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Neuronal adaptation as well as interdischarge interval correlations have
been shown to be functionally important properties of physiological neu-
rons. We explore the dynamics of a modified leaky integrate-and-fire (LIF)
neuron, referred to as the LIF with threshold fatigue, and show that it
reproduces these properties. In this model, the postdischarge threshold
reset depends on the preceding sequence of discharge times. We show
that in response to various classes of stimuli, namely, constant currents,
step currents, white gaussian noise, and sinusoidal currents, the model
exhibits new behavior compared with the standard LIF neuron. More pre-
cisely, (1) step currents lead to adaptation, that is, a progressive decrease
of the discharge rate following the stimulus onset, while in the standard
LIF, no such patterns are possible; (2) a saturation in the firing rate occurs
in certain regimes, a behavior not seen in the LIF neuron; (3) interspike
intervals of the noise-driven modified LIF under constant current are cor-
related in a way reminiscent of experimental observations, while those
of the standard LIF are independent of one another; (4) the magnitude of
the correlation coefficients decreases as a function of noise intensity; and
(5) the dynamics of the sinusoidally forced modified LIF are described
by iterates of an annulus map, an extension to the circle map dynamics
displayed by the LIF model. Under certain conditions, this map can give
rise to sensitivity to initial conditions and thus chaotic behavior.
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1 Introduction

Since the seminal work of Adrian and Zotterman (1926), adaptation has been
demonstrated to be a key property of neurons. For example, photoreceptor
neurons have to cope with very different light intensities (e.g., day and night)
and must adapt to each (Kuffler, Fitzhugh, & Barlow, 1957). Moreover, this
adaptation can sometimes give rise to interspike interval (ISI) correlations
in experimental recordings (Kuffler et al., 1957; Goldberg, Adrian, & Smith,
1964; Yamamoto & Nakahama, 1983; Teich & Lowen, 1994; Schäfer, Braun,
Peters, & Bretschneider, 1995; Longtin & Racicot, 1998; Chacron, Longtin, St.-
Hilaire, & Maler, 2000; Neiman & Russell, 2001; Liu & Wang, 2001; Brandman
& Nelson, 2002).

Information-theoretic approaches have recently shown that neural infor-
mation transfer can either increase or decrease as a result of correlations be-
tween spikes (Abbott & Dayan, 1999; Panzeri, Petersen, Schultz, Lebedev, &
Diamond, 2001; Tiesinga, Fellous, José, & Sejnowski, 2002) or ISIs (Chacron,
Longtin, & Maler, 2001a). Also, correlations between neuronal inputs can
increase or decrease information transfer (Abbott & Dayan, 1999; Panzeri et
al., 2001).

One prototype sensory system in which the role of ISI correlations has
been addressed is the electrosensory system of weakly electric fish. Neg-
ative ISI correlations have been found in P-type electroreceptors (Longtin
& Racicot, 1998). A modeling study of these receptors has further shown
that these correlations enhance not only information transfer but signal de-
tection as well (Chacron et al., 2001a). It is clear from those studies that ISI
correlations depend on various biophysical model parameters, as well as
on noise and periodic forcing. The goal of this article is to provide a foun-
dation for understanding how ISI correlations arise from the interplay of
these factors in the context of a simple model.

The leaky integrate-and-fire model (LIF) is one of the most elementary
spiking models and has been widely used to gain a better understanding of
information processing in neurons (see, e.g., Tuckwell, 1988). One feature
that makes this model particularly suitable for theoretical analysis is that it
is analytically tractable and retains two key neuronal properties of type I
membranes: the all-or-none response and the postdischarge refractoriness.
The tractability of the standard LIF is in part due to the fact that following a
discharge, the dynamics of the LIF depends on only the present and future
inputs. In other words, after each firing, the LIF has no memory of the
past: inputs and discharge times prior to the last one bear no influence on
the next discharge times. This property has been a key ingredient in the
analysis of the response of the standard LIF to inputs such as sinusoidal
current or white gaussian noise. Indeed, it allows the standard LIF to be
described by iterates of orientation-preserving circle maps (Rescigno, Stein,
Purple, & Popele, 1970; Keener, Hoppensteadt, & Rinzel, 1981; Coombes &
Bressloff, 1999; Pakdaman, 2001). Moreover, the discharge times evoked by
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gaussian white noise stimulation form a renewal process (for recent reviews
on the noisy LIF, see Lansky & Sato, 1999; Ricciardi, Di Crescenzo, Giornio,
& Nobile, 1999; Pakdaman, Tanabe, & Shimokawa, 2001).

The lack of memory about past discharges, which constitutes an ad-
vantage in the theoretical analysis of the standard LIF, is also one of the
shortcomings of this model. Indeed, this property can eliminate the corre-
lation between successive interspike intervals (ISIs) of the LIF. For instance,
the ISIs evoked by additive gaussian white noise stimulation of this model
are independent from one another. As mentioned, this is not the case ex-
perimentally for many neurons. Moreover, the LIF model assumes that the
threshold to firing is constant in time. There is experimental evidence that
the threshold for firing is not constant but depends on the past spiking his-
tory of the neuron (Azouz & Gray, 1999). Thus, a physiologically plausible
modification to the LIF neuron would be to make the threshold a dynamical
variable also.

