraded
the performance of the working memory.

It was also shown in [30] that adding spatiotemporal noise to a network
capable of sustaining bumps e�ectively negated the e�ect of the adaptation,
\restabilizing" the bump. This bene�cial aspect of noise is similar in spirit to
stochastic resonance [17], in which a moderate amount of noise causes a system
to behave in an optimal manner. We now demonstrate this phenomenon, and
later summarize its analysis.

4.2 Stochastic Working Memory

The system we study is a network of integrate and �re neurons, in which each
neuron is coupled to all other neurons, but with strengths that depend on the
distance between neurons. The equations for the network are

dVi
dt

= Ii � ai � Vi +
1

N

X
j;m

Jij�(t� tmj )�
X
l

Æ(t� tli) (13a)

�a
dai
dt

= A
X
l

Æ(t� tli)� ai ; (13b)

for i = 1; : : : ; N , where the subscript i indexes the neurons, tmj is the mth �ring
time of the jth neuron. Æ(�) is the Dirac delta function, used to reset the Vi and
increment the ai. The sums over m and l extend over the entire �ring history
of the network, and the sum over j extends over the whole network. The post-
synaptic current is represented by �(t) = �e��t for 0 < t and zero otherwise. The
variable ai, representing the adaptation current, is incremented by an amount
A=�a at each �ring time of neuron i, and exponentially decays back to zero with
time constant �a otherwise. The coupling function we use is

Jij = 5:4

r
28

�
exp

"
�28

�
i� j

N

�2#
� 5

r
20

�
exp

"
�20

�
i� j

N

�2#
: (14)
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This is a \Mexican hat" type of coupling, for which nearby neurons excite one
another, but more distant neurons inhibit one another. Periodic boundary con-
ditions are used. Parameters used are �a = 5, � = 0:5, N = 50, A = 0:1. Ii
was set to 0.95 for all i, except for a brief stimulus to initiate a bump, as ex-
plained in the caption of Fig. 5. When Ii = 0:95 for all i, the quiescent state,
(Vi; ai) = (0:95; 0) for all i, is a solution. However, it is known that with coupling
of the form (14), and A = 0, stationary patterns of localized activity are also
possible solutions [29,30].

Noise was included in (13a)-(13b) by adding or subtracting (with equal prob-
ability) current pulses of the form �e�t (0 < t) to each otherwise constant current
Ii. The arrival times of these pulses were chosen from a Poisson distribution. The
mean frequency of arrival for both positive and negative pulses was 0.1 per time
unit, so the frequency for all pulses was 0.2 per time unit. The arrival times were
uncorrelated between neurons. The noise intensity was varied by changing �.

In Fig. 5 we show typical simulation results for (13a)-(13b) for two di�erent
noise levels. A spatially localized current was injected for a short period of time
(10 < t < 20) to move the system from the \all o�" state to a bump state.
This could mimic e.g. the briey illuminated light in an oculomotor delayed
response task [24,41]. We see that the activity persists after the stimulus has been
removed. This is a model of the high activity seen during the \remembering"
phase of a working memory task [41].

The behavior of the system for the two di�erent values of noise is quite
di�erent: for low noise values, the bump moves with an almost constant speed.
For the example in Fig. 5 (left), the bump moves to the right. This is due to the
lack of symmetry in the initial conditions { it could have just as easily traveled
to the left. Note that the boundary conditions are periodic. For higher noise
intensities (Fig. 5, right) the bump does not have a constant instantaneous speed,
rather it moves in a random fashion, often changing direction. As a result of this,
the average speed during a �nite-time simulation (determined by measuring how
far the bump has traveled during this time interval and dividing that distance
by the length of the interval) is markedly less than in the low noise case.

This is quanti�ed in Fig. 6 where we plot the absolute value of the average
speed during an interval of 200 time units (not including the transient stimulus
phase) as a function of �, averaged over eight simulations. We see that there is
a critical value of � (approximately 0.01) above which the absolute value of the
velocity drops signi�cantly { this is the \noise-induced stabilization".

4.3 Discussion of Noisy Bumps

The phenomenon discussed above is quite robust with respect to changes in
parameters, and has also been observed in a rate model description of bump
formation, in which the individual action potentials of each neuron have been
temporally averaged so that each neuron is only described by its instantaneous
�ring rate [30]. Noise-induced stabilization was analyzed in some detail in [30],
and we now briey summarize the results.
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As mentioned, the phenomenon was also observed in a spatially-extended rate
model. For a particular choice of the coupling function (the spatially continuous
version of Jij (14)) it was shown that the bifurcation destabilizing a stationary
bump and giving rise to traveling bumps was a supercritical pitchfork bifurcation
in bump speed as A increased. Motivated by this, the noisy normal form of such
a bifurcation was studied and (when velocity was measured in the same way
as for the spiking neuron model above) qualitatively similar slowing down was
found as the noise intensity was increased.

