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Abstract

We present and solve a one-dimensional model of periodic precipitation which includes nucleation, growth and ripening
processes. This model thus generalizes two important models: the prenucleation-based model of Dee and the postnucleation

Ž .competitive growth model CGM of Feeney et al. By tuning a simple phenomenological parameter, our model smoothly
bridges the gap between a nucleation-growth dominated regime and one where ripening is active. q 1999 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

Spatially periodic precipitation phenomena have
w xgenerated much interest 1–3 ever since their first

investigation by Liesegang at the end of last century.
In a typical Liesegang experiment, a salt solution
diffuses through an aqueous gel and reacts with
another salt. According to the system geometry, the
product then precipitates by forming a series of
concentric rings or bands parallel to the diffusion
front. Liesegang band formation have also been ap-
plied to explain various spatial patterns observed in

w xgeological systems 4–7 . The presence of the gel is
not necessary as Liesegang bands have been ob-
served in water-filled capillaries or in the gas phase
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w x8 . In many cases, the bands obey the Jablczinsky’s
w xspacing law 9 :

X sP X 1Ž .nq1 n n

w xand the time scaling law 10 :

T sQ X 2 . 2Ž .n n n

Here, X , T denote the position and time of forma-n n

tion of the nth band, and P , Q tend to constants asn n

n increases.
Models for periodic precipitation can be classified

in two broad categories.
Ž . w xa In prenucleation models 11–15 , a feedback

mechanism exists between the nucleation kinetics
and diffusional transport. Nucleation of the precipi-
tate particles takes place when a saturation threshold
is reached. Since the process is diffusion-limited,

0375-9601r99r$ - see front matter q 1999 Published by Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00709-4



( )M. Chacron, I. L’HeureuxrPhysics Letters A 263 1999 70–77 71

precipitation results in local depletion of reactant
concentration and the nucleation process is stopped.
As the reaction front moves further away, a new
saturation threshold is eventually reached, nucleation
of precipitate is triggered and a new band is formed.
The cycle repeats itself in this fashion. The models

w xin Refs. 12–15 are based on the classical atomistic
w xtheory of nucleation. Other simpler models 3,16–19

use diffusional transport coupled with a phenomeno-
logical macroscopic expression for the saturation
threshold. Cellular automata reduction of such mod-

w xels are also available 20 . Although the models of
w xRefs. 14,15 incorporate growth kinetics, they are

w xconsidered 21 pre-nucleation models, since the nu-
cleation phase is essential in determining the basic
features of the resulting precipitation pattern. Pre-
nucleation models generate bands which are consis-
tent with the scaling laws but do not explain other
often observed features, such as pattern formation in
absence of an initial concentration gradient, the
time-evolution of the bands and the existence of
revert spacing or other irregular patterns.

Ž . w xb In postnucleation models 4,22,23 , a feedback
between growth, diffusion and surface tension effects
generates the pattern through a variant of the Lif-

w xshitz–Slyozov instability 24 . Here, the bands evolve
through ripening after the nucleation phase is over.
Homogeneous concentration profiles are unstable in
such systems. Consider for example a small localized
increase in particle size. This generates a local deple-
tion of reactant. Diffusive transport then results in a
net mass current towards the perturbation which
increases its size. As the solution component precipi-
tates, the particle in the zone adjacent to the pertur-
bation will start to dissolve, thus generating an en-
hancement in the local concentration. This causes a
net mass flux further away from the initial perturba-
tion and growth of particle size there. The model has
thus the potential to generate a succession of bands
characterized by an oscillation in the particle size.

w xExcept for some general comments in Ref. 19 , a
model that generalizes the two previous classes of
models and reduces to them in the appropriate limits
is not available. It is the purpose of this paper to
present and solve such a model, in which nucleation,
growth and ripening processes are present. We will
specifically generalize Dee’s prenucleation model
w x14 and the postnucleation competitive growth model

Ž . w xCGM of Ref. 23 . We find that bridging the gap
between a nucleation-growth dominated regime and
one where ripening is important can be achieved by
tuning a phenomenological parameter D, which char-
acterizes the thickness of the Gibbs surface of a

Žprecipitate particle which in turn is of the order of
.the critical nucleation radius . In contrast to what is

assumed in many applications of the CGM, our
model indicates that the number density of precipi-
tate particles is not uniform.

