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Torsion of foundations embedded in a non-homogeneous
soil with a weathered crust

R. K. N. D. RAJAPAKSE* and A. P. S. SELVADURAI}

The torsional response of rigid foundations embed-
ded in a non-homogeneous elastic soil with a
weathered crust is investigated. The shear modulus
of the weathered crust is assumed to decrease lin-
early with depth and that of the underlying non-
homogeneous soil increases linearly with depth.
The problems related to both rigid circular and
cylindrical foundations are examined by using an
integral equation method based on displacement
and traction Green’s functions of the weathered
non-homogeneous medium. Numerical solufions
for torsional stiffness of rigid circular foundations
are presented for different depths of embedment,
gradients of shear modulus profile and depths of
weathered crust. A closed form solution based on a
simplified stress field in the soil is also developed to
evaluate the torsional stiffness of a rigid cylindrical
foundation. The torsional stiffness derived by using
the approximate solution is compared with the rig-
orous solution based on exact Green’s functions.

KEYWORDS: elasticity; footings/foundations; shear
modulus; soil-structure interaction; stiffness; torsion.

L’article examine la résistance 4 la torsion de fon-
dations rigides encastrées dans un sol élastique
non-homogéne avec une croiite altérée. On admet
que le module de cisaillement de la croiite altérée
décroit lineairement avec la profondeur et que celui
du sol sous-jacent non-homogéne augmente avec la
profondeur. On étudie les problémes associés aux
fondations rigides circulaires et cylindriques en
employant une méthode d’équations intégrale basée
sur des fonctions de Green du déplacement et de la
traction de la matiére altérée non-homogéne. Des
solutions numeriques pour la rigidité torsionnelle
des fondations rigides circulaires sont présentées
pour différentes profondeurs d’encastrement, diffé-
rents gradients de profil de module de cisaillement
et différentes épaisseurs de croiite altérée. Une sol-
ution basée sur un champ de contrainte simplifié
dans le sol est développée afin d’évaleur la rigidité
torsionnelle d’une fondation rigide cylindrique. La
rigidite torsionnelle estimée par ’emploi de la solu-
tion approximative est comparée avec la solution
rigoureuse basée sur des fonctions précises de
Green.

NOTATION
a radius of the embedded circular/
cylindrical foundation
G(r,z;s,2") displacement Green’s function
h depth of the weathered crust
H depth of embedment
H,; height of the foundation
I, modified Bessel function of the first
kind and order n
J, Bessel function of the first kind and
order n
K, modified Bessel function of the
second kind and order
_ my, m, gradients of shear modulus profile
N, Ny, N, number of node points used to dis-

cretize §, S respectively

Discussion on this Paper closes 5 January 1990; for
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INTRODUCTION

Solutions based on the classical theory of elas-
ticity have been used quite extensively in the
analysis of a variety of problems related to soil-
structure interaction (e.g. Harr, 1966; Poulos &
Davis, 1974; Desai & Christian, 1977; Scott,
1978; Selvadurai, 1979). In many situations that
involve  geotechnical engineering practice,
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however, it becomes necessary to modify the
assumptions of isotropy and homogeneity which
are inherent in the classical theory of elasticity.
Investigations by Bjerrum (1954), Skempton &
Henkel (1957), Ward et al. (1959, 1965) and others
have established the fact that effects of deposition,
overburden, desiccation and so on, can lead to
geological media which exhibit both anisotropic
and non-homogeneous deformability character-
istics. These observations have also been supple-
mented by the experimental investigations of
Symons & Murray (1971), Simon, Christian &
Ladd (1974), Graham & Houlsby (1983), Wroth,
Randolph, Houlsby & Fahey (1984) and others.

Owing to the potential importance of material
non-homogeneity to the study of both static and
dynamic problems in soil-structure interaction,
several researchers have focused attention on the
extension of many classical solutions to include
effects of elastic non-homogeneities. Investiga-
tions by Klein (1956), Korenev (1957), Moss-
akovskii (1958), Popov (1959), Rakov & Rvachev
(1961), Rostovtsev (1964) and others examined
various classes of boundary value problems in
which half-space regions exhibit exponential and
power law variations in the shear modulus and
Poisson’s ratio is invariably kept constant.
Detailed accounts of the early works related to
non-homogeneous elastic media are given by
Olszak (1959) and Golecki & Knops (1969) and
further advances in this area are documented by
Gladwell (1980) and Selvadurai, Singh & Vrbik
(1986).

