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SUMMARY 

The problem of the axial loading of a rigid disk-shaped anchor plate embedded in an isotropic elastic medium 
of infinite extent is examined. At the boundary of the disk anchor plate the elastic medium contains a cracked 
region of finite extent. The presence of the cracked region decreases the elastic stiffness of the anchor plate. 
The mathematical formulation of the problem is developed, and a numerical scheme is presented which can 
be used to solve the resulting coupled integral equations. The numerical technique is used to evaluate the 
results, which illustrate the manner in which the elastic stiffness of the anchor plate is influenced by the extent 
of cracking. Similar results are developed for the flaw shearing mode stress intensity factor at the external 
boundary of the cracked region. 

INTRODUCTION 

The class of problems which deal with the loading of plate shaped objects embedded in elastic 
media provides a useful basis for the modelling of the short-term or working load range 
stiffnesses of anchor plates. A number of researchers have investigated a variety of elastostatic 
problems involving anchor plates in which account is taken of complete bonding or partial 
debonding at the anchor platelelastic medium interface, flexibility of the anchor plate, transverse 
isotropy of the soil medium, geometrical features of the anchor plate and the influence of the 
boundaries (see e.g. References 1-10). Accounts of the elastostatic analysis of disk-shaped anchor 
problems are given in References 11 and 12. 

In the present paper we focus on the problem of a rigid circular anchor plate embedded in 
bonded contact with an isotropic elastic soil mass of infinite extent. The elastic medium beyond 
the boundary of the rigid disk anchor contains an in-plane cracked region of finite extent (Figure 
1). The development of such cracks can be attributed to the use of grout materials which are 
injected at high pressure. Similar cracking features can occur during the penetration of single-helix 
ground anchors into stiff soil masses such as overconsolidated clays. This study is concerned 
specifically with the evaluation of the elastostatic stiffness of the embedded anchor in the presence 
of a cracked region emanating from the boundary of the anchor region. In this problem the inner 
boundary of the cracked region terminates at the boundary of the rigid circular anchor plate. It is 
well known (see e.g. References 13-15) that in such situations involving linearly elastic media, the 
stress singularity at the discontinuity can exhibit oscillatory phenomena. Consequently, in 
situations where the exact stress distributions at the inner boundary of the cracked region are of 
interest, it is necessary to perform the analysis by appeal to a formulation based on the Hilbert 
problem. On the other hand, if the primary interest is the evaluation of global results pertaining to 
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elastic medium 

disc anchor crack 
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Figure 1. Geometry of the disk inclusion and the extent of cracking 

the stiffness of the embedded anchor, then the problem can be formulated by using an integral 
transform approach (References 16 and 17). The basis for the adoption of the latter approach in 
the solution of the embedded disk anchor problem can be illustrated by considering a rigid 
circular punch in adhesive contact with a half-space region. If the bonded circular punch, of radius 
a, is subjected to a central force P which induces a displacement A in the axial direction, the mixed 
boundary conditions are 

u,(r, 0) = A, 0 I r I a 

u,(r, 0) = 0, 0 I r I a 

ozz(r, 0) = 0, a < r < 00 (3) 

orz(r, 0)= 0, a < r < 00 (4) 
The solution of the mixed boundary value problem, defined by equations (1H4), which 

incorporates the oscillatory form of the stress singularity at the boundary of the rigid punch was 
developed by Ufliand," and further expositions of the method of solution were given by 
Mossak~vski i '~  and Gladwell.' The result of primary interest to the present discussion concerns 
the load-displacement behaviour of the rigid circular punch. Using the formulation based on the 
Hilbert problem, this result can be evaluated in the exact closed form 

P - ln(3-4v) 
-- 
4GAa 1 - 2 ~  

where G is the linear elastic shear modulus and v is Poisson's ratio. In the Hankel integral 
transform approach, the mixed boundary value problem associated with the bonded circular 
punch is effectively reduced to a single Fredholm integral equation of the second kind. This 
integral equation can be solved numerically to generate the load-displacement relationship for the 
bonded punch. The comparison between the results obtained by the two schemes is shown in 
Table I. It is evident that the two approaches yield virtually the same result for the axial stiffness of 
the bonded punch. The maximum difference between the two sets of results does not exceed half a 
per cent. Guided by this observation, we adopt a Hankel integral transform based on an integral 
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Table 1. Axial stiffness P/8GAa of a rigid circular 
punch bonded to an isotropic elastic half-space 