2. The model

We consider a one-dimensional finite reactor of
length ll along the spatial dimension x. Initially, the

Ž .aqueous solution A e.g., HCl occupies the space
x-0 with a uniform concentration A , whereas the0

Ž .solution B e.g., AgNO is localized in the reactor3

0-x- ll with a uniform concentration B . At xs0,0

A and B react to form the product C in solution
Ž .e.g., AgCl , which can then precipitate. If A 4B ,0 0

the reaction front propagates in the x)0 direction.
ŽLet a, b and c be the concentration moles per unit

.volume of the reactants A and B and of the product
C, respectively. Let D , D and D denote the1 2 3

diffusion constant of A, B and C, respectively and k
the reaction rate coefficient for the reaction AqB
™C, considered irreversible. Then, the following
diffusion-reaction equations describe the concentra-
tions dynamics:

E a E 2a
sD ykab ,1 2E t E x

E b E 2 b
sD ykab ,2 2E t E x

E c E 2c
sD qkabyu. 3Ž .3 2E t E x

Here t is time and u is the precipitation rate, i.e., the
number of moles of C precipitated per unit volume
per unit time.

In the spirit of the classical nucleation mechanism
w x25 , we assume that the precipitate particles are

Ž .spherical and immobile. Let J x,t be the nucleation
Ž X.rate at position x and time t, r x,t,t be the radius

of a precipitate particle at time t, given that it was
nucleated at time tX, and let Õ denote the molar
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volume of precipitate. Then, the molar concentration
w xof precipitate is given by 14 :

t X X X3fs 4pr3Õ J x ,t r x ,t ,t d t . 4Ž . Ž . Ž . Ž .H
0

The precipitation rate is thus:
E f

us
E t

s 4pr3Õ J x ,t r 3 x ,t q 4prÕŽ . Ž . Ž . Ž .n

=
E rt X X X X2J x ,t r x ,t ,t x ,t ,t d t . 5Ž . Ž . Ž . Ž .H
E t0

Ž .The first term on the right hand side of Eq. 5
represents the contribution due to the instantaneous

Ž .nucleation process, r x,t,t being the radius of the
Ž .critical particle r x,t . The second term representsn

the growth of particles which nucleated in the past.
We introduce the supersaturation s through:

s' N cyC rC 6Ž . Ž .0 0 0

Žwhere C is the concentration in molecules per unit0
.volume of the product C in equilibrium with precip-

itate particles of large radius and N is Avogadro’s0
w xnumber. Using classical nucleation theory, Dee 14

obtained

JsJ F s ,Ž .c

r swg s 7Ž . Ž .n

where
221qs exp y b g s , sG0Ž . Ž .Ž .F s 'Ž . ½ 0, s-0

g s '1rln 1qs . 8Ž . Ž . Ž .
A similar expression for the precipitation rate is used

w xin Ref. 15 . In these relations, the capillary length w
w xis 22

2Õs
ws 9Ž .

pN k T0 B

Žwhere s is the surface tension assumed indepen-
.dent of the particle radius here , p is a stoichiomet-

Ž .ric coefficient equal to 2 in our case , T is the
temperature and k is Boltzmann’s constant. TheB

constants J and b arec

J s4pD w2 C 2rd ,c 3 0

1r224ps w
bs 10Ž .ž /3k TB

Žwhere d is a typical molecular size taken as twice
.the diameter of the C molecule . Note that our

definitnion of J is different from the one reportedc

by Dee.
We now generalize this nucleation mechanism by

including growth and ripening dynamics in the model.
This is accomplished through a nonlinear coupling in
the particle growth between the particle radius and
the supersaturation, as in post-nucleation models.
Although other growth laws could also be considered
w x15 , we take the growth as interface-controlled. One
has:

E r N cyC rŽ .0 eq
sG 11Ž .