In applications related to geoetechnical engin-
eering, a seminal paper on the problem concern-
ing a non-homogeneous elastic medium was
presented by Gibson (1967). This study particu-
larly focused on the stress analysis of an isotropic
incompressible elastic half-space in which the
shear modulus varies with depth in a linear
fashion. The characteristic discontinuous dis-
placement profile observed at the surface of a
normal loaded half-space region provided a valu-
able basis for establishing the relevance of simpli-
fied models such as the Winkler model to
geotechnical engineering. Gibson and co-workers
(e.g. Gibson, 1974; Gibson & Sills, 1969, 1975;
Gibson, Brown & Andrews, 1971; Gibson &
Kalsi, 1974; Awojobi & Gibson, 1973) have
examined a variety of problems related to both
compressible and incompressible media in which
the shear modulus exhibits a linear variation with
depth. The linearly varying inhomogeneity has
also been re-examined by Calladine & Green-
wood (1978).

An examination of the relevant literature in
geotechnical engineering indicates that most
problems which deal with the non-homogeneity
in the elasticity properties focus on situations

where the half-space region is subjected to loads
which are applied at its surface. The class of
problems which deals with situations where the
loads are transmitted to the interior of the non-
homogeneous region is of particular interest to
geotechnical engineering. Deeply embedded foun-
dations, piles, ground anchors, in situ testing
devices and so on primarily deal with loads that
are imparted at the interior of the soil region.

In practice one often encounters non-
homogeneous soil profiles whose upper part has
been exposed to desiccation and weathering. The
stiffness and thickness of the weathered crust
depend on a variety of factors such as geologic
history, climatic conditions, soil permeability and
vegetation. Experimental studies related to
properties and behaviour of soils with weathered
crusts have been reported by several investigators
(Bjerrum 1954, 1973; Simon, Christian & Ladd
1974; Dascal & Tournier 1975; Lo and Becker
1979; Graham 1979; Ng and Lo 1985; Graham
& Shields 1985). These studies indicate that a
bilinear variation of shear modulus with depth as
depicted in Fig. 1 represents a realistic ideal-
ization for many soils actually encountered. A
review of literature indicates, however, that the
influence of weathering on the response of embed-
ded foundations has not been investigated pre-
viously.

In this Paper, the Authors consider the tor-
sional interaction between a rigid circular or
cylindrical foundation embedded in a weathered
non-homogeneous elastic soil which exhibits a
bilinear variation of shear modulus with depth.
Structural foundations are subjected to torsional
loads during wind storms and earthquakes. In the
case of machine foundations unbalanced masses
of reciprocating engines result in torsional loads.
Another common example is the pier-type foun-
dations of power transmission towers which can
be subjected to significant torsional loads as a
result of non-uniform tension in the transmission
cables, created by wind or ice action. The assess-
ment of the torsional stiffness of embedded struc-

Weatheredcrust  h £ plz)=pol1—-m:2)
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half-space
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w(z)

z

Fig. 1. Shear modulus profile of elastic soil medium
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tural foundations is therefore important to the
static and dynamic analysis of structure—
foundation system.

The study of torsional behaviour of founda-
tions embedded in elastic soils has received some
attention. Existing studies are mainly based on
homogeneous elastic half-space models (Poulos,
1975, Selvadurai, 1984) or a layered elastic half-
space model where both the layer and the under-
lying half-space are assumed to be homogeneous
(Luco, 1976; Karasudhi, Rajapakse & Hwang,
1984; Rajapakse & Selvadurai, 1985; Selvadurai
& Rajapakse, 1987). Randolph (1979) presented
an approximate analytical solution based on a
simplified stress field in the soil to evaluate the
torsional stiffness of an elastic pile embedded in a
homogeneous soil or a linearly non-homogeneous
soil with zero shear modulus at the surface level.
The main objective of this study is to investigate
rigorously the influence of the weathered crust
and the non-homogeneous character of the
underlying soil on the torsional response of
embedded rigid foundations.

The geometry of the foundation-soil system
considered in the present study is depicted in Fig.
2. The depth of the foundation is assumed to be
such that the base of the cylindrical foundation
terminates at any position within the weathered
crust or within the underlying non-homogeneous
half-space region. A boundary integral equation
method based on exact displacement and traction
Green’s functions corresponding to a weathered
non-homogeneous medium is used to determine
the torsional stiffness. An approximate closed
form solution is also derived to estimate the tor-
sional stiffness of a rigid cylindrical foundation.