Hilbert Hankel 
V problem transform 

approach approach 

0 0.549 0.546 
0.1 0.597 0.596 
0.2 0.657 0.658 
0.3 0.736 0.731 
0.4 0.84 1 0.842 
0-5 1 .ooo 1 .ooo 

equation formulation of the axially loaded disk anchor problem in the presence of boundary 
cracking. The mathematical analysis of the mixed boundary value problem yields a system of three 
coupled integral equations. These in turn are reduced to a pair of coupled Fredholm integral 
equations of the second kind. These are solved in a numerical fashion to generate the 
load-displacement relationship for the disk anchor. The numerical results illustrate the manner in 
which the extent of cracking influences the stiffness of the disk anchor. The numerical procedure 
can also be used to evaluate the flaw shearing mode (or mode 11) stress intensity factor at the outer 
boundary of the cracked region. Again, the numerical results illustrate the influence of the extent of 
cracking on the stress intensity factor at the crack boundary. 

FUNDAMENTAL EQUATIONS 

Since the anchor problem exhibits axial symmetry, it is convenient to use the method of solution 
which is based on the strain potential approach taken by Love.” It can be shown that the solution 
to the displacement equations of equilibrium can be expressed in terms of a single function CD (r, z )  
which satisfies the equation 

V2V2@(r, z )  = 0 (6) 
where 

a* 1 a a2 V2=-+--+- 
dr2 rdr az2 (7) 

is the axisymmetric form of Laplace’s operator in cylindrical polar co-ordinates. The displacement 
and stress components in the elastic medium may be evaluated in terms of the strain potential 0; 
we have 

a2Q 
2Gu, = 2( 1 - V)V% - ~ 

a z 2  
(9) 

and 
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(Tee=- VV2@--- aZ a (  ::) 
(Tzz = - (2 - v)V2 - __ aZ a {  a z z  I 
CJ,,=- (l-V)VZ@-- 

ar a {  az2  I 
Owing to the asymmetry of the state of deformation about the plane z = 0, the disk anchor 
problem can be formulated as a mixed boundary value problem associated with a half-space 
region. For this purpose, and for convenience, we restrict our attention to the half-space region 
defined by z 2 0. The solution of equation (6) applicable to the formulation of the disk anchor 
problem can be obtained by a Hankel transform development. The relevant result can be 
expressed in the integral formz1 

where A ( ( )  and B(5) are arbitrary functions, and J o ( ( r )  is the zeroth-order Bessel function of the 
first kind. It may be noted that the displacement and stress fields derived from equation (14) reduce 
to zero as (r2 +z2)'/' -+ co. 

THE DISK ANCHOR PROBLEM 

We consider a disk anchor of radius a which is embedded in bonded contact with the surrounding 
elastic medium. The cracked region beyond the outer boundary of the disk anchor has radius b. 
The surfaces of the cracked region are traction-free. The disk anchor is subjected to a central force 
P which induces a rigid-body displacement A in the z direction. Since the displacement of the disk 
anchor induces an asymmetry, the mixed boundary conditions become 

uz(r, 0) = A, 0 I r I a 

u,.(T, 0) = 0, 0 5 r a 

u,(r, 0) = 0, b I r I co 

(Tzz(r, 0) = 0. a < Y < co 

orz(r, 0) = 0, a < r < b 

Using the integral form of the solution for O(r, z) given by equation (14), the mixed boundary 
conditions (15)-(19) can be expressed in the forms 
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where H,[R((); r ]  is the Hankel transform of order n defined by 

d5 H ,  CW); r l  = jOW 5W) 

By introducing the substitutions 

2(1 -v)t3A(5)= -(1-2v)M(t)+N(5) 

2(1- V)t2B(5) = M ( 5 )  + N(5)  
we can express the integral equations (20H24) as follows: 

4GA( 1 - V) 
, O l r ~ a  H ,  [ 5 - 1 b(t) + (3-4v) M(5)); r ]  = - 3-4v 

From equation (28) we note that 

4GA( 1 - V) (1 - 2 ~ )  
3-4v 3-4v H o  IT5 - M(5);  r ] ,  0 5 r I a -~ HoC5 - r l  = - 

With reference to equation (31), we assume that N ( ( )  admits a representation of the form 

b(a)sin({a) 1 a -? lo @ ( t )  sin 5t dt 
5 

(33) 

(34) 

where the prime denotes the derivative with respect to t. By substituting equation (34) into 
equation (33) we obtain 

which is an integral equation of the Abel type; its solution may be written as 

8GA(l-v) 2(1-2~) 
-~ 1 M(5) cos(tt)dt ,  0 I t I a W ) =  - n(3-4v) 743-4v) 0 

Equations (291, (30) and (32) may be written in the following forms: 

Hl C5- M(5);  r ]  = 0, 0 I r I a, b I r < 00 (37) 

