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THE RESPONSE OF A RIGID CIRCULAR PLATE 
RESTING ON AN IDEALIZED 

ELASTIC-PLASTIC FOUNDATION 
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Department of Civil Engineering, Carleton University, Ottawa, Canada 

(Received 16 March 1976, and in revised form 27 July 1976) 

Summary--This paper investigates the load-deflection and contact stress distribution beneath an 
axisymmetrically loaded rigid circular plate resting on an idealized elastic-plastic soil medium. The 
plate is subjected to a monotonically increasing load. The theoretical contact stress distributions 
exhibit trends consistent with measurements encountered beneath actual structural foundations. 
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NOTATION 
cylindrical polar co-ordinates 
surface displacement of modified foundation 
displacement of rigid plate 
displacements in Winkler and Pasternak founda- 
tions 
spring constants for the Winkler media 
rigidity constant for the shear layer 
Laplace's operator 
contact stressses 
shear force in the shear layer 
yield value of shear force 
ratio of spring constants 
radius of circular plate 
substitution parameters 
n th order modified Bessel functions of the first 
and second kind, respectively 
external load on the rigid circular plate 
coefficient with dimensions of length ' 
non-dimensional parameters 
displacement components 
thickness of Vlazov layer 
modified elastic constants 
elastic constants 
material constant of the Vlazov layer 
yield stress in simple shear 

Subscripts 
i foundation region occupied by plate 

e foundation region exterior to plate 
y value at yield 

el. elastic 
el. pl. elastic-plastic 

INTRODUCTION 

THE ANALYSIS of structural foundations resting on 
soil media constitutes an important branch of 
geotechnical engineering. Since most naturally 
occurring soils exhibit complex stress-strain 
characteristics, it becomes both necessary and 
expedient to idealize their response to external 
loads. A natural first approximation would be to 

represent the soil medium as a linearly deformable 
elastic medium. The two extreme types of linear 
elastic response commonly used in soil-foundation 
interaction analyses range from the perfectly 
continuous elastic solid to the Winkler medium, 
which exhibits completely discontinuous behaviour 
in the surface deflection pattern. Other inter- 
mediate models of elastic behaviour include those 
of Reissner' and Vlazov and Leontiev ~- which 
impose deformational constraints on the elastic 
continuum model or the Pasternak 3 and Kerr 4 
models which achieve a certain degree of con- 
tinuity between the individual spring elements of 
the Winkler medium. For example, the Pasternak 
foundation is composed of a Winkler medium in 
which interaction between the individual spring 
elements is achieved by incorporating an elastic 
layer which deforms in shear only. As such, 
mathematical equivalence can be established be- 
tween the constants characterizing the Winkler 
model, its generalized versions and the elastic 
constants of the continuum. Recently Gibson 5 has 
shown that the surface deformational response of 
an incompressible isotropic elastic halfspace whose 
shear modulus varies linearly with depth from zero 
at the surface, is identical to that of the Winkler 
medium. A comprehensive study of the application 
of the linear elastic soil models to the analysis of 
soil-foundation interaction is presented by Sel- 
vadurai 6. 

In relation to the behaviour of highly compressi- 
ble soils such as silts, soft clays and compressible 
loose sands, the representation of the soil as an 
idealized linear elastic medium has several limita- 
tions. By far the most prominent deficiency lies in 
the physical non-linear behaviour observed in the 
load-deflection characteristics of mainly rigid 
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foundations resting on compressible media. 
Further, investigations relating to the measurement 
of contact stresses beneath model and prototype 
structural foundations resting on such compressible 
soils indicate that the observed contact stress 
distributions are different in character to those 
predicted by the linear elastic models. 

For example, the contact stresses beneath the 
edges of a rigid foundation are considerably lower 
than those predicted by the elastic continuum 
model and unlike the response predicted by the 
Winkler model the contact stress distribution is 
generally non-uniform. A summary of these experi- 
mental investigations suggests that any mathemati- 
cal representation of the mechanical behaviour of 
such highly compressible soil media should take 
into account the finite strength characteristics of 
the soil. 

