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Abstract. This paper discusses two problems at the forefront of neurobiology and of noise research.
They arise from non-renewal firing processes in nerve cells, due to various forms of memory. The
combination of short and long-term correlations between firing intervals has been shown to enhance
information transfer, namely by causing a minimal variability in the spike count distribution at a
specific counting time. The first problem concerns first passage time calculations in a model that
combines these two forms of correlations. It is a two-dimensional leaky integrate-and-fire (LIF)
model in which the threshold is also a dynamical variable. The second problem concerns the effect
of long-range correlations on neuron firing statistics. We show new results on the interspike interval
densities as well as the spike count Fano factor for the perfect integrate-and-fire (PIF) model forced
by a slow (long-correlation time) Ornstein-Uhlenbeck process, which is a simplification of the
previous model. These theoretical results are obtained using a quasi-static noise approximation.
There remain, however, many exciting challenges in relating correlations with signal detection in
neurobiological systems, some of which are highlighted in our paper.

INTRODUCTION

The long time statistics of neural output is important when studying topics such as signal
detection and neural encoding. In order to assess how much information a neuron can
transmit in response to certain stimuli we must know the variability of its output spike
train under different conditions. Long range correlations are present in many natural
stimuli such as natural images [1] as well as music [2], so it is of interest to study neuron
models with implicit long range correlation.

It has also recently been shown [3] that the resting discharges of a certain class
of electroreceptors have long range correlations. In particular, the ratio of the spike
count variance to the spike count mean, also known as the Fano factor, goes through
a minimum as a function of the duration of the counting window. This is useful from
the point of view of signal detection, since this minimal Fano factor will produce a
high signal-to-noise ratio for determining the presence of small amplitude low-frequency
stimuli (such as Daphnia on which the weakly electric fish feed). The origin of this effect
in a dynamical model of an electroreceptor has been explained using a combination of
theory and numerics [4]. The effect relies on a combination of positive and negative
correlations in firing time intervals. We have further found that correlations produce a
counter-intuitive increase in mutual information for higher frequency signals. A general
theory for this effect is presently lacking, but we are making progress, as we will show
below.

In fact, there are few (but a growing number of) theoretical results on the statistics of



correlated firing. Most formalisms, such as first passage time to threshold calculations,
have been developed for renewal processes in which there are no correlations between
successive first passage times. Also, there is little known about first passage time prob-
lems in non-Markovian systems, such as those involving delayed feedback (i.e. where
the dynamical equations are formulated as stochastic delay-differential equations); this
is true even for white noise forcing, i.e. regardless of whether there are correlations be-
tween successive passage times or not. In this paper we report recent progress on our
analysis of correlated firing in simple neuron models without delays.

CORRELATED FIRING IN THE LIF MODEL

The model in which we have discovered that correlated firing can improve signal detec-
tion is the standard leaky integrate-and-fire model (LIF), with two sources of noise and
a memory that persists beyond the firing of a spike [4, 5]. One noise is quasi-white and
of moderate strength, and accounts for the noisy phase locking properties of the recep-
tors’ firings to the carrier wave emitted by these fish ( � 1000 Hz); it can be seen as a
mixture of conductance noise and synaptic noise. The memory factor is accounted for
by a dynamic threshold, which is raised every time the cell fires, and decays between
firings. This dynamic threshold produces negative correlations between successive fir-
ing intervals, and is responsible for decreasing the Fano factor below its value of one in
the Poisson limit. So what accounts for the minimum of the Fano factor? It has to be a
mechanism that counteracts this decrease, i.e. which increases the Fano factor at longer
counting times.

In our earlier work, we have found that an increase in the Fano factor can occur via
the introduction of a small, slow Ornstein-Uhlenbeck process in the model; this is the
second noise source in the model, which can be associated with e.g. slower fluctuations
in vesicular release rates at synapses. For spike counting times less than the correlation
time of this OU noise, the intervals are positively correlated on average. It is as though
the noise appears as non-stationary over the counting time. Positive correlations increase
the Fano factor. The combination of the decrease (due to memory) and increase (due to
weak slow noise) sets the position of the minimum of the Fano factor, and thus the time
scale of integration of information over which signal detection is optimal.

Such increases in Fano factors have been seen in various data from different neurons,
and in statistical models of neural firing in the form of modulated Poisson processes.
Such behavior had not been shown in dynamical models of excitability until our recent
study [5]. As mentioned earlier, first passage time to threshold calculations usually
assume the "renewal" property, which the interspike interval (ISI) data we are modeling
clearly do not have. From the point of view of our model, the "non-renewability" is due
to the slow OU process with respect to the counting window, and also to the memory
effects carried by the threshold (this is a form of adaptation).