Hl[M(5);r]=(1-2v)Hl[N(~);r]=Gl(r), a < r  < b (38) 

Substituting for N ( 5 )  defined by equation (34), equation (38) may be expressed in the form 

To obtain the solution of the system of triple integral equations defined by equations (37) and (38), 
we assume that 

HI CM(5); rl =fl(r), a < r < b (40) 
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Hl CM(5); rl =f3(r), b < r < (41) 
Making use of the Hankel inversion theorem, we obtain from equations (38), (40) and (41) 

M ( < ) =  ji ufl(U)Jl(tu)du+ uGl(u)Jl(tu)duf Uf3(U)fl(lU)du (42) C 1: 
By substituting equation (42) into equation (37) and making use of the techniques outlined by 
Cooke,16 we obtain the following set of integral equations: 

With the aid of the result (42), we obtain 

By using equations (36) and (45), the result (39) may be expressed as 

Introducing the substitutions 

n(a2 - r2)'i2f1 (r) 8GA( 1 - 2v)( 1 - v)a 
F 1 (r) - - 

2r n( 3 - 4v) 

nr(r2 - b2)'12f3(r) 8GA( 1 - 2v)( 1 - v)a 
F3 (4 - - 

2 n(3 - 4v) 

8GA(1-2~)(1 -V)U 
r(r2-u2)lI2Gl(r) = GT (4 n(3 - 4v) 

8GA( 1 - 2 ~ ) (  1 - V)U 
4* (4 n(3 - 4v) $6.) = 

Using the above, the integral equations (43), (44) and (46) can be expressed as 

j b  GT(t)dt 2 j' (t2-u2)'l2 F3(t)dt  
F l ( r )=  - O < r < a  

a t(t2-r2) n t2-b2 t(t2-r2)' 

h < r < c o  

GT(r) = - 1 
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, a < r < b  

Also, note that $*(t) may be expressed in terms of F , ,  F ,  and GT in the form 

1 2 1-2v uF,(u)du ' uF,(u)du $*(t)= 
(1 -2v)a n 3-4v n (uZ-u2)1/2 n o(a2-u2)'/2(t2--U2)'/2 

165 

(53) 

This completes the formal reduction of the mixed boundary value problem defined by equations 
( ls t (19)  effectively to the solution of the coupled integral equations (51H53). The numerical 
solution of these equations is discussed below. 

LOAD-DISPLACEMENT RELATIONSHIP FOR THE ANCHOR 

The axial stress distribution at the disk anchor/elastic medium interface can be used to evaluate 
the load-displacement relationship for the rigid disk anchor. 

From equation (31) we note that 

(Jzz(r,  0) = - YNO J O ( b . 1  dt ,  0 < r < a I 
Substituting the value of N ( { )  defined by equation (34) into equation (554, we have 

( 5 5 )  

where the prime denotes the derivative with respect to the argument. The load-displacement 
relationship for the rigid disk anchor may be evaluated by considering the equilibrium equation 
for inclusion. Taking account of tractions which act on both faces of the disk anchor, we obtain the 
total force P on the inclusion as 

f a  

P = 4n ruzz(r, 0) dr Jo 
By substituting (56) into (57) we obtain 

f a  

P =  -4n J $(t)dt 
0 

and with (50) substituted in (58), 

2(1 -v)(l-2v) s," 
4*(t) dt - ~- - 

P 
16GAa 3-4v 

(57) 

(59) 

The expression for the load-displacement relationship may be evaluated by making use of the 
numerical solutions developed for F, ,  F ,  and GT . 

THE STRESS INTENSITY FACTOR AT THE BOUNDARY O F  THE CRACK 

The flaw shearing mode (or mode 11) stress intensity factor at the boundary of the crack may be 
evaluated by considering the stress distribution qvz in the region r E (b, 00). The integral expression 
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for the shear stresses in the elastic medium is 

By making use of (48) and (50), the result (60) may be expressed in the form 

8GAu(l -2v)F3(r)  r(l - 2 v )  1; d(l) dt b < < co or,z(r, 0) = - d r ( 3 - 4 ~ ) ( r ~ - b ~ ) ~ ~ + ~  ( t2 - r2 )3 /27  

The flaw shearing mode stress intensify factor K,, is defined by 

K, ,  = lim { 2(r - b)} orz(r, 0) 

Using (61)  in (62) and taking the appropriate limits, we obtain 
r + b +  

K , ,  8a( l -2v)F3(b)  -= - 
G A  ~ ’ ( 3  - 4v)b3/’ 

Again, the stress intensity factor may be evaluated upon numerical solution of the coupled system 
of integral equations (51)-(53). 

NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS 

The system of triple integral equations (51)-(53)  may be reduced to a system of coupled integral 
equations by substituting the result for F3(r)  given by (52) into (51) and (53). Performing this 
operation, and introducing the substitutions 

(64) 
t r U 
b’ r=i7 c = -  b’ c = -  f ( r )  = b2F&), s(r) = G W )  

we obtain the following system of coupled integral equations: 

and 

g(q)= -1-- - 
z2 ( 1 - 2 v ) ”  3 - 4 v  
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where the function ~ ( 5 ,  q )  is defined as 

167 

The expression for the axial stiffness of the anchor corresponding to equation (59) may now be 
written as 

P 2(1 -v )  
16GA- 3-4v 

Similarly, the flaw shearing mode stress intensity factor at the boundary of the cracked region, 
equation (63), may be written as 

A quadrature scheme of order N is used to solve the coupled system (65H66). The scheme is 
applied to the intervals [O, c] and [c, 11 separately. Therefore a matrix equation of order 2N is 
obtained, in the form 

[::: :::I [i] = [ -;] 
where the coefficient submatrices are obtained from equations (65) and (66). Upon solution, the 
results for the axial stiffness of the anchor and the stress intensity factor at the crack tip can be 
obtained via equations (68) and (69), respectively. The order of the quadrature scheme can be 
varied to ensure convergence of the results to limiting values. In the numerical treatments 
presented here, we employ N = 16 and v ~(O,0 .5 ) .  The techniques adopted for the numerical 
solution of the coupled integral equations are sufficiently accurate for the purposes of evaluation 
of the load-displacement relationship and the stress intensity factor defined by equations (68) and 
(69). Other numerical procedures that can be adopted for the solution of integral equations are 
documented by Baker. ’ ’ 

NUMERICAL RESULTS AND CONCLUSIONS 

Before examining the results derived from the numerical analysis of the coupled integral equations 
governing the disk anchor problem, it is instructive to establish certain limiting cases associated 
with the extent of boundary cracking. In the limiting case when b -+ a, the cracking is absent and 
the problem reduces to that of the axial loading of a disk anchor which is embedded in bonded 
contact with an elastic medium of infinite extent. The exact closed-form results for the axial 
stiffness of the embedded rigid disk anchor were derived by Coll in~,’~ Selvadurai,’ and Kanwal 
and Sharma24 by using, respectively, integral equation techniques, spheroidal harmonic function 
techniques and singularity methods. As alb -+ 1, 

P 2(1-v) 
- 

16GAa 3-4v 
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1.0 

0.9 

As the cracking extends to infinity, the problem reduces to the case where the disk anchor is 
embedded in bonded contact with two identical half-space regions. The exact analytical solution 
for the axial stiffness of the disk anchor may then be obtained by simply considering the result, 
given in the introduction, for the axial stiffness of a rigid punch bonded to an isotropic elastic half- 
space. Consequently, as alb + 0, 

V ~ 0 . 5  

exact solution 

- 

P - ln(3-4v) - 
1 6 G b ~  2( 1 - 2 ~ )  (72) 

The results for the axial stiffness of the disk anchor derived by using the numerical analysis scheme 
are shown in Figure 2. The exact closed-form results obtained from equations (71) and (72) are also 
shown for comparison. It is evident that the numerical procedures yield results which compare 

0.8 c 
P 

16 GQa 

0.7 

06 

0.5 I I 1 I I 

0 0.2 0.4 0.6 0.8 1.0 

a 
b 
- 

Figure 2. Variation of the axial stiffness of the disk anchor with the extent of cracking 
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Figure 3. Variation of the flaw shearing mode stress intensity factor at the boundary of the cracked region 

very accurately with the exact closed-form solutions cited in equations (71) and (72). As is evident, 
in the limit of material incompressibility the extent of cracking has no influence on the axial 
stiffness of the disk anchor. The maximum influence of the cracking on the axial stiffness of the 
anchor occurs when v = 0. In this case the elastostatic stiffness can be reduced by as much as 
approximately 25 per cent of the stiffness for the uncracked case. However, for most naturally 
occurring soils and rocks v E (0.2,05). In this case the reduction in stiffness due to the boundary 
cracking is much smaller and may be considered to be of little or no practical significance. Figure 3 
illustrates the manner in which the flaw shearing mode stress intensity factor at the boundary of 
the crack is influenced by the extent of cracking. Again, in the limit of material incompressibility, 
the flaw shearing mode stress intensity factor at the boundary of the crack reduces to zero for all 
choices of a/bE(O, 1). 
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