An extension to the purely elastic behaviour can 
thus be achieved by incorporating the effects of 
ideal plastic behaviour. Again, the two basic types 
of elastic-plastic soil response can be developed 
either by using an elastic-plastic continuum ideal- 
ization or by incorporating plasticity effects into the 
mechanical models such as the Winkler or Paster- 
nak types. The analytical treatment of the interac- 
tion problem which employs the elastic-plastic 
continuum idealization is generally quite complex. 
The more important problem relating to the flexural 
response of structural elements resting on elastic- 
plastic continua has received little attention. An 
alternative to this continuum approach is achieved 
by incorporating elastic-plastic effects in the purely 
mechanical models of soil behaviour. In this 
connection it should be mentioned that the classical 
one-dimensional models of elastic-plastic be- 
haviour (see e.g. Pragerf  Whiteman, s Wells and 
Paslay 9) correspond to a generalization of the 
Winkler model to take into account elastic-plastic 
effects. Of particular interest here, is the model 
proposed by Rhines ~° which extends the Pasternak 
model to include elastic-plastic effects. 

In this paper we consider the interaction problem 
related to a rigid circular plate resting on a 
modified Pasternak foundation. The shear interac- 
tion layer in this modified foundation is assumed to 
exhibit elastic-perfectly plastic effects. The ax- 
isymmetric external load is increased up to and 
beyond the point at which failure occurs in the 
shear interaction layer. The results for the 
monotonic loading case are presented in exact 
closed form and numerical results are given to 
illustrate the load-deflection pattern and the dis- 
tribution of contact stresses at the interface. 

The basic problem is of interest in connection 

with foundations of grain silos resting on ~oft 
marine clay deposits. It can also be used t ,  
examine the plate loading test commonly used to 
evaluate the in s i tu  properties of the soil medium. 

FORMULATION OF THE PROBI,EM 
The modified Pasternak type of idealized soil behaviour 

is phenomenologically represented by two layers of 
independent linearly deformable spring elements inter- 
connected by an elastic layer which deforms in shear 
only. (Fig. 1.). The surface deflection w(r)  experienced by 
this model due to the action of a continuously distributed 
load of stress intensity q(r}  is given by 

w(r)=w,(r} ~ war)  ii~ 

where w,(r) is the deflection of the upper Winklm 
medium and w2(r) is the deflection in the Pasternak 
foundation. By considering the constitutive relations of 
the top Winkler layer and the equilibrium of the Pasternak 
layer it can be shown that 

q(r)  = cw d, r) 

q (r )  = kw2(r) - GV'-w,(r) 
(2; 

where c is the spring constant of the upper layer, k is the 
spring constant for the lower layer of springs. G is the 
constant for the shear layer and 

d ~ 1 d 

is Laplace's operator referred to the axisymmetric 
cylindrical polar coordinate system. Using the above 
equations it can be shown that the response of the 
complete foundation due to a continuously distributed 
load q(r )  is given by 

(1 k ) q ( r ) _ _ G W q ( r ) =  k w ( r ) - G W w ( r ) ,  t4) 

The above equation describes the deformatioual charac- 
teristics of the modified Pasternak foundation up to the 
point at which the plastic limit load is reached in the shear 
layer. In the elastic domain the constitutive relation for 

W m k l e r  m e d i u m  1 

r i g i d  circular plate ~ \  

a 

. . . . .  ~- . . . . . . . . . .  ~ - - -  shear layer 

7 L .. % . . .  , t , ' ~  l / / / ~ L 7 - 7  

Winkler m e d i u m  2 ~ i Z  

FIG. 1. The modif ied Pasternak foundat ion  (spring con- 
stant fo r  Wink ler  medium 1 = ¢; spring constant fo r  

Winkler medium 2 - k). 
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the shear layer is given by 

N = G dw2 
dr " (5) 

It is postulated that when the shearing force at any point 
in the shear layer reaches its yield value Ny, slip may 
occur between the vertical elements of the shear layer 
thus producing a discontinuity in the shear layer 
deflection w> It is further noted that owing to the 
assumed elastic-perfectly plastic behaviour, the critical 
shear force Ny is maintained irrespective of the mag- 
nitude of the slip discontinuity. The critical shear strain at 
which yielding commences in the shear layer is given by 

, = ~-. (6) 