In this article, we study a modified LIF neuron in which the threshold is
a dynamical variable that models threshold fatigue after an action poten-
tial. Using step currents as stimuli, we show that the model can give rise
to adaptation (i.e., a gradual change in firing rate), a feature that is absent
from the standard LIF model. Under certain conditions, we show that the
threshold fatigue can lead to a saturation in the firing rate of the neuron as
the depolarizing current is increased. This feature is also absent from the
LIF model, where the firing rate diverges as a function of input current. We
then show that the modified LIF incorporating threshold fatigue can repro-
duce ISI correlations similar to those found in experimental recordings. The
choice of the threshold dynamics is guided by previous observations that
ISI correlations can result from the progressive accumulation of refractory
effects (Stein, 1965; Weiss, 1966; Geisler & Goldberg, 1966; Holden, 1976; Ger-
stner & van Hemmen, 1992; Chacron et al., 2000, 2001a; Chacron, Longtin,
& Maler, 2001b; Liu & Wang, 2001). If the neuron fires two spikes in a rela-
tively short time interval, then the next action potential usually occurs after a
longer time interval. Implementing threshold fatigue, that is, decreasing ex-
citability during high-frequency firing, in the LIF should thus be a candidate
for increasing the ISI correlations in a satisfactory way. Our investigations
provide another confirmation of this point. Although more detailed ionic
models of neurons such as the Hodgkin-Huxley model (Hodgkin & Hux-
ley, 1952) are capable of adaptation and ISI correlations with the addition of
suitable ionic channels, such models seldom are analytically tractable due
to their complexity. In contrast, our model retains enough of the simplicity
of the LIF model to remain analytically tractable for the most part.

Various integrate-and-fire-like models with mechanisms analogous to
threshold fatigue have been previously used—for instance:

• In the analysis of mutually inhibiting neuronal models (Reiss, 1962;
Wilson & Waldron, 1968: for an account of these studies, see MacGregor
& Lewis, 1977)
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• A stochastic model where an inhibitory conductance is being reset to
a value dependent on past history to mimic the possible summation
of hyperpolarizing afterpotentials following each discharge (Geisler
& Goldberg, 1966; Wehmier, Dong, Koch, & van Essen, 1989; Treves,
1996; Liu & Wang, 2001)

• Periodically and irregularly forced neuronal models (Segundo, Perkel,
Wyman, Hegstad, & Moore, 1968)

• Self-exciting models and interacting excitatory assemblies (Vibert, Pak-
daman, & Azmy, 1994; Pakdaman & Vibert, 1995; Pakdaman, Vibert,
Boussard, & Azmy, 1996)

• An LIF model in which the threshold decayed exponentially and was
incremented by a fixed amount immediately after an action potential
(Geisler & Goldberg, 1966; Holden, 1976; Chacron et al., 2000, 2001a,
2001b; Liu & Wang, 2001)

Although the model used in this study bears similarities with previous
ones, one key difference resides in the introduction of a memory parameter
to adjust the level of fatigue. Indeed, previous studies dealt with neuron
models with a fixed level of fatigue, whereas this one is concerned with a
systematic analysis of the influence of this factor. This program is carried
out in three stages involving the description of the response of the mod-
ified LIF to (1) constant and step current stimulation, (2) white gaussian
noise, and (3) sinusoidal forcing. The first two stages are concerned with
adaptation and the ISI correlations due to fatigue. The last stage examines
how these factors affect the response of the modified model to other inputs.
The particular selection of sinusoidal forcing is motivated by its relevance
for understanding information processing in extrinsically forced neurons
(Chacron et al., 2000). Furthermore, comparison of our results with the ex-
tensive studies of sinusoidally forced LIFs and their variants (Rescigno et al.,
1970; Glass & Mackey, 1979; Keener et al., 1981; Alstrøm & Levinsen, 1988;
Coombes, 1999; Coombes & Bressloff, 1999; Pakdaman, 2001) provides the
basis for the determination of specific contributions of threshold fatigue to
the dynamics of the model.

2 The Model

We consider the model given by the following equations and firing rule:

dv
dt

= −v/τv + I(t) if v(t) < s(t), (2.1)

ds
dt

= sr − s
τs

if v(t) < s(t), (2.2)

v(t+) = v0 if v(t) = s(t) (2.3)

s(t+) = s0 + W(s(t), α) if v(t) = s(t), (2.4)
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Figure 1: Voltage (black solid line) and threshold (gray solid line) time series
obtained with the model. An action potential occurs when voltage and threshold
are equal. The firing times tn thus satisfy v(tn) = s(tn). Immediately after an
action potential, the voltage is reset to zero while the threshold is set to a value
s(t+n ) = s0 + W(s(tn), α).

where v is the voltage, s is the threshold, I(t) is the stimulation current, τv and
τs are the time constants for voltage and threshold, respectively, and sr is the
value at which the threshold stabilizes in the absence of firing. Firing occurs
when the voltage reaches the threshold. Following this, the voltage is reset
to v0 (see equation 2.3), and the threshold is set to s(t+) = s0 + W(s(t), α),
where s0 is a parameter and W is a monotically increasing function of s
and α with W(s, 0) = 0. α is a positive parameter controlling the memory
in the model. We will mostly look at the case W(s, α) = W1(s, α) ≡ αs,
but other nonlinear forms could be used for W. Throughout, we assume
that v0 ≤ 0 < sr ≤ s0. The model dynamics are graphically illustrated in
Figure 1.

Equation 2.4 with W = W1 represents threshold fatigue, with α being the
memory parameter. Indeed, when α = 0, the threshold value immediately
after a discharge is independent of the threshold value at that discharge, so
that future discharges bear no memory of the firing history. The case where
α = 0 and s0 = sr corresponds to the standard LIF with constant threshold.
Conversely, when W = W1 and α = 1, one recovers the threshold fatigue
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implemented in previous studies, that is, after each discharge, the threshold
is raised by a fixed amount s0 (Segundo et al., 1968; Vibert et al., 1994; Pak-
daman & Vibert, 1995; Pakdaman et al., 1996; Chacron et al., 2000, 2001a,
2001b; Liu & Wang, 2001). Other models used a conductance that was decre-
mented by a fixed amount immediately after an action potential to achieve
similar effects (Wehmeier et al., 1989; Treves, 1996; Liu & Wang, 2001). Liu
and Wang (2001) have shown that the latter approach gave qualitatively
similar results to our model with W = W1 and α = 1. Previous studies were
thus limited to the case α = 1.

Generally, increasing α from zero corresponds to increasing the degree
of fatigue in the model and, consequently, its dependence on its past. The
following sections examine how this parameter affects the correlation be-
tween consecutive ISIs and the response of the model to various stim-
uli.