Motivated by these results we modeled the dynamics of the noisy normal
form of a supercritical pitchfork bifurcation as a persistent random walk in one
dimension. The behavior of a particle undergoing such a walk is governed by the
stochastic di�erential equation

dx

dt
= I(t) ; (15)

where x is the position of the particle (the bump), I(t) 2 f�v; vg, and the
probability that I(t) changes from �v to v, or from v to �v, in time interval dt is
(�=2)dt. The probability density function of x, p(x; t), satis�es the telegrapher's
equation:

@2p

@t2
+ �

@p

@t
= v2

@2p

@x2
: (16)

This equation can be explicitly solved, and the mean absolute position at time
t, and the variance of this quantity, can both be found analytically [30]. They
are

hjx(t)ji = vte��t=2[I1(�t=2) + I0(�t=2)] (17)

and
hjx(t)j2i = 2v2(�t� 1 + e��t)=�2 ; (18)

where the angled brackets denote averaging over realizations, and I0;1 are mod-
i�ed Bessel functions of the �rst kind of order 0; 1. Once we link � to noise
intensity via an Arrhenius-type rate expression, e.g. � = e�1=�, we can use (17)
and (18) to generate a plot like Fig. 6 { see Fig. 7. This agrees qualitatively
with the results of the simulations of the full spiking network, (13a)-(13b), and
provides an explanation for the phenomenon of noise-induced stabilization.

5 Conclusion

We have presented an overview of various ways in which long range correlations
can arise in neurodynamical systems. These range from the millisecond time
scale to time scales of many seconds in our work. There are of course much
longer time scales (relating e.g. to behavior) on which correlations can be seen,
and which are related to changes in the level of expression of various receptors
and hormonal concentrations. This is beyond the scope of our own research.
Rather we have focussed on how noise can induce short and long range corre-
lations in single cell �ring activity, and the potential importance of this e�ect
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for information coding. Also, we have considered how correlations arise from the
delays in the propagation of neural activity, with particular attention paid to the
e�ect of external uctuations on such processes, and on bifurcations to oscilla-
tory behavior in particular. Finally, we have considered how localized \bumps"
of activity arise in realistic neural nets. These are thought to underlie short term
memory processes, and the ongoing formation and movement of these bumps will
result in correlated �ring in single or multi-electrode recordings. Our analysis of
such phenomenon with noise has enabled us to reduce a complex spatiotempo-
ral problem to a simple �rst order di�erential equation with noise, an approach
that may prove useful in other contexts where patterns of activity in excitable
systems are under study.

There are still a large number of open problems in these areas, as we have
alluded to in the discussion of the three main sections of our paper. Multistability
and memory (non-renewability) in �rst passage time problems, as well as the
analysis of noise in PDEs for excitable system, will in our view o�er theorists
and numerical analysts some of the most challenging problems for decades to
come, and their study will certainly forward our understanding of the nervous
system.
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Fig. 1. (A) voltage (black solid line) and threshold (gray solid line) time series obtained
with the model. (B): The noise sources obtained with the model: �(t) (upper black solid
line) is two orders of magnitude greater than �(t) (lower grey solid line). Parameter
values are: �v = 1,�w = 8:63,I = 2,Trefrac = 1,�� = 2000,D = 0:95,E = 0:00306
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Fig. 2. The ISI correlation coeÆcients obtained from the model with (black) and with-
out (grey) OU noise. Weak positive ISI correlations that decay exponentially are present
with OU noise but are not without. However, both cases show the presence of a nega-
tive SCC at lag one (inset). It was necessary to generate 107 action potentials to reveal
the presence of the weak positive ISI correlations
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circles). (B) The mean (open squares) and variance of the spike count distribution
obtained with (�lled squares) and without (open triangles) OU noise. Also shown is the
variance obtained without any ISI correlations (�lled circles)
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bar is plotted each time a neuron �res (its voltage reaches 1). I was set to 1.2 for
neurons 21 to 30 for 10 < t < 20, otherwise it was set to 0.95. Other parameters are
given in the text. The boundary conditions are periodic.
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