From the point of view of stress analysis which 
incorporates the idealized elastic-plastic soil model thus 
described, the following points should be noted: (i) when 
the response of the idealized medium is elastic, the 
displacements of the interconnecting shear layer, w2(r), 
and its derivative are both continuous functions which 
satisfy the elastic constitutive equation given by the 
second equation of (2). (ii) When yield occurs at a point in 
the elastic-perfectly plastic shear layer, the displacement 
field w~(r) becomes discontinuous at that point whereas 
its derivative remains continuous to provide compatibility 
of shearing force in the layer at that location. Thus the 
displacements w2 may change in the rest of the elastic 
regions but to satisfy the constancy of the shearing force 
implied by the yield condition (6) (i.e. N,/G is a material 
constant) the derivative of the displacement w: at a 
yielded point should remain constant. For all intensive 
purposes the stress analysis of the yielded foundation can 
be performed by separating the foundation into separate 
regions about the location at which yield occurs; each of 
these regions would satisfy the elastic stress-strain 
relations together with the shear boundary conditions at 
the yield location. If no further external loads q(r) are 
applied to the surface of the region separated by a yield 
location, then no further yield will occur in that zone, A 
similar situation occurs in the analysis of the title 
problem. Here, yield first occurs at the edge of the rigid 
circular plate and once yield takes place at this location 
the supporting medium beyond the rigid plate remains 
unaffected for further deformations of the plate. 

AXISYMMETRIC LOADING OF THE RIGID 
CIRCULAR PLATE 

Elastic behaviour 
We first consider the problem of a rigid circular plate 

resting on a modified Pasternak foundation and subjected 
to a central force P, The equations governing the 
settlement of the plate in the elastic range are given by (1) 
and (4). Since the loading is axisymmetric the surface 
settlement under the rigid foundation w(r)=wo= 
constant. For sufficiently small values of P the shear layer 
exhibits an elastic response and the relationship between 
the surface deflection wo and the contact stress q(r) is 
given by (4), i.e. 

nk 2 
V2q - (1  + n ) k q  =---G- Wo (7) 

where n = c/k. 

Since no boundary conditions can be prescribed at the 
plate boundary r = a, (7) cannot be integrated to generate 
q(r) within the contact region. However, the solution of 
the problem can be achieved by considering the deforma- 
tions of the shear layer inside (w2~) and outside (w2,), 
respectively. Since w(r )=  wo and w, ( r )=q( r ) / c  for 
r < a ,  we can, by using (1) and (7) show that the 
differential equation governing w2~ is given by 

k V2w2 ' _ k (1 + n)w2, = - n  ~ Wo. (Sa) 

Also, since q(r) = 0 for r > a, the deflections outside the 
contact region are governed by 

k 
Ww2, - ~ -  w2, = 0. (8b) 

The four boundary conditions governing (8a) and (8b), in 
relation to the circular plate problem are 

dw2e 
w2, a) w2.,o, L dr 

(9) 

(iii) r ~/dw2,] = 0 ( iv )  [ w 2 . ] , ~  = 0. 
L dr J, :o 

The complete solutions of (8a) and (8b) which satisfy 
these boundary conditions are given by 

nWo 1 w2, = ~ { - ~Io(Ar/a)} 

nwo [ AI,(A) KoOzr[a)] 
J 

(10) 

where I. and K. (n =0, 1) are the nth order modified 
Bessel functions of the first and second kind, respectively, 
and 

= IzK,(~)[I, LK,(Iz)Io(A) + AI,(A)Ko(/~)]-'. 

The contact stresses beneath the rigid foundation are 
given by the second equation of (2); we have 

k t l w  o 
q(r) = ~ [1 + n~Io(Ar/a)]. (12) 

The load-deflection relationship for the rigid plate, valid 
for the elastic range, can now be obtained by considering 
the vertical equilibrium of the plate: i.e. 

7ra2knwo + P =fo°ff "q(r)rdrd° = ( l + n ) x  [x 2n*I,(~)]. 
(13) 

Using (13) we can write (12) as 

q(r) , [ l + n ~ I 0 ( X r / a ) ]  
(14) 

where qo = (= P/Tra 2) is the average contact stress beneath 
the rigid plate. The preceding analysis completely 
describes the elastic response of the rigid circular plate 
resting on a modified Pasternak medium. 
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Elastic-plastic behaviour 
In order to investigate the elastic-plastic response of 

the modified foundation, it is necessary to establish the 
location at which the strain in the shear layer is a 
maximum. Using (10) we note that for O< r ~-" a 

PA [1A-Olo(Ar/a)] (15) 

From (14) we note that the maximum value of the 
derivative (dw:~/dr) occurs at r = a :  and from (5) we 
obtain the maximum shear force as 

max !N[ = PGA2OI'(A) i 16 )  
k~ra ~[A + 2nqbl,(?, 11" 

At yield conditions max JN i  = N, anti the corresponding 
external load P, is given by 

m~ 71-¢A + - - - - - - -  . (17a) 

Using (13) and (17aL the deflection of the rigid plate at 
initiation of yield in the shear layer is given by 

mv/~ 
I w,,l, nka ~I,(A )" (17b) 

In post-yield behaviour, the deformations of the founda- 
tion are governed by the differential equations (8a) and 
(8b); however, the appropriate boundary conditions are 

,,, , .  