The threshold memory is also difficult to deal with, because the escape time process
is then in a two-dimensional space. We have made some progress on calculating the
mean first passage time for the case of a simple leaky integrate-and-fire model with
Gaussian white noise forcing and dynamical threshold. The idea is to solve the problem



self-consistently. The firings act as delta-function forcing on the first-order threshold
dynamics. In the asymptotic state, the mean firing rate produces a mean threshold value.
This value can be put in the expression for the mean first passage time of the leaky
integrate and fire dynamics - this is basically the classic Ornstein-Uhlenbeck process,
and one can use the standard formula for its mean first passage time(MFPT). Since this
mean rate (the inverse of the MFPT) affects the threshold, and vice-versa, one can find
the steady state value for both the mean rate and threshold. The result (not shown) agrees
surprisingly well with numerical simulations for a range of integration time constants.
This is so even though, in this description, the correlations between firing intervals are
not taken into account. It is not clear however how to extend this formalism in a way
that will allow the calculation of the correlations.

CORRELATIONS IN THE PIF MODEL

Model

The first passage time with slow OU forcing in the previous model is currently under
investigation using a phase representation of the receptors’ voltage. The receptor is
forced by a 1000 Hz carrier wave; the system is designed to detect modulations of
this carrier. Our model predicts that without noise, the receptor simply fires periodically
at a high rate, with leakiness playing a secondary role. Thus, its noisy periodic firing
dynamics can be approximated by such a phase (rotations of 2π count as firings). The
model then amounts to the perfect integrate and fire (PIF) neuron forced by the slow OU
process. We will see that many features of the Fano factor and other firing statistics can
be understood from this simple model with only one noise source (the slow one) and no
dynamical threshold.

The type of input noise we are using is an Ornstein-Uhlenbeck (OU) process; the
statistics we are calculating are the interspike interval probability density, its first and
second moments, and the Fano-factor which is a measure of spike count variability.

The dynamical equations defining our system are

dv
�
t �

dt � µ � η
�
t �

dη
�
t �

dt � �
η

�
t �

τ
�

�
D
τ

ξ
�
t � (1)

where v
�
t � is the membrane voltage, µ is the average rate of increase of the voltage, and

τ and D are, respectively, the time constant and variance of the OU process. ξ
�
t � is a

Gaussian white noise process with zero mean and unity variance.
The voltage increases due to the mean rate µ and the OU process and is reset to zero

when it reaches a threshold level, vth; the noise is not reset. In this model the times at
which the voltage is reset represent the spike times of the neuron, or the times at which
an action potential is initiated.



Quasi-Static Approximation

Since we are looking at the effect of long time correlated noise, we will use a quasi-
static approximation of the noise. If τ is known to be much larger than the average ISI,
then on that time scale we can approximate η as being constant. In this way we can
associate each ISI with a corresponding, unique value of the OU process

Ik �
vth

µ � ηk
(2)

where k denotes the index in a sequence of ISIs.
This approximation not only allows us to write down a conditional probability density

function (PDF) between I and η , but it also allows us to reduce this conditional PDF to
a delta function due to the unique one-to-one correspondence.

P
�
Ik �ηk � � δ

�
Ik �

vth

µ � ηk � (3)

Here the process ηk is a sequence of the values of the OU at times when the voltage
process reaches threshold. As will be shown the statistics between η

�
t � and ηk differ

slightly due to biased sampling.

Stationary Probability Density Function

The first quantity of interest is the stationary PDF of ISIs. In order to obtain the
stationary ISI PDF we can average the conditional PDF between I and η over all values
of η

Pst
�
I � �

∞�� ∞

dηP
�
I �ηk � Pst

�
ηk � (4)

The statistics of the values ηk is not the same as for the continuous OU process. Imagine
we measure the noise value at the beginning of each interval of a long spike train. Then
a positive value leads to a shorter interval and hence to more intervals than a negative
value of η . This problem is known as biased sampling of a stochastic variable [6] and
is resolved by a corrective factor given by the inverse interspike interval (see also [7].)
Normalization yields

Pst
�
ηk � �

e
� η2

k � 2D�
2πD

�
1 � ηk

µ ��� (5)