E t C0

where G is a kinetic coefficient and the Gibbs–
Thomson relation:

C r sC exp wc r rr 12Ž . Ž . Ž .eq 0

gives the molecular concentration of the product C in
equilibrium with a precipitate particle of radius r.

Ž .The dimensionless function c r expresses the ra-
dius dependence of the surface tension, which has an
important effect on the growth of particles of small

Žradius, but is neglected in the nucleation term Eq.
Ž .. w x8 . Koenig 26 has derived a thermodynamically-
based expression for this function:

22 1qxqx r3Ž .drr
c r sexp y d xŽ . H 21q2 x 1qxqx r3Ž .0

13Ž .
Ž .where dfO w is a parameter characterizing the

thickness of the Gibbs surface.
For computational purposes, it is convenient to

approximate c by a rational function having the
correct asymptotic behavior for large and small r.

ŽOne finds to a good approximation with a maximum
.relative error of 0.8% :

r 2 qd r
c r ( 14Ž . Ž .2 2r q3d rqd rq

with qs0.304359. Our expression for the equilib-
rium concentration is new and different from the one
used in the CGM.

w xFollowing Le Van and Ross 15 , it is convenient
Ž .to transform the integro-differential Eq. 5 to a set

of coupled differential equations by defining the
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average surface of the precipitate particles per unit
volume S:

t X X X2S'4p J x ,t ,t r x ,t ,t d t , 15Ž . Ž . Ž .H
0

the average radius of the particles per unit volume r:

t X X X
r' J x ,t ,t r x ,t ,t d t 16Ž . Ž . Ž .H

0

and the average particle number density N:

t X XN' J x ,t ,t d t . 17Ž . Ž .H
0

We nondimensionalize the variables according to:
w 1r2

) ) )ts t , xs D wrG x , asA a ,Ž .1 0G

ÕC ÕC0 0
) ) )bsA b , Ss S , rs r ,0 2N w 4pN w0 0

ÕC0
) )Ns N , rswr , 18Ž .34pN w0

and we introduce the six dimensionless parameters:

K'kA wrG , K X
'KA N rC ,0 0 0 0

D'D rD , DX
'D rD ,2 1 3 1

a'4p J w4N rGÕC , D'drw 19Ž .c 0 0

together with the dimensionless system size Ls
Ž .1r2GrD w ll . In terms of dimensionless variables,1

we thus obtain the following generalized set of seven
Žcoupled nonlinear differential equations dropping

.the ) :

E a E 2a
s yKab 20aŽ .2E t E x

E b E 2 b
sD yKab 20bŽ .2E t E x

E s E 2a
X X c r rsD qK aby 1qsye SŽ .2E t E x

a
3y g s F s 20cŽ . Ž . Ž .

3

ES
2 c r rsa g s F s q2 1qsye r 20dŽ . Ž . Ž . Ž .

E t

Er
c r rsa g s F s q 1qsye N 20eŽ . Ž . Ž . Ž .

E t

E N
saF s 20fŽ . Ž .

E t

E r
c r rs1qsye . 20gŽ .

E t

Ž .c is as in Eq. 14 with D substituting d . Dee’s
prenucleation model is obtained as a special case by
formally setting cs0.

Our model also reduces to the CGM in the appro-
priate limit. Indeed, in the CGM, the nucleation
phase is assumed terminated and only production of
C by reaction, growth of the precipitate particles and
ripening occur. In the CGM, the reaction-diffusion

Ž .rate laws are still the same as in Eq. 3 , except that
Ž Ž ..the concentration of precipitate Eq. 4 is replaced

by

4pN
3fs r x ,t 21Ž . Ž .