3 Results

3.1 Constant and Step Current Stimulation. Throughout this section,
we assume W = W1 and that I(t) = µ is constant. Two situations arise
in response to such stimuli. When µτv < sr, the stimulus is subthreshold,
the membrane potential v(t) stabilizes at µτv, and no firing occurs. Con-
versely, when µτv > sr, the model generates sustained firing. The remain-
der of this section analyzes the corresponding discharge pattern. This is
done through the construction of a map relating consecutive postdischarge
threshold values. Let v(u) be the solution to equation 2.1 with v(0) = v0,
and let s(u, S) be the solution to equation 2.2 with s(0, S) = S. These are
given by

v(u) = (v0 − µτv)e−u/τv + µτv (3.1)

s(u, S) = (S − sr)e−u/τs + sr. (3.2)

Let us assume that a discharge occurred at time tn and resulted in the
postdischarge threshold s(t+n ) ≡ S+

n . The next firing takes place after a time
interval �n+1 ≡ tn+1 − tn such that

s(�n+1, S+
n )=v(�n+1) and s(u, S+

n ) > v(u) for all 0≤u < �n+1. (3.3)

This firing yields the postdischarge threshold S+
n+1 at time t+n+1:

S+
n+1 = s0 + αs(�n+1, S+

n ) (3.4)

= s0 + αv(�n+1) (3.5)

= s0 + α[(S+
n − sr)e−�n+1/τs + sr]. (3.6)
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From these equations, the relation between the nth and n + 1th ISIs �n and
�n+1 is readily derived as:

�n = −τv ln




[(v0 − µτv)e−�n+1/τv + µτv − sr]
×e�n+1/τs + sr − s0 − αµτv

α(v0 − µτv)


 . (3.7)

While equation 3.7 can be used to discuss the relation between successive
ISIs, we prefer to focus on the relation between successive values of the
postdischarge threshold. Indeed, for constant stimulation, from the ISI �n
one can unambiguously derive S+

n , the nth postdischarge threshold, and
conversely, given S+

n , there is a unique ISI �n, so that using either the ISIs
or the postdischarge thresholds yields the same information about the dy-
namics of the model. However, for the class of stimuli treated in section 3.2,
this is not necessarily so; different values of Sn may yield the same �n. This
in turn makes it more difficult to obtain the relation between �n and �n+1.
For this reason, the following paragraphs describe the relation between S+

n
and S+

n+1.
Equation 3.3 uniquely defines �n+1 = �n+1(S+

n ) as a function of S+
n , so

that we can rewrite equation 3.4 as

S+
n+1 = s0 + αs(�n+1(S+

n ), S+
n ) ≡ F(S+

n ). (3.8)

This relation implies that the postdischarge threshold S+
n after the nth firing

entirely determines the next postdischarge firing S+
n+1. In other words, the

dynamics of the LIF with threshold fatigue receiving a constant stimulation
is determined by the iterates of the map F. This map is defined on the interval
[s0 +αsr, +∞). In general, �(S), and consequently F(S) cannot be explicitly
written in closed form because equation 3.3 cannot be solved analytically
for arbitrary τs. However, the geometrical properties of F that determine the
behavior of the sequence {S+

n } can be determined without such knowledge.
For fixed u, the function s(u, S) is monotonic increasing, so that if S > S′,

then s(u, S) cannot intersect the voltage prior to s(u, S′). In other words, S >

S′ implies that �(S) > �(S′), which means that the larger the postdischarge
threshold is, the longer the following interspike interval. Given that v0 ≤
0 < µτv (the postdischarge potential is reset below the resting voltage)
and that v(u) is monotonic increasing, we have that �(S) > �(S′) implies
v(�(S)) > v(�(S′)). This relation together with equation 3.5 and α > 0
yields that F(S) > F(S′) whenever S > S′, that is, F is monotonic increasing.
This, combined with the observation that F(s0 +αsr) > s0 +αsr, and F(S) →
s0 +αµτv as S → +∞, ensures that for any S+

1 ∈ [s0 +αsr, +∞), the sequence
S+

n is either increasing or decreasing and converges to some value in [s0 +
αsr, s0+αµτv]. Finally, all sequences converge to the same value, that is, F has
a unique fixed point, because F is concave. This property comes from the fact
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that S → s(u, S) is contracting, that is, |s(u, S) − s(u, S′)| = exp(−u/τs)|S −
S′| < |S − S′| for u > 0, and v(u) is concave, so that F′, the derivative of F is
monotonic decreasing.

In summary, we have established that the dynamics of the modified LIF
with constant current is governed by

S+
n+1 = F(S+

n ), (3.9)

where F, which maps [s0 + αsr, +∞) onto [s0 + αsr, s0 + αµτv), is a concave
monotonic increasing function with a unique fixed point that we denote by
S∗. Thus, for all S1 < S∗, the sequence S+

n increases and converges to S∗,
and, conversely, for all S+

1 > S∗, the sequence S+
n decreases toward S∗.

The first consequence of the above result is that in response to a constant
stimulation, the modified LIF stabilizes at a periodic firing with constant
interspike intervals �∗ given by

�∗ = τv ln
[

α(v0 − µτv)

S∗ − s0 − αµτv

]
. (3.10)

We remark that since �(S) is independent of α, the map F defined in equa-
tion 3.8 is an increasing function of α. A consequence of this observation
is that the value of equilibrium postdischarge S∗ increases with α. Given
that �∗ = �(S∗), the firing period also increases with α. In other words, the
stationary firing slows down as the factor representing threshold fatigue
increases.

We now study how �∗ varies with the input current µ. Although it is not
possible in general to solve equation 3.7 to find �∗ as a function of µ, it is
possible to solve for µ as a function of �∗. We get

µ(�∗) = −s0 + sr − sre�∗/τs + v0e�∗/τs e−�∗/τv − αv0e−�∗/τv

τv(α − e�∗/τs + e�∗/τs e−�∗/τv − αe−�∗/τv)
. (3.11)

The derivative of µ with respect to �∗ is always negative under the
assumptions v0 ≤ 0 < sr ≤ s0, α > 0, and �∗ ≥ τs ln(α). We will now show
that the ISI �∗ can never be less than τs ln(α).