Rigid circular
foundation

Non-homogeneous
soil

Rigid cylindrical
foundation

Non-homogenous
soil

Fig. 2. Geometry of rigid foundation—soil interaction
problem: (a) embedded circular foundation; (b) rigid
cydindrical foundation
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Ring load in 6—direction

Fig. 3. Loading configuration for Green’s functions

The solutions for torsional stiffness obtained from
the approximate analysis are compared with the
rigorous boundary integral equation solutions to
establish the accuracy and range of validity of the
approximate analysis.

FUNDAMENTAL SOLUTIONS

Figure 3 illustrates an isotropic non-
homogeneous elastic half-space with a weathered
crust. A cylindrical polar co-ordinate system (r, 6,
z) is chosen such that z-axis is normal to the free
surface of the half-space. It is convenient to intro-
duce a non-dimensional length parameter and to
perform analysis in terms of dimensionless quan-
tities. The radius a of the foundation (Fig. 2) is
selected as the unit length. The class of problems
under consideration possesses a state of sym-
metry about the z-axis and the stresses and dis-
placements are independent of circumferential
co-ordinate §. Owing to the state of symmetry
imposed by axisymmetric torsion, the displace-
ments u and w in the r and z directions respec-
tively vanish. In the absence of body forces, the
non-zero displacement component u(r, z) in the 6-
direction is governed by the following displace-
ment equation of equilibrium

v pE)dv [ 1év v
wtwatletra 270 @

where u(z) is the shear modulus of the medium
and g'(z) is the first derivative of u(z) with respect
to z.

The non-zero stress components gy, and g,
referred to the cylindrical polar co-ordinate
system can be expressed in the form

v v v
Og, = F(Z)'E s Ogr = .u(z)[a I ;] (2)

Consider an isotropic non-homogeneous
medium where shear modulus varies according to
the following form

Hz) = po(l £ mz), m>0 (3
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The general solution for displacement u(r, z)
governed by equation (1) of an elastic medium
with shear modulus variation given by equation
(3) can be obtained by employing Hankel integral
transforms (Sneddon, 1951). It can be shown that
the general solution for displacement u(r, z) can
be expressed in the form

ur, z) = I:{A(C)I ollm™! + 2)£]

+ BOK [Em™" + 2)]}J,(ér) 4 (4)

In equation (4), A(¢) and B(¢) are arbitrary
functions which should be determined by invok-
ing appropriate boundary and continuity condi-
tions; J, is the Bessel function of the first kind of
order n; I, and K, denote modified Bessel func-
tions of the first and the second kind of order n
respectively. The solutions for stress components
64, (1, 2) and oy, (r, z) can be obtained by substi-
tuting equation (4) in equation (2).

In the ensuing section dealing with the formu-
lation of the interaction problem it is necessary to
derive the solution for displacement Green’s func-
tions of a weathered non-homogeneous soil in the
absence of the rigid foundation. The loading con-
figuration required to be considered in the deriva-
tion of Green’s functions is shown in Fig. 3. The
shear moduli variation within the weathered crust
(—h < z < 0) is expressed as

uz) = po(l —myz), my >0 (5)

and the shear modulus variation within the
underlying half space (0 < z < c0) is expressed as

uz) = po(l +my2), my;>0 (6)

The boundary-value problem shown in Fig. 3
can be solved by defining a fictitious plane at
z=1z and considering it as a three-domain
problem. The displacement field in each domain
denoted by v(r, z), (i = 1, 2, 3) for the case where
the ring load is applied within the weathered
crust (—h < z' < 0) can be expressed as

oifru8) = :{A,(z}roml(zn + By(OKo[Ay()]}

x Jy(r) d& (—hgzZ7) 0

valr, 2) = :{Az(é}fuml{z}] + By(OKo[A,(2)])

x Ji¢r)d¢ (=z=0) ®)

vslr, 2) = :Batéjxouz(zn

x Jy(€r)d¢ (0=z< ) ©)

where
Ay(2) = Emy "t — 2); Ay(2) = &my " +2) (10)

The arbitrary functions A,(¢) (i = 1, 2) and B{(¢)
(i=1, 2, 3) can be determined from boundary
conditions at z = —h and continuity conditions
at z =z’ and z = 0. The procedure to be followed
is identical to that used by Selvadurai & Raja-
pakse (1987) for the case of a layered elastic half-
space. The explicit solution for the five arbitrary
functions are presented in Appendix 1.