[dwq =0 
Off) t dr  3, ,, (iv) [ .'2,. ] .... =0.  

(18) 

The complete solutions of (8a) and (8b) corresponding to 
boundary conditions (181 can be shown to be 

V¢ 2 i 
nw,, N~alo(Ar/a ) 

( l + n )  AGI,(A) 

N.aKo(txr / a ) 
w~, ~GK,(I t  ) 

(19) 

Again, using the first of these equations in the second 
equation of (2) it can be shown that the contact stress 
distribution beneath the rigid foundation subsequent to 
yield in the shear layer at r = a corresponds to 

[q(r)], (l ~n) [kwo+ ANfl°(Ar/a)] y (20) 

The force-deformation relationship for the rigid founda- 
tion at post-yield conditions can be obtained by consider- 
ing its overall vertical equilibrium condition, i.e.. 

7rna~ [ k w , , + ~ ] .  (21) 

NUMERICAL RESULTS 

The load-deflection relationship for the rigid founda- 
tion subjected to a monotonically increasing load is 

represented by equation (131 for the elastic range and by 
equation (21) for the elastic-plastic range. The non- 
dimensional form of the load--deflection curve of P/k,'ra 
vs wo/a is shown in Fig. 2. A distinct change in the slope 
of the load-deflection curve occurs as yield commences in 
the interconnecting shear layer. In order to illustrate the 
effects of yielding on the contact slress distribution we 
consider the following representation. The average 
contact stress beneath the circular plate at the initiation of 
yield in the shear layer q, is given bj, 

,~a ~ (1 + n )a l ~7~(~S t 

We can now represent the contact stress beneath the rigid 
plate at any load P as a multiple of q, : i.e. (P/Tra'-)= 
E.(P~/rra:). The contact stress distribution obtained for 
s c <1 corresponds to purely elastic behaviour of the 
foundation. Similarly the contact stresses obtained for 

> I corresponds to the elastic-plastic behaviour of the 
foundation. Using (22), the elastic contac|  stress distribu- 
tion (14) can be written as 

q( rL,  = f{I ~ rtdOI,M~r/a)i. (23) 
{N,A/a(I  + n )Cbl,(A )} 

Similarly the contact stresses beneath the rigid founda- 
tion. obtained for elastic-plastic behaviour (20) can be 
written as 

q(r)  ..... = ~:{1 -~ nOIo(Ar/a)} 
{N,A la (I ~ n)dOl,(A )} 

Ft 
(~ l )O~{M, , (hr ta)  21,(A)}. (24)  

We note that when ~ - 1. (24) becomes identical to (23). 
The form of the equation for the contact stress 
distribution (24), suggests that the magnitude of the 
deviation of q(r)e~,,t from the purely elastic distribution 
(23) depends upon the sign of {Alo(Ar/a)-2L(A)}.  If we 
consider the series representations fm the modified 

[J 

~ k a  ~ 

j r -  

s ;  

x,\ [~)a 

a 

FIG. 2. Load-deflection relationship for the rigid circular 
plate. 

A 
k .  27~ ~_ . )  

q ,  = 2N, n / ;--n- 
' ~ k a : ( l + n ) ;  0 , = t a n  ' 

& = t a n  ' 1 +-~aOl,(a)  , 
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Bessel functions 

h z A 4 h 6 

Io(A) = 1 + ~ - + ~ - ~ .  4 2 + ~ +  . . . .  

A h 3 h 5 h 7 

l,(h) = 5 + ~ .  4 + ~ +  22.42.6z. 8 
+ .  • , 

(25) 

it can be shown that 

{hlo(h)-2I , (h)}>0 f o r a l l h > 0 .  