If α ≤ 1, this condition is trivially satisfied as τs ln(α) ≤ 0 and �∗ > 0. We
thus concentrate on the case α > 1. The denominator of equation 3.11 is zero
when �∗ = τs ln(α), so the function µ(�∗) has a pole at this point. Since the
function µ(�∗) is monotonically decreasing and continuously differentiable
on the range (τs ln(α), +∞) and lim�∗→+∞ µ(�∗) = sr/τv > 0, we have that
lim�∗→τs ln(α) µ(�∗) = +∞. Thus, as we increase µ from sr/τv to +∞, the ISI
�∗ decreases from ∞ to τs ln(α). The ISI �∗ can thus never be lesser than
τs ln(α) if α > 1. This has important implications for the model dynamics. In
particular, it implies that the stationary ISI �∗ remains greater than τs ln(α)

as we increase µ to arbitrarily large values.
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Moreover, the fact that µ(�∗) is a decreasing function of �∗ implies that
the firing frequency 1/�∗ is always a monotonically increasing function of µ.
However, if α > 1, the firing frequency will saturate to a finite value given by
(τs ln(α))−1. As mentioned above, this feature is absent from the LIF model
(α = 0, sr = s0) where the firing rate diverges as a function of the input
current. This type of behavior is commonly seen in experimental recordings
and is usually associated with absolute refractoriness. Note, however, that
the saturation in firing rate does not imply that an absolute refractory period
is present in the model. Indeed, the model can give rise to an ISI smaller than
τs ln(α) following a sufficiently high current pulse or step (see Figure 2C).
Thus, we show that even in the absence of an absolute refractory period in
the classical sense, threshold fatigue can give rise to a saturation in the firing
frequency under constant current input. This has important implications;
it may be that the saturation in firing rate seen in experimental recordings
under constant depolarizing current is due to threshold fatigue rather than
the absolute refractory period of the neuron.

A modification δµ of the value of µ leads to a transient modification of
the discharge rate of the model. Notably, when δµ > 0, the sequence Sn
increases from the previous value of S∗ toward the new value, resulting in a
progressive lengthening of intervals to the new stationary ISI. Note that this
ISI will be shorter than the old one. If initially µτv < sr is subthreshold and
the new value is suprathreshold, the transient regime in which the ISIs are
shorter than in the stationary regime corresponds to neuronal adaptation,
that is, a transient frequency increase at the onset of stimulation.

The above results hold for all α > 0. However, some distinctions exist
between the different values of α that clarify the role of this parameter. One
point is that for α ≤ 1, the map F is contracting, that is, F′(S) < 1 for all S,
but this is not necessarily so for α > 1, where the map may be expanding
in some intervals of S. This means that the effects such as discharge rate
adaptation tend to be more pronounced in maps with large α than in those
with small α. Figure 2A shows the response of the model to a step current
going from the subthreshold regime to the suprathreshold regime. Note that
the ISIs progressively increase to the new equilibrium value as is seen in
experimental recordings (Adrian & Zotterman, 1926). Figure 2B shows the
response of the model when the value of the current before the step was set
to be in the suprathreshold regime with all other parameters unchanged.
Figure 2C shows the response of the model to the same step as in Figure 2B
but with α increased. Note the faster rate of adaptation. The rate at which
the model adapts to a step current can thus be varied by changing the
parameter α.

3.2 Gaussian White Noise Stimulation. Throughout this section, we
assume W = W1 and that I(t) = µ+σξ(t) where µ is constant and ξ is white
gaussian noise with unit intensity. In this situation, the voltage and threshold
of the model are stochastic processes that depend on the particular noise
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Figure 2: Response of the model to a step increase in current. (A) The current
goes from subthreshold (µ = 0.1) to suprathreshold (µ = 0.9) at t = 50. Note the
adaptation in the threshold and the progressive lengthening of ISIs to the new
equilibrium value. Parameter values used were τs = 2, τv = 1, α = 1, sr = 0.2,
s0 = 0.1, v0 = 0. (B) The current goes from µ = 0.4 to µ = 0.9 with all other
parameters unchanged. (C) Illustration of the effects of increased α. µ goes from
0.4 to 0.9 but α = 10 with all other parameters unchanged. Note the increased
rate of adaptation.

realization. The interspike intervals are defined as the first passage times
(FPTs) of the voltage through the threshold.

When α = 0, that is, in the absence of threshold fatigue, the ISIs are
independent and identically distributed random variables. We denote by
g(t | s0) the probability density function (pdf) of these variables, that is, the
function g(t | s0) is the FPT pdf of the Ornstein-Uhlenbeck process η,

dη

dt
= −η/τv + µ + σξ(t) with η(0) = η0, (3.12)
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through the threshold s(t) = (s0 −sr) exp(−t/τs)+sr. The FPT pdf g contains
all information concerning the point process formed by the discharge times
of the model.

When α > 0, the description of the discharge times needs to take into
account the variations in the postdischarge time threshold. In the same way
as for constant stimulation, the key point to the description of the behavior of
the model is in establishing the relation between consecutive postdischarge
thresholds. In this case, given that the stimulation is noise, the description
involves the construction of a Markov chain rather than a map. This is
detailed in the following.

The conditional pdf of S+
n+1 given S+

n can be written as

�1(u | S+
n ) = τs

u − s0 − αsr
g

[
τs ln

α(S+
n − sr)

u − s0 − αsr
| S+

n

]
, (3.13)

where as before g represents the FPT pdf of the Ornstein-Uhlenbeck process,
equation 3.12, through the threshold s(t, S+

n ) = (S+
n − sr) exp(−t/τs) + sr.

