
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Particle trapping and self-focusing in temporally asymmetric ratchets with strong field gradients

Maurice J. Chacron and Gary W. Slater*
Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Canada K1N 6N5

~Received 10 February 1997!

We study the dynamics of a particle whose velocity is a nonlinear, monotonically increasing function of the
applied field. The particle moves in a strong field gradient whose intensity and sign vary periodically. We
demonstrate that if the field pulses are temporally asymmetric and biased, we can have situations where the
particle always migrates towards a stable zero-velocity point. This special ratchet process can in principle be
used to separate molecules and particles. An example is given for the electrophoresis of DNA.
@S1063-651X~97!08509-7#

PACS number~s!: 87.22.Fy, 82.45.1z, 05.40.1j, 05.60.1w
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I. INTRODUCTION

As recently demonstrated by Magnasco@1#, ratchet poten-
tials ~i.e., spatially asymmetric potentials! can rectify zero-
mean correlated fluctuations and generate net motion. T
porally asymmetric, zero-mean fluctuations can also ope
a correlation ratchet even when the potential isspatially sym-
metric @2,3#. Although one can design separation schem
~e.g., for charged particles! based on correlation ratchet
such systems provide limited resolution because the rand
ness of the ratchet transitions leads to a large overlap
tween the particle populations. Here we investigate a tem
rally asymmetric ratchetlike system that uses a small b
and a strong field gradient to make particles move towa
attractor points where their velocity is zero. The partic
then form self-focusing, well-separated zones. The princ
is quite general and can be applied to different spatially sy
metric ratchet potentials. The basic theoretical idea is in
duced in Sec. II. As an example, we study, in Sec. III
~one-dimensional! model of DNA gel electrophoresis fo
which exact solutions can be obtained. Other simple syst
can also be treated easily.

II. BASIC PRINCIPLES OF THE METHOD

The instantaneous velocityV(M ,E) of a particle of size
~e.g., charge! M in a local field of intensityE ~e.g., an elec-
tric field! can be written as the product ofE and the mobility
m(M ,E),

V~M ,E![m~M ,E!E5m0E3m* ~M ,E!, ~1!

wherem0 is some standard mobility andm* (M ,E)5m/m0 is
the reduced~or dimensionless! mobility. The system is non-
linear if m* is field dependent~m* is assumed to increas
monotonically withE!. Whatever the source of this nonlin
earity, one can use such a system to build a correla
ratchet that rectifies temporally biased fluctuations, as
scribed in@2#. Nonlinearities often diminish the resolution o
separation processes. Here, however, we will exploit the
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Let us first discuss a simple ac process where the fiel
E0 in the forward direction andE0 /RE in the reverse direc-
tion ~there is no field gradient for the moment!, while the
pulse durations areT0 and RTT0 , respectively, withRE.1
and RT.1 @Fig. 1~a!#. Although the mean-field intensity is
zero forRT5RE , we then have a net velocityVn.0 if the
system is nonlinear@3#. This is essentially the idea behin
the temporal ratchet of Ref.@2# and the so-called zero
integrated-field-electrophoresis process@4#. Here, instead, we
chooseRT.RE.1 ~a negative bias!. Since the mobility in-
creases with the field intensityE, it is possible to find ratios
RT andRE such that we haveVn(E0→0),0 ~the bias domi-
nates the nonlinearity! while Vn(E0→`).0 ~the nonlinear-
ity dominates the bias!. This implies the existence of a finit
critical field E05E* (M ) for which Vn(M ) is exactly zero.
Under these conditions, the particle will simply oscilla
around a fixed position in response to the biased ac exte
field. Now, if this process is carried out in a field gradient
particle of sizeM will naturally move towards the poin
where the local field intensity

ic

FIG. 1. ~a! Schematic of the field~square! pulses used here~in
dimensionless units!. The field intensity isRE times larger in the
positive direction, but the pulse duration isRT times longer in the
negative direction~for this figureRE5RT53!. ~b! Field gradient
function G(y) used for our calculation. The functionG decreases
linearly from unity aty50. The pointy5y¹ , whereG50 is situ-
ated outside the system, which is limited to 0,y,1. For this figure
y¹5

4
3 .
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E(x) is equal to its own critical fieldE* (M ). After reaching
this position, it will have a zero net velocity and will jus
oscillate around this point in response to the applied pul
Since the particle will move towards this ‘‘attractor’’ poin
from either side of it, the distribution of particles of sizeM
will self-sharpen as a function of time. The situation is,
fact, similar to protein isoelectrofocusing@5#. Since particles
with different sizesM will generally stop at different posi
tions in the system, our ‘‘isofocusing-ratchet’’ can separ
particles.