ANALYSIS FOR RIGID CIRCULAR
FOUNDATION

Figure 2(a) shows a rigid circular foundation of
radius a buried in a weathered non-homogeneous
soil. The foundation is subjected to a torque T
about the z-axis and experiences a rotation ¢,
about the z-axis. The depth of embedment H of
the foundation is arbitrary such that it can be
located either within the weathered crust or
within the underlying non-homogeneous half-
space. The resultant contact traction in the 6-
direction denoted by T(s), acting on surface S
(0 <s<a,z=H— h) is governed by the follow-
ing integral equation.

fG[r,H—h;s,H—h)T{s)ds:qﬁor, 0<r=a

(11)

In equation (11), G(r, z; s, 2) is the displace-
ment Green’s function of the soil medium in the
absence of the foundation. G(r, z; s, z') denotes
displacement in the 0-direction at point (r, z) due
to a unit ring load through point (s, z'). The
explicit solution for G(r, z; s, 2') is discussed in
the preceding section.

A convenient way to solve the integral equa-
tion (11) is to discretize the contact surface S into
a set of N concentric regions as shown in Fig. 4
and to assume that within each of the concentric
regions the traction Ti(s) ( = 1, 2, ..., N) varies in

Sz

M TN
Loy ||
S

L Node i

Contactsurface S

\

z

Fig. 4. Discretized contact surface of circular foundation
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the following linear form
T(s) = 5T,

where s;, and s;, are inner and outer radii of the

jth concentric region (Fig. 4) and 7T; is the
unknown intensity of traction corresponding to
jth element. In view of equation (12) a discrete

version of equation (11) can be written as

Si1 (S(sz {12)

ZG("., H— h;sjpsjzﬂ_} =¢or;, i=1L2,...,N
j=1

(13)
where
G(ri‘ - h Si1 512}

= J G(ry, H—h;s, H—h)sds (14)
551

and r; denotes the radial coordinate of ith node
(Fig. 4).

It can be shown that G is given by equations
(7(10) and (48)463) with the term sJ,(&s) in
equations (49), (58){60) and (62) replaced by
[512212{6511) = Sjlsz(fsji)]fﬁ-

Numerical solution of equation (13) results in
T; corresponding to each concentric element. The
resultant torque T, acting on the foundation is
then given by
=XT

1

[s;2* — 531*] (15)

Nl?l

i

ANALYSIS FOR RIGID
CYLINDRICAL FOUNDATION
Boundary integral solution

Figure 2(b) shows a rigid cylindrical foundation
in a weathered non-homogeneous medium. The
foundation is subjected to a torque T;, and experi-
ences a rotation ¢, about the z-axis. It is assumed
that the foundation is perfectly bonded to the sur-
rounding elastic soil along the contact surface S,.
The boundary conditions relevant to the inter-
action problem shown in Fig. 2(b) can be
expressed as

Og,(r, —h) = r>a (16)
ur, 2) = ¢or, (1, 2)8S, (17
T(r, z) =0, (r, z)eS, (18)

The solution of the elastic soil medium sub-
jected to boundary conditions given by equations
(16)(18) yields traction T(r, z) in the O-direction
on §, and displacement u(r, z) on §,. The torque
T, producing the rotation ¢, is given by

R f rT(r, 2) dS,, (r, 208,  (19)
LT

In the present study the interaction problem is
solved by using the indirect boundary integral
equation method (Ohsaki, 1973). Consider a
weathered non-homogeneous half-space V* (Fig.
5) in the absence of the foundation. Fictitious sur-
faces §;* and S§,* which are identical to surface
S, and S, respectively are defined in V* as shown
in Fig. 5. A traction field in the 6-direction
denoted by 1t(r, z) is applied along the axi-
symmetric surface § defined interior to §,* and
S,* (Fig. 5). The magnitude of t(r, z) is such that
displacement v(r, z) in S,* is equal to ¢,r and
traction T(r, z) on S,* is equal to zero. Under
these conditions t(r, z) is governed by the follow-
ing dual integral equations.

jG(r, z; 5, 2)t(s, 2')s dS = ¢,r,
5

(r, 2)eS,*, (s, 2068 (20)

J;fl{?, z; s, z)i(s, 2')s d§ = 0,
s

(r, 2)eS,*, (s, 20§ (21)

where Y(r, z; s, 2') is the traction Green’s function
of the soil medium which can be expressed in
terms of G(r, z; 5, z) by using equation (2). In
addition, § in equations (20) and (21) implies the
generating curve of surface 5.

The unknown traction T(r, z) on §;* and
unknown displacement u(r, z) on S,* can be
expressed in terms of t(r, z) through the following
integral equations.