The pdf �1 defines the first-order transition probabilities of an irreducible
Markov chain. We denote by h∗(S) the stationary distribution of this chain—
in other words, in the long run, the probability for the postdischarge thresh-
old to take a value within (S, S + dS) is given by h∗(S)dS. The characteristics
of the point process formed by the discharge times of the model are then
defined in terms of this stationary distribution together with g and �1. For
instance, the pdf of ISI distribution g∗(t) is given by

g∗(t) =
∫

g(t | S)h∗(S) dS. (3.14)

We are interested in the serial correlation coefficient of ISIs defined by

ρp = 〈�n�n+p〉 − 〈�n〉2

〈�2
n〉 − 〈�n〉2 , (3.15)

where 〈�n�n+p〉, 〈�2
n〉, and 〈�n〉 are the expectations of �n�n+p, �2

n, and
�n, respectively.

For n large, the last two quantities are determined by 〈�n〉 = ∫
tg∗(t) dt

and 〈�2
n〉 = ∫

t2g∗(t) dt. For the first term—the expectation of the product of
two intervals—we first consider the case where n is large and p = 1. Given
S+

n , the postdischarge threshold after the nth discharge, the ISI between the
nth and n + 1th firings, that is, �n, is distributed according to g(t | S+

n ). The
knowledge of S+

n and �n uniquely determines S+
n+1 as

S+
n+1 = (S+

n − sr)e−�n/τs + sr = f (S+
n , �n). (3.16)

This knowledge in turn yields that the ISI between the n + 1th and n + 2th
firings, �n+1, has pdf g(t | S+

n+1) = g(t | f (S+
n , �n)). Combining these with
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the fact that for n large, S+
n is distributed according to h∗ yields

〈�n�n+1〉 =
∫

S

∫
�

∫
�′

��′ × g[�′ | f (S, �)]

× g[� | S] × h∗(S) d�′ d� dS. (3.17)

In a similar way, we derive

〈�n�n+p〉=
∫

S

∫
�

∫
S′

∫
�′

��′×g[�′ | S′]�p−1[S′ | f (S, �)]×g[� | S]

× h∗(S) d�′ dS′ d� dS, (3.18)

where �p−1 is the p − 1th transition pdf, that is, �0(u | S) = δ(u − S) the
Dirac function at S, and �k+1(u | S) = ∫

S′ �1(u | S′)�k(S′ | S)dS′.
In the absence of threshold fatigue, when α = 0, the postdischarge thresh-

old is a fixed value s0, so that �1(u | S) = δ(u − s0), h∗(S) = δ(S − s0), and
f (S, �) = s0. Substituting these into equation 3.18 yields that for p ≥ 1,
〈�n�n+p〉 = 〈�n〉〈�n+p〉 and consequently that ρp = 0.

The analysis of the previous paragraphs establishes that the response
to gaussian white noise of the modified LIF with threshold fatigue is not
described by a renewal process when α > 0. This is in contrast with the
standard LIF whose response to white gaussian noise can be described by
a renewal process. It also revealed that the modified model with noisy forc-
ing was characterized by a Markov chain relating consecutive postdischarge
thresholds. Finally, it showed that the dependence of a postdischarge thresh-
old on the previous value induces correlation between ISIs. Once it is theo-
retically established that ISIs of the modified model are correlated with one
another, we examine the nature of this dependence. For this purpose, rather
than using the integral expressions obtained previously, it is appropriate to
use numerical simulations of the model. Indeed, the integrals require the
computation of the FPT pdf of the Ornstein-Uhlenbeck process through an
exponential boundary. Given that no general analytical expression is avail-
able for this quantity, derivation of the correlation from the integrals can
be computationally more demanding than estimating the same quantities
from simulations.

Figure 3A shows the ISI distribution g∗(t) obtained when the system is
driven by gaussian white noise for α = 1, and Figure 3B shows the ISI
correlation coefficients ρp. The estimated ρ1 is negative. Serial correlation
coefficients at higher lags are close to zero, illustrating the rapid return of
the system to equilibrium. The fact that ρ1 is negative and that it is the
only coefficient substantially different from zero implies that ISIs shorter
(longer) than average will be followed by ISIs longer (shorter) than average.
Figure 3C shows the ISI distribution obtained for α = 4. We can see that
increasing α increases the mean ISI. Also, the magnitude of the coefficient ρ1
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Figure 3: (A) ISI distribution obtained for α = 1 in the presence of gaussian
white noise of standard deviation 0.1. (B) Correlation coefficients ρj as a function
of lag. Note that only ρ1 = −0.38 is negative and that all coefficients are zero for
higher lags. (C) ISI distribution obtained for α = 4. (D) Correlation coefficients.
Note that ρ1 = −0.48 is lower than for α = 1. Other parameter values were
τs = 8, τv = 1, µ = 1, sr = 0, s0 = 1.

increases with α, which is consistent with the predictions that more memory
will give rise to more pronounced ISI correlations.

The magnitude of the serial correlation coefficient at lag one depends on
the slope of the map S → F(S) and on the strength of the noise. For high noise
intensity, it is expected that the noise will wash out the correlations induced
by the map. We thus expect an increase in ρ1 as a function of noise intensity.
This is shown in Figure 4, where noise activates the deterministic properties
of the map. The value of ρ1 has already been linked to the detectability of
weak signals in neurons as well as their information transfer capabilities
(Chacron et al., 2001a).
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Figure 4: ρ1 as a function of the noise standard deviation. ρ1 exhibits a minimum
for the noise intensity around 0.2. It is at this noise level that the noise is most
effective at perturbing the map without itself destroying the ISI correlations.
Parameter values were the same as in Figure 3 with α = 1. Twenty thousand
ISIs were used in each case.