In order to establish the basic equations describing
conditions that are necessary for such a self-focusing rat
to work, let us examine a simple one-dimensional separa
system defined fromx50 to L. The fieldE(x,t), at a posi-
tion x and at a given timet, is given by

E~x,t !5Ei~ t !G~x/x¹!, ~2!

whereEi(t)5E(0,t) is the intensity at thex50 end of the
system andx¹ is a length describing the strength of the fie
gradient. The functionG(z), which satisfiesG(0)51 and
1>G(L/x¹).0, is assumed to be a monotonically decre
ing function of its argument~nonmonotonic functions will be
discussed in Sec. IV!. The fieldEi(t) varies as shown in Fig
1~a!: Its intensity isEi(t)5E0 for a time durationT0 , fol-
lowed byEi(t)52E0 /RE for a durationRTT0 . The period
is T0(RT11) and the mean field intensity iŝE&5E0(1
2RT /RE)/(11RT). Note that the mean-field intensity i
zero if RT5RE .

Let us assume for a moment thatT0 is short enough tha
we can neglect the change of local field intensity felt by
particle during a complete pulse. The distance migrated b
particle during a positive pulse is thenV(M ,E)T0 , while the
distance migrated during the following negative pulse
2V(M ,E/RE)RTT0 . We have a fixed point when the loca
field E(x) is such that these two displacements exactly c
cel one another. The equation for the positionxi f of the fixed
point is thus

m* „M ,E~xi f !…

m* „M ,E~xi f !/RE…

5
RT

RE
. ~3!

Since the mobilitym* is an increasing function of the fiel
intensity, the left-hand side is larger than unity. A fixed po
thus exists only ifRT.RE , i.e., if the ratchet is biased in th
negative direction, as expected. If the particle at posit
x(t) is moving towardsxi f (M ), the equation of motion de
scribing its displacement during a complete cycle is~for T0
small!

dx/dt'@V„M ,E~x!…2RTV„M ,E~x!/RE…#/~11RT!.
~4!

It is easy to see from Eqs.~3! and ~4! that dx/dt.0 if x
,xi f , while dx/dt,0 if x.xi f . Therefore, the fixed poin
acts like an attractor for the particle. The argument presen
above is valid only ifT0!E/V¹E, i.e., for very short pulses
For finite pulse durations, the particle will ultimately osc
late between two positions, which we will denotexi andxf ,
with the distanceDxi f 5xf2xi between these positions ge
ting smaller asT0 decreases. The fixed point is located b
s.
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tween these two points (xi<xi f <xf) and bothxi andxf con-
verge towardsxi f whenT0→0.

The ideas presented in this section are quite general
can be applied to a wide range of systems characterized
nonlinear, monotonically increasing mobility. Given a pote
tial G(x/x¹) and a nonlinear mobilitym* (M ), we can solve
Eqs. ~3! and ~4! for the positionx(t), the final position
xi f (M ), the final widthDxi f (T0), and finally the migration
time necessary to reach the fixed pointx5xi f . When the
functionm* (M ,E) is sufficiently simple, exact solutions ca
be obtained~this is the case for the example solved in t
next section!. Otherwise, one must rely on numerical sol
tions.

III. AN EXAMPLE WITH AN EXACT SOLUTION:
DNA GEL ELECTROPHORESIS

Gel electrophoresis is one of the most important labo
tory technique in modern molecular biology@4–8#. For ex-
ample, it is used both to map and sequence the genom
living organisms. DNA fragments are highly charged in aq
ous buffers and thus readily migrate through dense gel
response to external electric fields. The sieving effect of
gel often provides high-resolution separations of mixtures
fragments, although there are severe limitations in so
cases~e.g., for very large DNA fragments and/or high fields!.
The field and molecular size dependence of the dc gel e
trophoretic mobility of a DNA fragment is well described b
the simple relationship@6–8#

m* ~M ,E!5
Ma

M
1U E

Ea
U for E,Ea , M.Ma , ~5!

whereMa andEa are fitting constants. Another relationsh
has recently been suggested@8#; although it reduces to Eq
~5! in both the low- and high-field limits, it would not allow
us to obtain exact results. Other empirical models can
used instead of Eq.~5! without affecting the general~quali-
tative! results of our study. We will also use a simple line
gradient

GS x

x¹
D512

x

x¹
with 0<x<L,x¹ ~6!

in order to obtain analytical results@Fig. 1~b!#. We now
switch to dimensionless variables for the rest of this pap
We will use the system sizeL as a unit of length andtL
5L/m0E0 as a unit of time; the new variables are thus«
5E0 /Ea , m5M /Ma , y5x/L, t5t/tL , t05T0 /tL , and
y¹5x¹ /L.

Solving Eqs.~3!, ~5!, and~6! for the equilibrium position
yi f (m), we find

yi f ~m!5y¹S 12
m*

m D , ~7!

where the critical molecular sizem* is given by

m* 5
RT /RE21

«~12RT /RE
2 !