T(r, 2) = j.l.b(r, z; 5, 2)(s, z)s dS (22)
s

ur, z) = J.G(r. z; s, 2)(s, z)s dS (23)
5

A numerical solution of equations (20) and (21)

can be obtained by discretizing §, S,* and §,* by
I T 1
b N
H L '5—1 I
[
: Al oo | e—s.
Xt edcod
2 .
[ 0y >
0 v

z

Fig. 5. Elastic soil medium considered in boundary integ-
ral formulation
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using N, N, and N, nodal points respectively. A
discrete version of equations (20) and (21) can be
expressed as

[4]{z} = {R} (24
where

[G(ris Zi5 Sj, ij)SAS_j]M xN:I
Al=|-=--="-=-"--=-=-- i 25
L4 [wtfi, e, o e

_ '{_¢_0fi}
=[] !
{z} = {x(s;, z))} @7

In equations (25M427), (r;,z) e S,% (7, %) €
S,* and (s;, z;) € S. In addition AS; is the tribu-
tary length corresponding to node j on S.

A least-square solution of equation (24) yields

{t} = [[41"[41] " '[A]"{R} (28)

The equations (22) and (23) corresponding to
unknown traction and displacement can be
expressed as

T(r, 2) = <¥(r, z; 5y, 2,)5A8; > {1},

(r,2)eS* (29
ur, 2) = < G(r, z; sy, z)sAS; > {1},

(r,z) € S,* (30)

The resultant torque T, is obtained by numerical
integration of equation (19) with T(r, z) evaluated
by using equation (29).

Approximate closed form solution

It is evident from the preceding analysis that a
considerable computational effort is required in
the boundary integral solution. From a practical
point of view, it is useful to investigate the possi-
bility of developing a simple closed form solution
for torsional stiffness of a rigid cylindrical founda-
tion based on a simplified representation of stress
field in the non-homogeneous soil. Approximate
closed form solutions for torsional stiffness of
rigid foundations embedded in homogeneous
elastic media have been presented by Luco (1976),
Randolph (1981), Rajapakse & Selvadurai (1985)
and Selvadurai & Rajapakse (1987). The approx-
imate solution developed in this Paper is based
on two basic assumptions. It is assumed that the
elastic soil surrounding the mantle of the founda-
tion can be modelled as a series of thin elastic
layers in smooth contact and the deformations of
the mantle and the base can be uncoupled. The
torsional stiffness of the rigid cylindrical founda-
tion is obtained by adding the torque required to

produce a unit rotation of the soil surrounding
the mantle derived on the basis of the simpli-
fied stress field to the torque corresponding to a
rigid circular foundation resting on a non-
homogeneous soil half-space.

In the absence of body forces, axisymmetric
pure torsion problems are governed by the equi-
librium equation

000 090 29w _

1
or oz b G

The assumption that the surrounding soil is
modelled as a series of thin elastic layers in
smooth contact simplifies equation (31) to

do, 20,
— +—=0 )
T (32)

The solution of equation (32) is given by
Oy = Ar™2 (33)

where A is an integration constant.
The substitution of equation (33) in equation
(2) results in

do v

Ar~2

— 34
dr r u (34)

where p is the shear modulus of a thin elastic
layer.

The general solution of equation (34) is given
by

v=Br— i (35)
2ur
where B is an integration constant. Noting that
the solution for a thin layer has to be bounded as
r—oo,B=0.

Consider a rigid cylindrical foundation of
radius a which is subjected to rotation ¢,, about
z-axis. The displacement in the @-direction along
the mantle (r = a) is given by

—A
©O)-0=Poa=5— (36)
ua

The substitution of equation (36) in equation (35)
yields the following expression for circumferential
displacement of a thin layer

v=goa’r ! (37)
The stress component a4 is given by
0,0 = —2udoa’r™? (38)

The torque T, required to rotate a system of
thin elastic layers of total height H, by an angle
¢, along the shaft of a cylindrical cavity of radius
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(a)

a is given by
i
T,= '[ 2na*[o,),-, dz (39)
(H—H1)

where H = H/a and H, = H,/a.