To understand how the deterministic properties of the map can give rise
to ISI correlations in the presence of noise, we study the response of the
model to perturbations without noise (σ = 0). We assume that the station-
ary regime has been reached, that the model fires periodically, and that
a single sufficiently large pulsatile stimulation is delivered a time lapse
θ < � after a discharge, to make the neuron fire ahead of time. This re-
sults in a shortened ISI with length θ , and consequently the postdischarge
threshold S(θ+) is larger than S∗. Following the perturbation, the sequence
Sn progressively decreases toward S∗. Given that the interspike interval
�(S) is a monotonic increasing function of S, the sudden increase in S
at the time of the perturbation and its progressive decrease indicate that
the shortened interval is followed by one that is longer than the period
and that subsequent intervals progressively decrease toward the station-
ary value. If the system returns quasi-instantaneously to equilibrium, then
only ρ1 will be significantly negative. However, if the system takes a long
time to return to equilibrium after the perturbation, then coefficients at
higher lags can also be negative. We concentrate on the regime at which
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the voltage has almost reached its asymptotic value µτv before a firing:
this occurs when τs � τv. We start from equation 3.3 in which we set
v(�n+1) = µτv:

S(�n+1, S+
n ) = µτv. (3.19)

The stationary threshold value is then S∗ = s0 + αµτv, and equation 3.10
gives us the stationary ISI �∗:

�∗ = τs ln
s0 + αµτv − sr

µτv − sr
. (3.20)

Let us suppose that a voltage perturbation advances or delays an action
potential, thus causing an ISI θ that can be smaller or greater than �∗. Then
the new value of the threshold immediately after the action potential is
given by

S+
θ = s0 + α

[
sr + (s0 + αµτv − sr) exp

(−θ

τs

)]
. (3.21)

The next ISI, in the absence of further perturbations, will then be given by

θnext = τs ln
{

S+
θ − sr

µτv − sr

}
. (3.22)

Equations 3.21 and 3.22 give us the relation between θnext and θ :

θnext = τs ln

{
s0 − sr + α[sr + (s0 + αµτv − sr) exp(− θ

τs
)]

µτv − sr

}
. (3.23)

The derivative of the map θnext = f (θ) is given by

f ′(θ) = −α(s0 + αµτv − sr)

s0 − sr + α[sr + (s0 + αµτv − sr) exp(− θ
τs

)]
(3.24)

and is negative for s0 > sr > 0 and αµτv > 0. We now consider the effects
of α on the ISI θnext. If α = 0, we have

�∗ = θnext = τs ln
{

s0 − sr

µ − sr

}
, (3.25)

that is, θnext is independent of θ since we have f ′(θ) = 0. This is because
the system returns instantaneously to equilibrium and there is no memory
extending beyond one ISI. We now consider the effects of α > 0. θnext in-
creases with decreasing θ . Thus, a perturbation that causes θ larger (smaller)
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Figure 5: Voltage (black solid line) and threshold (gray solid line) time series.
A perturbation in voltage was applied at t = 1098. The perturbation caused an
action potential to occur earlier than expected. As such, the ISI θ was shorter than
�∗, and the value of the threshold immediately after that action potential, s+

θ , was
higher than the threshold equilibrium value S∗. Consequently, the threshold took
a longer time to decay to µ, and the next ISI θnext was longer than �∗. Parameter
values were the same as in Figure 4.

than �∗ will make θnext smaller (larger) than �∗. Furthermore, increasing α

increases θnext. We illustrate this with numerical examples.
Figure 5 shows a time series in which a perturbation in the voltage was

applied at t = 1099. The perturbation increased voltage and caused an
action potential to occur prematurely. The ISI θ is thus shorter than �∗ and
consequently S+

θ (see equation 3.21) is greater than S∗. Since the threshold
starts from a higher value, it will take a longer time to decay to the value
µτv. As such, the next ISI θnext will be greater than �∗. Similarly, had θ been
longer than �∗, s+

θ would have been smaller than S∗, and consequently θnext
would have been smaller than �∗. The actual map θnext = f (θ) is shown
in Figure 6A and has a negative slope as expected. Thus, the deterministic
properties of the map lead to a perturbed ISI longer (shorter) than average
being followed by an ISI shorter (longer) than average.

Figure 6B illustrates the dependence of θnext on α for different values of
θ . As discussed, θnext increases with α. The rate at which θnext increases is,
however, greater for low θ than for higher θ . This shows how the determin-
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Figure 6: (A) ISI θnext as a function of θ (solid black line). The slope of the map
is negative as expected (see the text). (B) ISI θnext as a function of α for different
values of θ . Increasing α will increase θnext. Parameters have the same value as
in Figure 5 except α.

istic properties of the map in response to perturbations can give rise to ISI
correlations in the presence of noise.

3.3 Sinusoidal Stimulation. In this section, we consider the case where
the stimulation is sinusoidal I(t) = µ + a sin(ωt), with a ≥ 0. We show that
the response of the LIF with threshold fatigue to such inputs is described
by iterates of an annulus map. Such maps can exhibit complex dynamics
that can even be chaotic. Through numerical simulations, we illustrate the
occurrence of such regimes in the periodically forced LIF with threshold
fatigue.

Assuming a firing took place at time tn, we denote by v(t, tn) and s(t, tn,

S+
n ) the voltage and threshold at time t, given the initial conditions v(tn, tn) =

v0 and s(tn, tn, S+
n ) = S+

n . Provided t ≥ tn and no discharge takes place on
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[tn, t], we have

v(t, tn)=µτv(1−exp[(tn−t)/τv])+ aτv

1+w2τ 2
v

[sin(wt)−wτv cos(wt)]

− aτv exp[(tn − t)/τv]
1 + w2τ 2

v
[sin(wtn) − wτv cos(wtn)] (3.26)

s(t, tn, S+
n ) = sr + (S+

n − sr) exp
(

tn − t
τs

)
. (3.27)

If µτv + aτv/
√

1 + ω2τ 2
v ≤ sr, then v(t, tn) < s(t, tn, S+

n ) for all t ≥ tn (i.e., no
substained firing occurs), and, conversely, if

µτv + aτv/

√
1 + ω2τ 2

v > sr, (3.28)

then there exists some finite tn+1, with tn+1 > tn such that v(tn+1, tn) =
s(tn+1, tn, S+

n ). In other words, the inequality 3.28 is a necessary and sufficient
condition for sustained firing of the model. When this inequality holds,
the LIF with threshold fatigue will generate an infinite sequence of firing
times {ti}∞i=1 with tn → ∞ as n → ∞. We will assume that this is the case
throughout the remainder of this section.