. ~8!
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The molecules thus indeed reach different positions al
the system. Since we must have 0,yi f ,1, the range of mo-
lecular sizes that can be separated is restricted tom* ,m
,m* /(121/y¹). Smaller ~larger! molecules move beyond
y,0 ~or y.0! and are thus lost. The range of sizes tha
separated is large if the gradient widthy¹ is close to unity,
but may be quite narrow for weaker gradients. In order
ensure thatm* .0, the bias must actually be limited by th
relationship

RE
2.RT.RE . ~9!

It is also easy to solve Eq.~4! for the linear field gradient
and the mobility relation~5!. Using Eq.~7!, we can write the
positiony(m,t) at timet as

y~m,t!2yi f ~m!

y02yi f ~m!
5F11S y¹2y0

y¹2yi f
D @exp~t/tm!21#G21

,

~10!

wherey05y(m,t50) is the initial position of the particle
The characteristic timetm is given by

tm5my¹RES RT11

RT2RE
D . ~11!

The distancey(t)2yi f to the fixed point thus decreases e
ponentially with time. Figure 2 shows some trajectories
six initial positionsy0 and two molecular sizesm. Clearly,
we see two attractors, one for each particle size. Also,
relaxation time increases~linearly! with sizem.

Rewriting Eq.~4! for small values of the distanceY(t)
5y(m,t)2yi f (m) to the attractor, we find the equation o
motion dY/dt52Y/tY for the final approach, withtY
5tm /(12yi f /y¹)}y¹ /«. This is the equation for the mo
tion for a particle attached to a linear spring and moving i
very viscuous fluid; the spring constant isKY}«/y¹ . The
point y5yi f is thus stable andtm is a good measure of th
time necessary to reach it. A sharper gradient and a hig
field intensity are predicted to lead to faster self-focus
dynamics. Note, however, that the ultimate (t→`) width of
the population will not be zero because the diffusion p
cesses~which we have neglected! will lead to a finite band

FIG. 2. Trajectories followed by threem5
5
2 and threem5

5
4

particles. The conditions areRE511&, RT511(RE)2/(219RE)
52.70, y¹5

5
4 , and«5

2
9 . Six initial positions were used. The a

tractors are atyi f 5
1
4 and 3

4 for these conditions.
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width ;(D/KY)1/2, whereD is the diffusion coefficient of
the particles. We will not study this any further because
would need a specific high-field model forD(«); moreover,
as we will see next, the fact that the~scaled! pulse duration
t0 has to be finite also imposes a finite width to the fin
distribution of particles.

The previous discussion is valid only for infinitely sho
pulse durations (T0→0). In practice, we cannot reduceT0
below a certain threshold due to the transient effects
would expect following a sudden change in field directio
Indeed, the theory presented so far assumed thatT0 is long
enough for the steady-state mobilitym* (M ,E) to be the rel-
evant mobility during~almost all of! the pulse. Therefore, we
must examine the dynamics over a complete cycle for fin
pulse durations.

The equation of motion for a positive pulse (Ei5E0) is
dy/dt5@1/m1«G(y/y¹)#G(y/y¹); it is easy to solve this
equation over the durationt0 of the forward pulse and be
tween the initial and final positionsyi and yf in order to
obtain the new positionyf(yi ,t0 ,m,«). Similarly, one can
establish and solve the equation of motion for the followi
backward pulse during which the particle migrates fromy
5yf towards the final positiony5yp in a time RTt0 ; this
gives us the new positionyp(yf ,RTt0 ,m,«/RE). The net
displacement during a complete cycle isyp2yi and the
steady state is obviously reached whenyi5yp . If we solve
these equations foryi andyf with the conditionyi5yp , we
find that in the steady state, the particle oscillates betw
the positions

yf ss5yi f 1
RE

2~RE21!~RTh2 /RE2h121!

«m~RE
22RT!~REh22h121!

y¹'yi f 1
t0

2tc

1O~t0
2! ~12!

and

yiss5yi f 2
RE

2~RE21!~12RT~h22h1!/RE!

«m~RE
22RT!@RE~h22h1!21#

y¹'yi f 2
t0

2tc

1O~t0
2!, ~13!

where h15exp(t0 /my¹)21, h25h1 /@12exp(2RTt0/
REmy¹)], and the critical pulse durationtc is given by

tc5
«m2~RE

22RT!2

RERT~RE21!~RT2RE!
. ~14!

As can be verified, we haveyf ss>yi f >yiss , with the equal-
ity signs holding fort0→0. To first order int0 , the ideal
fixed pointyi f is in fact exactly between the pointsyiss and
yf ss.