3Õ

where N is the particle number density, assumed
constant and uniform. In most applications of the
CGM, N acts as a simple external parameter.

It is easily seen that, if the nucleation rate decays
on a time short compared to the growth and ripening
time scales of interest, and if we neglect the spatial
dependence of J, then we have approximately from

Ž . Ž .Eqs. 4 and 21 :

`
X XN( J t d t 22Ž . Ž .H

0

Ž .in agreement with Eq. 17 . With N constant in time,
Ž .the coefficient aF s must be set equal to zero for

Ž .consistency with our model Eq. 20f . Also, one
Ž . Ž .finds by integration of Eqs. 20d and 20e that

SsNr 2. Scaling the variables a, b, r, t, x and N
Ž .as in Eq. 18 , the supersaturation evolution Eq.

Ž .20c becomes:

E s E 2a
X X c r r 2sD qK aby 1qsye Nr . 23Ž . Ž .2E t E x

Ž . Ž .This is equivalent to using Eq. 21 in Eq. 5 , as
in the CGM. Thus, the dynamics of the post-nuclea-
tion CGM constitutes a special case of our general-

Ž Ž . Ž . Ž . Ž . Ž .ized model Eqs. 20a , 20b , 20c , 20d , 20e
Ž ..and 20f under the condition that N is constant and

uniform. The numerical solution of our generalized
model indeed shows that N becomes constant after a
short time but is far from being spatially uniform.
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3. Stability of a uniform sol

In order to see if the model allows for coarsening,
it is useful to consider the dynamics of a spatially

Žuniform sol in the absence of a source term chem-
. Ž . Xical reaction . Strictly, the system 20 with K s0

Ž .has no uniform steady state since Eqs. 20f and
Ž . Ž .20g have no common roots. However, for F s
small, N is almost constant during the times of
interest. To find this uniform ‘pseudo-steady state’,

Ž . Ž .we integrate Eq. 20c and, with the use of Eq. 20g ,
we get:

r 3

sqN sH 24Ž .
3

where H is a constant of the motion. Combining

Ž .Fig. 1. Schematic representation of the dispersion curves v k of
Ž .Eq. 27 describing the linear stability of the uniform pseudo-steady

Ž . Ž . 2 Ž . 2state for the system 20 : a Eq Nr -0; and b Eq Nr )0.s s

Fig. 2. Time evolution of an uniform initial condition in the
absence of reaction exhibiting coarsening for Ds0.16. The initial
condition was chosen as r s0.25, ssec r r y1, Ns1.0, S s
Nr 2, r s Nr. A small perturbation of amplitude 10y3 was applied
on r at ts0 and at xs0.5. This perturbation resulted in a local

Ž . Ž .increase of r 0.5,t and a smooth decrease eventually to zero in
the neighborhood of the initial perturbation.

Ž .with Eq. 20g , we see that the pseudo-steady state is
given by the roots of

r 3
c r re qN sHq1. 25Ž .

3

Depending on the value of H, there can be two,
one or no steady-states. The linear stability of the

Ž .steady state s , r , if it exists, can be investigateds s
Ž .by linearizing the system about s , r . We assumes s

perturbations of the form,

sss q´ exp ikxqv t ,Ž .s 1

rsr q´ exp ikxqv t 26Ž . Ž .s 2

where ´ are small amplitudes, k is a wave-vector1,2

and v is an eigenvalue. The solution for v is given
by

1
X 2 2v sy EqD k qNrŽ ." s2

1 2X X2 2 2(" EqD k qNr y4D Ek 27Ž .Ž .s2

Ž c r . <where E' de rd r . The dispersion relationsrs

Ž . Ž . Ž .v k are schematized in Fig. 1 a and Fig. 1 b for"
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the cases where EqNr 2 -0 or )0, respectively.s

In the first case, the steady-state is unstable to homo-
Ž .geneous ks0 perturbations, whereas it is stable to

homogeneous perturbations in the second case. How-
ever, in both situations, the steady state is unstable to

Ž .spatially-dependent perturbations k/0 . Moreover,
the maximum perturbation growth rate occurs for
large k. No finite length-scale is selected by the
instability, at least at this linear level of description.
Thus, the system has a tendency to coarsen. These
findings are analogous to the ones for the CGM.