The condition for sustained firing is independent of the initial voltage
and threshold values; however, the sequence of discharge times depends on
these quantities. In the following, we describe the relation between succes-
sive discharge times and postdischarge thresholds through the construction
of an annulus map.

The firing time tn+1 is given by

tn+1 = F1(tn, S+
n )

def= inf{t: t > tn, v(t, tn) = s(t, tn, S+
n )}, (3.29)

and the threshold S+
n+1 immediately after the firing is given by

S+
n+1 = F2(tn, S+

n )
def=s0 + W(sr + (S+

n − sr)e
tn+1−tn

τs , α). (3.30)

We define the discharge map as F: (tn, S+
n ) → (tn+1 = F1(tn, S+

n ), S+
n+1 =

F2(tn, S+
n )) on [0, ∞) × [s0 + W(sr, α), s0 + W(VM, α)], where VM = µτv +

aτv/
√

1 + ω2τ 2
v .

For neural computation, it is of interest to know where spikes occur in
relation to periodic forcing (see Hopfield, 1995). Given that the input current
I is T-periodic with T = 2π/ω, we thus define the firing phase φn ∈ [0, 2π) as

φn = w
{

tn − Tint
[

tn

T

]}
, (3.31)

where the int[.] denote the integer part.
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We can thus associate to F a map f = ( f1, f2) on the annulus [0, 2π) ×
[s0 + W(sr, α), s0 + W(VM, α)] as

f1(φn, S+
n ) = 2π

T
F1

(
T

2π
φn, S+

n

)
modulo T (3.32)

f2(φn, S+
n ) = F2

(
T

2π
φn, S+

n

)
. (3.33)

The behavior of the periodically forced LIF with threshold fatigue is com-
pletely characterized by the iterates of the discharge map F and its asso-
ciated annulus map f , in the sense that given the initial discharge time
t1 and the corresponding postdischarge threshold S+

1 , the following dis-
charge times and postdischarge thresholds are determined iteratively as
(tn+1, S+

n+1) = F(tn, S+
n ). We will concentrate on the annulus map f and the

sequence of firing phases and postdischarge thresholds (φi, S+
i )∞i=1. When

α = 0, the postdischarge threshold is always set to s0, so that the annu-
lus map reduces to a map on the circle of radius s0. Furthermore, when
sr = s0, that is, when dealing with the standard LIF without threshold fa-
tigue, this circle map, when restricted to its range, is orientation preserving
(Pakdaman, 2001). In such a situation, the system can mainly display phase
locking and quasiperiodic behavior, as well as strange nonchaotic dynam-
ics on a parameter set of zero measure. It cannot produce chaos (Coombes,
1999). However, when α > 0, no such restrictions hold. Although we did
not observe chaotic behavior with W = W1 for the region of parameter
space considered in this article, it is possible to observe sensitivity to initial
conditions and chaotic dynamics when a nonlinear form is taken for W. We
observed chaotic behavior when we chose W(s, α) = W2(s, α) ≡ exp(αs)−1
(data not shown). Through systematic numerical simulations, we have ob-
served that such dynamics can be easily observed when α is large and that
the sensitivity to initial conditions is associated with a positive leading Lya-
punov exponent. The details of this analysis will be described in another
study (Chacron, Pakdaman, & Longtin, 2002).

4 Discussion

In this study, we have shown that a simple single neuron model that accounts
for the memory seen in several classes of neurons has surprisingly rich
dynamical behavior. Previous studies involved either α = 0 (Geisler &
Goldberg, 1966; Kretzberg, Egelhaaf, & Warcheza, 2001) or α = 1 (Geisler &
Goldberg, 1966; Holden, 1976; Vibert et al., 1994; Pakdaman & Vibert, 1995;
Pakdaman et al., 1996; Chacron et al., 2000, 2001a, 2001b; Liu & Wang, 2001).
We instead varied α ∈ [0, ∞) continuously and studied its effects.

Different values for the parameterα (measuring the amount of memory in
the system) gave rise to qualitatively different regimes. The rate and degree
of adaptation to a step in current were shown to vary with α. Adaptation is
commonly seen in biological neurons; we have found that this interesting
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feature could be reproduced by our model and that the rate of adaptation
depended on the amount of memory. Another common feature of biological
neurons is the saturation in firing rate as the input current is increased. Our
model reproduces this feature when α > 1, in contrast with the LIF neuron
for which the firing rate diverges as a function of the input current. In
experimental recordings, this saturation is usually thought to be associated
with an absolute refractory period or network effects. Our results show that
an absolute refractory period is not necessary to obtain such an effect. In
fact, this prediction could be verified experimentally in vitro if the firing-
rate saturation due to adaptation is lesser than the firing-rate saturation due
to the absolute refractory period.

Under the influence of perturbations and noise, we have shown that
the model could give rise to negative ISI interval correlations. The value
and rate of decay of these correlations depend on the parameter α and on
the noise strength and can be varied to give rise to very different regimes.
Expressions were derived for the ISI correlation coefficients. The model
was also shown to give rise to ISI correlations similar to those seen in ex-
perimental data (Longtin & Racicot, 1998; Chacron et al., 2000). Further,
the value of the correlation coefficient at lag 1 was shown to increase as
a function of noise intensity. These correlations were shown to increase
the detectability of weak signals in neurons (Chacron et al., 2001a). There
thus might be an optimal noise intensity at which signal detection is max-
imal.