The above consistency condition implies that when 
elastic-ideal plastic effects of the foundation are taken into 
consideration, the contact stress at the boundary of the 
rigid plate is lower than the corresponding elastic values. 
Accordingly the contact stress at the centre of the plate is 
increased. In order to obtain specific numerical results for 
the contact stress distributions (23) and (24) it becomes 
necessary to assign values to n, /x and A. This may be 
achieved by making use of Vlazov and Leontiev's 2 
interpretation of the Pasternak model in terms of the 
surface deflection of an elastic layer with the constrained 
displacement field 

u~=0; u~=w~(r) s i n h y ( H - z )  (26) 
sinh yH 

Where u~ and uz are the radial and axial components of 
the displacement vector, H is the thickness of the layer 
and 3' is a coefficient with dimensions of (length)'  
determining the variation of u~ with depth. Using such an 
approach we can express k and G as 

Eo EoH xF 
k - H(1 - Vo ~) ~ ; G = 6(1 + v0) ~" (27) 

The modified constants E0 and Uo are related to the true 
elastic constants of the elastic layer E,, v~ by 

U s  1] s 
Eo ( l - v , : )  ' VO- ( l_v , )  (28a) 

and also, 

~k~ sinhyHcoshyH±yHt~ 
V~ J - sinh ~ TH |_~yH" 

(28b) 

By substituting the expressions for G and k given by (27) 
into the second equation of (11) we obtain 

a _ [ 2 ( 1 -  v , ) ~ s i n h  ~ cosh ? + 7 1 ] ' "  
~z = H ' Y L ~ / s i n h ~ c o s h ~ - ~ J ]  " (29) 

Where ~ = yH is a non-dimensional parameter. For the 
purpose of calculating the contact stress distributions 
beneath the rigid plate we adopt the following values for 
the variables encountered: (a[H) = 1[5; ~ = 2; vs = 0.15; 
n = 1. The corresponding values for ix, A and qb are 
obtained from (11) and (29); we have g ~0.71, A = 1.0, 

= 0.615. The variation of contact stresses beneath rigid 
plates resting on both elastic and elastic-plastic founda- 
tions are shown in Fig. 3. These contact stresses are 
presented in a non-dimensional form which makes use of 

r i g i d  circular ~jp 
/ ~  p l a t e  ~ \ ~ ' *  ~l _ 

404 -60 

1.o i -1.o - f - ~  

5o : ) '  ~ . \  ! , .7o 

' L ',i 20 t ! 2.0 
! 

goJ ,~ [so 
1 q I 

~=05 ~=10 ff=29 ~=30 

- -  e l a s t i c  f o u n d a t i o n  . . . .  e l a s t i c  p l a s t i c  t o u n d a t i o n  

FIG. 3. The contact stress distributions 0(r) beneath the 
rigid circular plate. 

q(r) P 
(l(r) {N,h/a(l+n)@l,(h)}' ~=~-, ;  

zraN, f + h 

the yield value (Ny) of the interconnecting shear layer. 
This value of N, may be identified to a first approxima- 
tion, as the total shear force in the constrained elastic 
layer in which the limiting strength of the material in 
simple shear (r,) is reached at the surface. Considering 
the above criterion we obtain 

N, ~ H% [cosh ~ -  1]. (30) 
? sinh "~ 

Results similar to (30) may be obtained by applying other 
limiting strength criteria to the behaviour of the elastic 
layer with constrained deformations. 

CONCLUSIONS 
This paper  presen ts  an analysis of a rigid circular 

plate rest ing on an idealized e las t ic-plas t ic  Paster-  

nak foundat ion.  This foundat ion  model is in tended 
to descr ibe  the mechanical  behaviour  of highly 
compress ib le  soil media  such as soft  clays, silts and 

loose granular media in which failure occurs  as a 
result  of punching shear  ra ther  than the general  
type of bearing capaci ty failure associa ted  with the 

Prandt l -Hi l l "  type of classical plasticity solution. 
The e las t ic-plas t ic  behaviour  of the idealized 
foundat ion  is res t r ic ted  to the in terconnect ing  shear  
layer. It is found  that  yielding of the foundat ion  
initiates at the edges of the rigid circular plate. The 
load-def lec t ion  character is t ics  and contac t  s t resses  
benea th  the circular rigid plate are considerably  
al tered by the inclusion of the e las t ic-plas t ic  
effects.  These  computed  distr ibut ions represen t  
character is t ic  t rends  obse rved  in model  and proto-  
type foundat ion  behaviour .  A direct  compar i son  
with the exper imenta l  data, however  cannot  be 
made owing to the lack of detailed exper imenta l  
information.  
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