The origin of z-co-ordinate in equation (39) is
as shown in Fig. 6(a). The substitution of equa-
tion (38) and u(z) = pe(l + m,z) in equation (39)
results in

T, = dna*p, do[H, + 0-5m, H,(2H — H,)] (40)

The torque T, corresponding to a rotation ¢,
of a rigid circular plate of radius a bonded to the
surface of a linearly non-homogeneous half-space
with surface shear modulus p(H) [=pHl +

m,H,)] can be expressed as
16a® _
f==ttole ym iy @)

where 1 is a correction factor to account for non-
homogeneous nature of the soil half-space which
is determined from the analysis of a rigid plate.

The total torque T, required to produce rota-
tion ¢, of the embedded cylindrical foundation
shown in Fig. 6(a) can be expressed as

L=T+T

16pya® _
= o0 (11 4 my 1,

+ 0-75zH [1 + 0-5m,(2H — H,)]} (42)

The preceding analysis can be extended to
evaluate the torque T, required to rotate the
cylindrical foundation shown in Fig. 6(b) without
any fundamental difficulty. The solution for T,

corresponding to the foundation shown in Fig.

w(z)=pol1-myz)

uiz)=pol1+maz)

(b)
Fig. 6. Geometry of interaction system considered in derivation of approximate solution

6(b) can be expressed as

16p,ad _
T,= =252 (1 + my )
+ 0-75~[H (1 + 0-5m, H,)
+ Hy(1 + 0:5m,H,)]} (43)

where H, = H, — H,.

NUMERICAL RESULTS AND DISCUSSION

A computer code based on the solution pro-
cedure described in preceding sections has been
developed to investigate numerically the torsional
response of rigid foundations embedded in
weathered non-homogeneous elastic soils. The
Green’s functions required in the analysis are
evaluated by wusing numerical quadrature
methods. For the purpose of convenient presen-
tation, the following non-dimensional quantities
are defined

depth of weathered crust (i) = h/a  (44)
depth of embedment of foundation (H) = H/a

(45)

height of foundation (H,) = H,/a  (46)

torsional stiffness (T,) = 3Ty/16fap, (47)

where [ is a reference shear modulus.

In the ensuing sections the dependence of tor-
sional stiffness T, on non-dimensional parameters
h, H, H, and gradients m, and m, of shear
modulus profile are investigated.

Rigid circular foundation (Fig. 2(a))
Figure 7(a) shows the variation of T, of a rigid
circular foundation embedded in an isotropic
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non-homogeneous elastic soil medium in the
absence of weathered crust (A = 0). In this case
the gradient of the shear moduli profile m, (Fig.
1) can be considered as a total measure of the
degree of non-homogeneity of the soil medium.
The reference shear modulus /i used in equation
(47) is taken as equal to p(H). Solutions for T, are
presented in Fig. 7(a) for 0 < H <20 and for
0-0 < m, < 2:0. The behaviour of the solution is
interesting and indicates that T, is independent of
both H and m, for H>20. It is important to
realize that the behaviour of T, observed in Fig.
7(a) is a consequence of the use of j = u(H) in
equation (47). If fi = 1(0) is used in equatlon 47
Ty monotomcally increases with increasing H and
m,. It is also noted from Fig. 7(a) that T; for a
deeply buried (H > 2-0) rigid circular foundation
in a non-homogeneous soil is identical to that of
a foundation deeply buried in an isotropic homo-
geneous soil with shear modulus equal to u(H).

The Figs 7(b}~(d) show the variation of tor-
sional stiffness of a rigid circular foundation
embedded in a non-homogeneous elastic soil
medium with a weathered crust (h # 0). The
dependence of T, on m, and depth of embedment
H is investigated by considering three different
depths of weathered crust represented by h =05,
1-0 and 2:0. The gradient of the shear moduli
profile of the underlying non-homogeneous soil
half-space m, is taken as equal to 1-0. The loca-
tion of the embedded foundation is represented
by the depth ratio A/h with H/h =0-0 and 10
representing a foundation located at the top and
bottom level of the weathered crust respectively.
The reference shear modulus z used in the equa-
tion (47) is taken as equal to u, where p, is the
shear modulus at the bottom level of the
weathered crust (Flg 1).