ISI correlations have been observed in experimental data taken from
neurons in different sensory systems. The advantages of a negative correla-
tion coefficient at lag 1 for stimulus detection through long-term spike train
regularization as well as stimulus encoding have been outlined in another
study (Chacron et al., 2001a). Moreover, a similar firing mechanism has al-
ready been used successfully to model electroreceptors of weakly electric
fish that display this negative serial correlation coefficient at lag 1 (Longtin
& Racicot, 1998; Chacron et al., 2000, 2001a, 2001b) and could potentially
be used to model other neurons that also display negative ISI correlations
(Kuffler et al., 1957; Goldberg et al., 1964; Geisler & Goldberg, 1966). In fact,
models similar to our own have already been used to model several classes
of neurons in the visual system (Keat, Reinagel, Reid, & Meister, 2001), cor-
tical neurons (Liu & Wang, 2001), and electroreceptor afferents (Brandman
& Nelson, 2002).

Results similar to our own can be obtained by having adaptation in the
reset value of the membrane potential. Geisler and Goldberg (1966) have
shown that an adapting reset could give rise to ISI correlations. However,
as mentioned, there is experimental evidence for the threshold to firing
being dependent on the spiking history (Azouz & Gray, 1999), while there
is, to our knowledge, no such evidence for the reset value. We thus believe
a dynamic threshold to be more physiologically realistic than a dynamic
reset.
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Although our model contains two timescales, it cannot reproduce the
bursting dynamics seen in many neurons with the parameter range consid-
ered in this study. This is because we considered only threshold fatigue after
an action potential and not facilitation. Our model is thus different from the
integrate-and-fire-or-burst model considered by Coombes, Owen, & Smith
(2001), which also has two timescales. It has, however, been shown that the
addition of a facilitation current to our model with α = 1 could give rise to
bursting dynamics (Chacron et al., 2001b).

The response of the model to perturbations and noise will carry over in
the presence of sinusoidal forcing (Chacron et al., 2000). However, it is then
impossible to obtain analytical explicit expressions for the ISI under voltage
perturbations. Furthermore, under sinusoidal forcing, we have shown that
our model could be described by a map defined on an annulus. While this
may seem a simple extension of the many studies that have described the
dynamics of sinusoidally forced standard LIFs by circle maps (Rescigno et
al., 1970; Keener et al., 1981; Coombes & Bressloff, 1999; Pakdaman, 2001),
it has major implications in terms of the dynamics of the system. Indeed,
the circle map associated with the periodically forced standard LIF is one-
to-one and orientation preserving, so that it produces only one of the three
following regimes: phase locked, quasi-periodic, or strange nonchaotic be-
havior (Keener, 1980). For fixed parameters, it can produce neither a mix of
these nor chaos. In contrast, the annulus map associated with the LIF model
with threshold fatigue is not constrained by such limitations and may very
well lead to more complex dynamics (Le Calvez, 2000), in agreement with
our numerical investigations (details will be described in a future work).

Also, introducing threshold fatigue as in our model yields an adapting
sequence of ISIs in the presence of periodic forcing. In contrast, for a step
increase in bias current, models in which periodic forcing is taken into ac-
count by sinusoidally modulating the threshold or the voltage reset value
see an abrupt change in ISI. It should be noted that the annulus map is
dissipative and not conservative in general. This system is thus different
from the so-called standard map studied by various authors (e.g., Meiss,
1992). Our results suggest that neurons with strong adaptation are more
prone to displaying complex dynamics than those that either do not adapt
or adapt more slowly. Such sensitivity to initial conditions may confer some
advantages, as chaotic systems have the potential to transmit much more
information about time-varying stimuli than nonchaotic ones, depending
on the Lyapunov exponents of the system (Abarbanel, 1996). Further studies
are needed to investigate such possible functional roles of chaos in signal
processing in nervous systems.

In this study, we have considered how the addition of threshold fatigue
affected the spike train of a single LIF neuron. However, it is clear that
adaptation and ISI correlations could also be due to network or synaptic
dynamics. To expand on this point, we now discuss the possible biological
mechanisms that the threshold fatigue could model.
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Cumulative inactivation of sodium channels (Mickus, Jung, & Spruston,
1999) could, for example, give rise to neural adaptation and ISI correlations.
However, a fast spike-activated slowly inactivating negative current could
also give rise to similar effects: a likely candidate would be members of the
KV family of potassium currents (Wang, Gan, Forsythe, & Kaczmarek, 1998).
Another candidate could be a calcium-activated potassium current such as
Iahp. This current was shown to be present in cortical neurons (Madison &
Nicoll, 1984). Liu and Wang (2001) have shown that a model with an Iahp
current was qualitatively equivalent to our threshold fatigue model with
W = W1 (i.e., a linear threshold reset) and α = 1. It is further known that
most ionic currents have voltage-dependent conductances. The parameter
s0 represents the amount of reset that is voltage independent. The param-
eter α in our model could then represent the degree of dependence on the
past firing time in the ionic channel that the dynamic threshold models.
Increasing α would thus lead to a more history-dependent conductance.

Long-term depression at a synapse could also give rise to relative re-
fractoriness (Hausser & Roth, 1997). In fact, a depressing synapse produces
negative spike train correlations (Goldman, Maldonado, & Abbott, 2002).
Our model thus bears some similarity with models of short-term plastic-
ity (Fuhrman, Segev, Markram, & Tsodyks, 2002; Goldman et al., 2002).
Furthermore, it is known that many synapses are voltage dependent. The
parameter α in our model could then represent the voltage dependence of
synaptic depression. It should, however, be noted that the recovery time
constant of the neurotransmitter at typical synapses is usually in the range
of hundreds, if not thousands, of milliseconds (von Gernsdoff, Schneggen-
burger, Weis, & Neher, 1997). Although neural adaptation usually occurs
on much shorter timescales, our model could in principle still be used to
account for such phenomena if the threshold time constant is sufficiently
long. Moreover, it has been observed that neural adaptation was in many
ways similar to recurrent inhibition (Ermentrout, Pascal, & Gutkin, 2001).
Our single-neuron model could therefore describe network effects.

It has thus been shown that threshold fatigue can be similar to recurrent
inhibition, synaptic depression, or an intrinsic Iahp current responsible for
adaptation.
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