Fig. 2 illustrates the numerical solution of the full
Ž Ž . Ž . Ž . Ž . Ž .model Eqs. 20a , 20b , 20c , 20d , 20e and

Ž ..20f for an initial condition corresponding to the
pseudo-steady state solution with r s0.25 super-s

posed to a small local perturbation at xs0.5. This
Ž .situation corresponds to the case of Fig. 1 a . The

value of the radius tends to increase at the position
of the perturbation and to decrease eventually to zero
in the neighborhood of the initial perturbation.

4. Results and discussion

Ž . ŽThe initial conditions are: a xs0,0 s1, a x/
. Ž . Ž . Ž .0,0 s0, b x,0 sB rA , s x,0 sy1, S x,0 s0 0

Ž . Ž . Ž .r x,0 sN x,0 sr x,0 s0, i.e., no precipitate ex-
ists at ts0. The system dimensionless size Ls100
is chosen large enough with the following boundary

Ž . Ž . Ž .conditions: a 0,t s1, a L,t s0, b L,t sB rA0 0

and a zero flux condition at the origin for the compo-
Ž . Ž .nents B and C: Eb 0,t rExsEs 0,t rExs0. Ac-

w xcording to 27,28 , the parameters A yB and C0 0 0

are important parameters that characterizes the type
of precipitation pattern obtained. A complete analy-
sis of our model in terms of these parameters is
outside the scope of this work. Instead, we will fix
the value of these parameters and vary the phe-
nomenological parameter D.

We have solved the set of parabolic partial differ-
Ž . Ž . Ž . Ž . Ž . Ž .ential Eqs. 20a , 20b , 20c , 20d , 20e and 20f

by a non-iterative Crank–Nicholson method, with
w xforward projection on the nonlinear terms 29 . The

scheme was stable and convergent. We used dimen-
sionless discrete time and space steps of 0.001 and
0.1, respectively. The parameter values are given by:
A s10y5 mol cmy3 ; B s10y6 mol cmy3 ; C s0 0 0

7.48=1015 cmy3 ; ks105 moly1 sy1 ; D sD s1 2

D s10y5 cm2 sy1 ; Gs10y7 cmrs; ss170 erg3

cmy2 ; ps2; ws10y7 cm; Ts300 K; ds8.7=

10y8 cm; and Õs25.29 cm3 mol.y1. These values
are typical of the system

AgNO qHCl™AgClq inactive products3

w xand, except for B , were taken from Ref. 14 .0

Fig. 3 illustrates the scaled precipitate molar con-
Ž Ž ..centration f N rC Eq. 3 and the scaled radius r0 0

Ž .Fig. 3. a Scaled molar concentration of precipitate fN rC as a0 0

function of scaled position for Ds0.16 and for two different
Ž . Ž .scaled times: ts300 continuous line and ts900 dotted line ;

Ž .and b scaled particle radius r for the same parameter values.
One dimensionless unit in x and t corresponds to 3.16=10y3 cm
and 1 s, respectively. The scale of f is in 1.24=10y8 mol cmy3 ,
whereas one dimensionless unit of r corresponds to 10y7 cm.
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as a function of the scaled distance for two different
times. The value Ds0.16 was chosen, but the time
evolution turns out to be very nearly independent of
D, as long as DG0.156. Thus, the solution exhibits
the formation of precipitate bands. The density func-

w xtion is similar to the one obtained by Dee 14 and it
is easy to verify that our precipitation pattern is

Ž .consistent with the spacing and time laws of Eqs. 1
Ž .and 2 . Note that the position for which the radius is

a relative minimum corresponds to a maximum in
the concentration, in accordance with the fact that
many nuclei of small radius are nucleated. In fact, in

Ž .the limit of large D, the ripening factor c r rr is
negligible for all values of r and Dee’s prenucleation
model is recovered.