As expected, T, increases gradually with m, for
a foundation located at a given depth. It is noted

A A=00 v =050
0 =0125 + =10
X =0250 o =20
e 20— =
Ly 3

+Hih =00 o =075
v =025 A =100
X =050

00 1-0
mgy
(a)
30—
=
20
- +
1.0 1 | | |
0-0 10 20 0-0 10 20
my 1y

(e)

(d)

Fig. 7. Normalized torsional stiffness T, of rigid circular foundation: (a) ki = 0; (b) k = 0-50,
—lll(c)ll-lllm,—lﬂ (ll)k 20, m, =10



TORSION OF FOUNDATIONS 493

that the rate of increase of T, with m, decreases
with increasing H/h. This is due to the fact that as
depth of embedment H increases the influence
due to the presence of weathered crust gradually
diminishes. It is also found that if (H-h) > 1, T, is
nearly independent of m,. Solutions presented by
Figs 7(a){d) also indicate that for shallow depths
of weathered crust (h = 00-0-50) T, increases
gradually with depth of embedment, reflecting
that the increase in stiffness due to embedment is
dominant over the reduction in stiffness due to
weathering of the soil. However, for foundations
located near the bottom of a deep weathered
crust (h > 1-0) the reduction of stiffness due to
weathering is dominant over the increase in
stiffness due to embedment as indicated in Fig.
7(d). In general solutions for T; presented in Fig.
7 show that parameters H, h, m, and m, have a
significant influence on the torsional response of a
rigid circular foundation.

Cylindrical foundations in.non-homogeneous soil
Figure 8 shows the variation of torsional
stiffness T, of a rigid cylindrical foundation
embedded in a non-homogeneous elastic soil
medium without a weathered crust (h = 0). The
depth of excavation H (Fig. 2(b)) is assumed to be
equal to the height of the foundation H,. The ref-
erence shear modulus j used in equation (47) is

00 10 20
Mz
Fig. 8. Normalized_torsional stiffness T of rigid cylin-
drical foundations (h = 0-0°, H = H,)

Table 1. Ratio of T, and T, for rigid cylindrical foun-
dation embedded in non-homogeneous elastic soil

m; LT,
B=R= | B=H,= | A=8B,=

0-25 20 40
00 0-87 0-93 0-96
04 0-85 092 0-95
0-8 0-85 092 0-95
12 0-84 0-92 0-95
1-6 0-84 0-92 0-95
2:0 0-83 092 0-95

taken equal to u(0) = p,. The solutions presented
in Fig. 8 corresponds to foundations with non-
dimensional height H, varying from 025 to 20
and 0 <m, < 2:0. With increasing H, the tor-
sional stiffness shows significant dependence on
the gradient m, of the shear modulus profile. For
H, =025, torsional stiffness is increased by
nearly 1-7 times when m, is changed from 0-0 to
2:0. However, T, increases by nearly 3-5 times for
an identical increase of m, for a foundation with
H, =20.

Comparison of approximate and boundary
integral solutions

Table 1 presents the ratio T,/T,, of a rigid cylin-
drical foundation as shown in Fig. 6(a). T, is the
torque obtained from the boundary integral
equation solution scheme and T, is the approx-
imate torque given by equation (42). The case to
T,/T, = 1-0 corresponds to a perfect agreement in
the two solutions. These results (Table 1) indicate
that equation (42) represents a good engineering
approximation for torsional stiffness of a rigid
cylindrical foundation. Note that by virtue of the
assumptions employed in the derivation of equa-
tion (42), the ratio T,/T, < 1:0. The accuracy of
the approximate solution is found to increase
with increasing height of the foundation and
decreases slightly with increasing gradient of the
shear modulus profile. Additional numerical solu-
tions corresponding to foundations where H #
H, also indicate a behaviour similar to that
observed in Table 1. In addition the equation (42)
implies that torsional stiffness of cylindrical foun-
dations varies linearly with gradient m, and
depth H and quadratically with foundation
height H,. For rigid cylindrical foundations with
H, > 2-0 the error associated with equation (42)
is found to be less than 10%.

Table 2 presents the values of ratio T,/T, of a
rigid cylindrical foundation embedded in a non-
homogeneous soil with a weathered crust (Fig.
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Table 2. Ratio of T, and T, for rigid cylindrical foun-
dations embedded in non-homogeneous elastic soil with a
weathered crust (m, = 1'0, h = 2:0)

m, T,/T,

A, =15H,=10 | H =20H,=10

00 093 0-96
05 0-93 0-95
1-0 0-92 0-95
2:0 091 0-94

6(b)). It is evident from these solutions that equa-
tion (43) provides a close engineering approx-
imation for torsional stiffness of cylindrical
foundation embedded in a non-homogeneous
elastic soil with a weathered crust. The equation
(43) also indicates that the torsional stiffness
varies linearly with m, and m, and quadratically
with depths H, and H,. Both equations (42) and
(43) have a tremendous computational advantage
over solutions based on the boundary integral
equation method. This together with solutions
presented in Tables 1 and 2 confirms that closed
form solutions given by equations (42) and (43)
could serve as a very good approximation for the
torsional stiffness of rigid cylindrical foundations
embedded in a non-homogeneous soil with a
weathered crust.