The normalization as well as any integration in the remainder of the paper is performed
with respect ot the full range of noise values (including η 	 � µ) for simplicity. Inserting
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FIGURE 1. Stationary ISI probability density functions. Numerical simulations results for fixed τ and
different values of variance, D. The solid lines show the theoretical densities.

equation (5) into (4).yields the PDF for the interspike interval density.
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Figure 1 shows the stationary PDF for fixed τ and several values of D from both
numerical simulation and the corresponding theoretical curves (in black) using (6). The
mean of the sampled OU process is given by

�
ηk � �

∞�� ∞

dηk
e
� η2

k � 2D�
2πD

�
ηk � η2

k

µ � �
D
µ � (7)

Fano Factor

The Fano factor which is the variance to mean ratio of a counting process, n
�
t � , for

a given counting window is useful for determining on which time scales the process
is most regular. A simple expression for the Fano-factor for our model neuron can
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FIGURE 2. The numerical results (symbols) of the Fano-factor for different noise intensities with
τ � 1000. The dashed lines are the theoretical curves which are valid in the large counting time limit.

be obtained considering that on a scale much larger than vth fluctuations in the actual
membrane voltage, v

�
t � and fluctuations in the discrete process n

�
t � times vth become

indistinguishable. This is valid provided that there is some nonnegative bias on the
dynamics of the voltage. With this in mind we can see that the dynamical equations of
our system can be mapped to those of biased Brownian motion. The Fano factor at time
t is then equivalent to the variance of the corresponding Brownian motion [8] divided by
the mean drift of the Brownian motion

F
�
t � �

2Dτ
vthµ

�
1 �

τ
t

�
1 � e

� t � τ ��� (8)

The Fano factor can also be obtained with the SCC and using the relation [6]

Var
�
Ik � � Var

�
I1 ��� k � 2

k � 1

∑
l � 1

�
k � l � ρl � (9)

and the equality

lim
t � ∞

F
�
t � � lim

k � ∞

Var
�
Ik �	

I 
 2 k
(10)

This relation holds very well even when the limits are taken to finite values. The
approximate equality holds for the times t �

	
I 
 k.

Figure 2 shows F
�
t � for different variances of numerically generated OU processes

with τ � 1000 (solid line). Note that the various simulation values converge with the
theoretical Fano curves (8) (dashed lines) at different times depending on the noise
variance.



CONCLUSIONS

In this paper we have discussed outstanding unsolved problems on correlated firing
in neurons. We have obtained analytic expressions for certain statistical measures for
the perfect integrate-and-fire model with additive correlated noise. This model can be
seen as a limiting case of the standard leaky integrate-and-fire neuron with vanishing
leakiness, or with a strong drive to threshold (i.e. when it is periodically firing at a
moderate rate even in the absence of stochastic input). We have derived approximate
expressions for the stationary ISI probability density function and for the mid-to-long
time behavior of the Fano-factor of the spike count over a given time period.

One interesting consequence from the numerical simulations shown in Figure 2 is
that, for a range of noise variances, there is an apparent minimum in the Fano factor.
Previously it was thought that a minimum in the Fano factor was only possible in a
leaky integrate and fire neuron (LIF) with dynamic threshold [4, 5]. This minimum sets
a time scale for the optimal discriminability of two distinct stimuli. This implies that the
perfect integrate and fire neuron could also make a good signal detector for a selected
range of noise variances if the counting time is chosen to correspond to a minimum of
the Fano factor. Short-lived negative correlations will further influence the position of
the minimum and are likely to deepen the minimum, leading to higher detectability.

Future work will consider expressions for the full Fano factor curve which will allow
us to relate the minimum to specific biophysical factors. We will also consider problems
in which there are dynamical memory effects in the form of delayed feedback, in which
the spikes propagate back to the cell after a delay time and act e.g. as a simple input
current. The presence of this delay clearly renders the whole problem non-Markovian.
We have made some progress on understanding escape times in potentials with delayed
dynamics [9] for small delays. For larger delays, a new formalism is needed. Here again
we can hope that a self-consistent approach can work to some extent, but that might
neglect the effects that the delay can induce, such as oscillations in the firing rate. We
have made some recent progress here by assuming that the "neuron" is a simple threshold
crossing detector (forthcoming work from A. Longtin and R. Morse). It is our hope
that such simplified dynamical models with memory will yield some insight into the
dynamics of real neural loops with delays. Such circuits are ubiquitous in neurobiology,
in particular in the pyramidal cell circuits of the weakly electric fish which receive input
from the aforementioned electroreceptors.
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