In Fig. 3 we show the positionsy(t) of the particle at the
end of each pulse~both positive and negative! for t050.1,
y050, m5 15

8 , and the parameters used for Fig. 2@the inset
shows the completey(t) vs t curve for the first three
cycles#. We see two well-separated lines with the ideal so
tion ~10! situated between them. The relaxation time is ide
tical for all three curves, indicating that Eq.~11! is also use-
ful for finite pulse durations. From Eqs.~12! and ~13! the
apparent spatial widthDy5yf ss2yiss of these oscillations is
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given by Dy't0 /tc}t0 /«m2. Shorter pulses, larger fiel
intensities, and larger molecular sizes all favor narrow
bands; the strength of the gradient (y¹), however, does no
appear in this relation. In practice, if a certain widthDy is
required experimentally,t05tcDy gives the pulse duration
to use~as long ast0 remains long compared to the duratio
of the transients!; moreover, one can calculate the requir
separation timetexpt by solving Eq. ~10! for uy(m,texpt)
2yif(m)u5Dy @indeed, there is no point in getting closer th
Dy to the fixed pointyi f (m)#.

In practice, the shape of the gradient functionG(y) can
be chosen to lead to any desired final distributionyi f (m).
For example, a linear distribution of the formyi f (m);1
2m/m* can be obtained for the mobility function given b
Eq. ~5! if we use a hyperbolic function of the typeG(z)5
1/(11z) instead of Eq.~6!. Also, very sharp gradients ca
lead to very narrow bands and extremely high resolution
wide ranges of particle sizes, while weak gradients lead
the separation of very narrow ranges of sizes~at the cost of
having broader bands!. This would be particularly useful in
molecular biology where gel electrophoresis is frequen
used to estimate DNA and protein molecular sizes and
minute size differences. In this case, the local electric fi
intensity is controlled by the local thickness of the gel, whi
makes it possible to design customized field gradientsG(y).

IV. DISCUSSION

We have demonstrated in Sec. II that it is possible to bu
an isofocusing type of ratchet using a strong field gradie
biased fluctuations, and a nonlinear system. As an illustra
example, we described the exact analytical solution fo
DNA gel electrophoresis system~Sec. III!. However, other
systems can also be designed. For instance, one could
use Chialvo and Millonas’s ratchet potentials or the entro
trapping~steric! potential of Ref.@3#.

FIG. 3. Dynamics of anm5
15
8 particle, starting aty050, with

the pulse durationt050.1. The other conditions are as given in Fi
2. The middle curve gives the behavior fort0→0, while the two
dashed lines give the positions of the particle at the end of e
pulse. Inset: zoom on the trajectory for the first three pulses.
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The gradient presented in Sec. III is not optimal and w
chosen solely because it is simple enough that a comp
analytical study can be presented. However, it is interes
to look at the practicality of the proposed DNA separati
scheme. In order to minimize separation times, one m
minimize the critical sizem* . Let us takem* 52 for this
discussion. This requires, from Eq.~8!, that RT /RE
5RE(2«11)/(2«1RE). With realistic values such asRE
5 5

2 and «5 1
2 , we then getRT5 25

7 . Using y¹5 5
4 , which

ensures that molecules in the range 2,m,10 get separated
on the gel, Eq.~11! yieldstm'5m. The migration time of a
m5m* 52 molecule in the absence of pulsed fields and g
dients beingL/V'1 in our scaled units, this represents
fivefold increase in separation time for the smaller size~and
a threefold increase form510!, a result that appears inter
esting in practice if the system provides improved resoluti
In order to reduce separation time, one could load the ge
the middle or first apply a dc field in order to bring th
molecules close to their expected final positions. The re
would be quite unique: Them52 – 10 molecules would be
spread over the entire gel. If the gel is long, this may prov
superb resolution over that size range. For an agarose
Ma is a few kilo base pairs~kbp! @8#; one could thus have the
5–25 kbp molecules spread over 20 cm of gel.

More complicated isofocusing ratchets can be built us
more complicated gradients and/or mobility relationshi
For instance, a gradient of the formG(y/y¹)51
1A sin(ly/y¹) could have, for 0,A,1 andl@1, multiple
attractor points for each particle. Particles would thus be
tracted to the nearest attractor. Similar behavior can also
expected if the mobility is not a monotonic function of th
field intensity. In each case, a small difference in the init
position y0 could lead to quite different final destination
Very interesting situations can also occur if the system ha
rough field landscapeG(y). We could then have numerou
attractors and very complicated trajectories, especially
long pulse durations.

V. CONCLUSION

In conclusion, we have established the basic phenome
ogy of a separation process where nonlinear mobiliti
strong field gradients, and biased asymmetric pulses lea
the existence of stable, zero-velocity points that act like
tractors for the migrating particles. The process is somew
reminiscent of protein isoelectric focusing; here, howev
the existence of the zero-velocity points is solely due to
namical reasons.
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