ŽFig. 4. Same as Fig. 3 with Ds0.136 for ts300 continuous
. Ž .line and ts900 dashed line .

Fig. 5. Scaled particle number density for a scaled time ts300
Ž . Ž .continuous line and ts900 dashed line , and for Ds0.136.
One dimensionless unit in N corresponds to 2.5=1013 cmy3. The
density is very nearly constant in time. The times taken to reach

Ž .the first four maxima at xs0.0, 2.0, 4.7 and 8.2 are 0.71, 2.65,
6.70 and 14.18, respectively.

Fig. 4 illustrates the same quantities, but using a
Ž .smaller value of D s0.136 . The solution is quanti-

tatively different. For the later stages of the process
and for a position larger than some threshold, the
bands continue to evolve after their formation: they

Ž .create a doublet satellites . Thus, each band is even-
tually characterized by two narrow sub-bands of
high-density aggregate, separated by a wider zone of
low-density precipitate. During this phase of the
process, a minimum in the radius tends to occur at
the same position as a minimum in the precipitation,
indicating that ripening is taking place. Another fea-
ture of the solution is to exhibit interbands regions
where no precipitate exist. These characteristics are
typically found in postnucleation models of periodic

w xprecipitation and are also observed in nature 4 . As
the value of D is further decreased, the solution is
similar to the case of Fig. 4 except that the doublet
formation is more pronounced: the contrast between
the high-density edges of the doublet and its low-
density middle region is enhanced.

A CGM solution with a typical, constant and
uniform value of the particle number density N, also
generates doublets in the molar concentration of
precipitate. However, in contrast to our model where
both ripening and nucleation take place, the solution



( )M. Chacron, I. L’HeureuxrPhysics Letters A 263 1999 70–77 77

obtained from the CGM exhibits much higher and
narrower peaks in the molar concentration of precipi-

Žtate than those in Fig. 4. Moreover, our results Fig.
.5 show that, whereas N is indeed nearly constant in

time, it is far from uniform. A banding pattern is also
reflected in the spatial dependence of N.

5. Conclusion

In this paper, we have presented a periodic pre-
cipitation model which smoothly bridges the gap
between a regime where nucleation and growth are
dominant and one where ripening is important by
varying a simple phenomenological parameter D.
This parameter is a by-product of our expression for
the radius-dependence of the surface tension and
characterizes the thickness of the Gibbs surface. For
large values of D, the system exhibits the formation
of bands of precipitate mostly via nucleation and
diffusional transport as in Dee’s prenucleation model.
For small values of D, the ripening mechanism
becomes important and further evolution of the bands
is characterized by the formation of doublets, as in
the CGM.

One basic assumption underlying the applications
of the CGM is that the precipitate number density is
constant, uniform and a priori known. By direct
computation, we have found that, although the num-
ber density is very nearly constant, it is far from
uniform. This feature and the fact that nucleation is
not neglected in our model explains why our solu-
tions are quantitatively different from those obtained
in the CGM.

As in many periodic precipitation models, ours
neglects fluctuations and thus constitutes a mean-field
approach to the problem. A more complete analysis
would require the calculation of the probability den-
sity of finding a crystal with radius between r and
rqdr at position x and time t. This could be
achieved by using our Gibbs–Thomson relation in
existing molecular theories of coarsening in periodic

Ž w x.precipitation patterns see for example 30,31 or by
incorporating the precipitation reactions to existing
theories of phase separation combining nucleation,

w xgrowth and ripening 32 .
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