CONCLUSIONS

The torsional response of rigid axisymmetric
foundations embedded in non-homogeneous
elastic soil with a weathered crust is examined
rigorously. Based on the numerical study the fol-
lowing conclusions are drawn.

The torsional stiffness of rigid circular founda-
tions increases with increasing gradients of shear
modulus profile. The rate of increase in stiffness
with gradients m, and m, is influenced by both
the depth of embedment A and depth of
weathered crust h. If (H-h) > 1-0 then stiffness is
governed only by m,. For foundations embedded
within a shallow weathered crust (h < 0-5) the
increase in stiffness due to embedment is domin-
ant over reduction in stiffness due to weathering
and this leads to a gradual increase of stiffness
with depth. For deep weathered crusts (h > 1:0)
an increase in stiffness is observed with embed-
ment depth initially indicating the stiffening effect
due to the embedment and followed by a decrease
in stiffness due to the influence of weathering.

Rigorous solutions for torsional stiffness of
cylindrical foundations indicate that the height of
the foundation H, has a significant influence on
the torsional stiffness. The influence of the degree

of non-homogeneity of soil (m, and m,) on the
torsional stiffness is found to increase with
increasing height of the foundation. It is found
that a closed form solution based on a simplified
representation of the stress field in the surround-
ing soil can be derived to estimate the torsional
stiffness of rigid cylindrical foundations embed-
ded in a weathered non-homogeneous soil. The
approximate closed form solution yields solutions
that are within 10% of rigorous solutions for
foundations with height-radius ratio H greater
than 2:0. For short foundations (A, < 2-0) the
error varies between 10-20%. The closed form
solution indicates that torsional stiffness varies
linearly with gradients of shear modulus profile
and depth of weathered crust and quadratically
with the height of the foundation.
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APPENDIX 1
The explicit solutions for the five arbitrary functions
appearing equations (7)-(9) are given by

{A4; 4, B, B,) ="’Ba<ﬂl ﬁz ﬁj B (48)

where

_ 8119ty (=) + %04(2)1[e0,(0) + 21,(0)]
} WL [24(2)][004(2) + 244,(2)]1D

D = y4(0)[oty (= h) — 2t 1(0)] — 7, (0)[ex; 1 (—h) + 5, (0)]

(49)

(50)
By =y, (—hB, (51)
0)aty 4(0) + 7,(0)etg, (O
= [yof E:‘JIEO; . 11{1(1})] 01 (52)
By= {6(0)[21,(0) + %,(2) + 71(0)][et54(0) — 2104(2')1}

Loty s(—h) + etg4(2)][04(0) + 24,(0)]
(53)
Ba = [70(0) — 7:(0)]/[%,(0) + ,,0)] (54
wy(2) = Ki[A4,@)/1[A4E)] i=0,1 (55)

and

%42 = K[y, ()] i=0,1 (56)

For the case where the ring load is applied within the
underlying non-homogeneous half-space (0 = z' < o0),
the domains of definition of equation (7}+9) are
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changed to (—h<z<0),(0<z<Z)and (Z <z< )
respectively. The explicit solution for arbitrary functions
are given by

Ay = Byoy,(—h) (57)

5J 1(E8)arg5(2)[76(0) + 7,(0)]
+ B,[76(0) + 7,(0)][e02(2") + 245(2)]
B, = 58
W, )] %100) 8

+ oy (0)][ega(2") + o45(2)]
Ay = sJ,(E8)g5(2)/[202(2') + &115(2)] (59)

3-’1(53)“02(2'}{?0(0)[“1 1(0) — oy (—h)]
B, = — 710)[ey,(—h) + %1(0]']'} (60)
MM [Ax(2)][et0a(2") + 245(2)]5
D = &ty,(—h)[16(0) + 7,(0)] — 75(0)[ex; 4(0) — 24, (0)]
(61)

—B. + SJltc-")
P W)L [A()][%0(2) + 45(2)])

where

B

(62)

¥al2) = 1,[A,(@))/1[41(2)] n=0,1 (63)

and a; and 7, are defined by equations (55) and (56)
respectively.

The equations (7)10), together with equations (48)-
(63) yield explicit solutions for displacement at any
point within the weathered non-homogeneous soil due
to a circumferential ring load (Fig. 3). Solutions for
stress components are obtained by using equation (2).
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