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Abstract— The present paper examines the problem of the axial loading of a penny-shaped inclusion
which is embedded in partial bonded contact with an isotropic elastic solid of infinite extent. The
debonded regions correspond to circular areas which are symmetrically and centrally located on
the plane faces of the inclusion. The mathematical analysis of the problem focusses on the evaluation
of the axial stiffness of the partially debonded inclusion. The mixed boundary value problem
associated with the inclusion problem can be reduced to the solution of u single Fredholm integral
equation of the second-kind. A numerical solution of this integral equation is used to generate the
stiffness estimates for the axtally loaded inclusion.

[, INTRODUCTION

The class of problems which deal with the stress analysis of elastic bodies reinforced with
inclusions which are cither nigid or ¢lastic, is of importance to the study of muiltiphase
composite materials. Detatled accounts of studies related to inclusion problems in classical
clasticity arc given by Eshelby (1961), Wilhis (1981), Walpole (1981) and Mura (1981). Flat
dise shaped inclusions are a particular limiting casc of the general class of three-dimenstonal
cllipsoidal and spheroidal inclusions. The reinforcement of an elastic solid by disc-shaped
inclusions enhances ity stiffness and strength charactenistics. A study by Wu (1966),
indicated that disc-shaped inclusions give by fur the most significant increase in the effective
modulus of multiphase composites. Several investigators have therefore examined the disc
inclusion problem related to an elastic medium of infinite extent in order to examine
the influence of effects such as transverse isotropy of the medium, annular and elliptical
configuration of inclusion, flexural behaviour of the inclusion, interaction with nuclet of
strain, intluences of traction-free surfaces, constrained surfaces and bi-material regions.
The purticular geometry of the disc inclusion enables the study of these problems by appeal
to mixed boundary value problems related to a halfspace region. A comprehensive account
of the disc inclusion problem in classical clasticity theory will be presented in a forthcoming
article by Selvadurat (1989).

In the mujority of studies relating to inclusion problems it is assumed that perfect
continuity or a bonded contact exists ut the inclusion-elastic medium interface. Researches
of Ashby (1966), McClintock (1968), Argon er al. (1975) and others suggest that cavitics
can nucleate at the interfaces by tearing of the inclusion away from the ductile matrix or
by cracking of a non-deformable inclusion. The category of problems which relate to
partially bonded three-dimensional inclusions embedded in elastic media appear to have
received only limited attention. Studies of Nlaws located at the boundary of cylindrical elastic
inclusions embedded in clastic media with differing propertics, are given by England (1966).
Other classes of problems in which imperfect contacts are modelled by distributions of
dislocations have been investigated by Bullough and Bilby (1956), Dundurs (1967) and Lin
and Mura (1973). References to further studies are also given by Mura (1981). In the
context of disc inclusion problems, Hunter and Gamblen (1974) and Kceer (1975) have
investigated problems related to disc inclusions in which complete debonding occurs at a
planc face. In this particular paper we examine an axisymmetric problem related to a disc
inclusion in which symmetric debonding exists over a circular region. Such delaminations
can be induced by thickness non-uniformities of the disc inclusion. The debonded inclusion
is louded by a central force which acts in the axial direction. Also it is specifically assumed
that the axial loading of the inclusion does not lead to the re-cstablishment of contact in
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the debonded regions. Alternatively, it may be assumed that the elastic medium is subjected
to a homogencous state of tensile stress normal to the plane of the inclusion. This state of
stress can be assigned in such a way that the axial loading of the inclusion does not lead to
the re-establishment of contact at the debonded region. The analvsis focusses on the
evaluation of the axial load -displucement relationship for the debonded inclusion. [n the
study of multiphase composite material behaviour, the reinforcing inclusions invariably
interict with other defects such as cracks. dislocations, dipoles. centres of dilatation, etc.
to alter the local energy field in the vicinity of the inclusion. This in return affects the
properties of the solid. The soiution developed in this paper for the directly loaded
debonded inclusion can be used in conjunction with Betti's reciprocal theorem to study the
interaction of the inclusion with other nuclei of strain and external forces. A Hankel
transform development of the governing equations is used to formulate the reduced mixed
boundary vilue problem associated with the disc inclusion. The system of integral equations
generated by the mixed boundary conditions is reduced to a single Fredholm integral
equation of the second-kind. This integral equation is solved in a numerical fashion, to
evaluate the load displacement relationship for the debonded disc inclusion.

2. BASIC EQUATIONS

For the analysis of the axisymmetric problem related to the axial loading of the partially
debonded rigid dise inclusion we employ strain potential approach proposed by Love
(1927). In the absence of body forees. the solution of the displacement equations of
cquilibrium can be represented in terms of & bi-harmonic fuaction ®(r, ), e

VViD(r,z) =0 (1)
where
AN B
Vo= oo+ 0+ L, (2)
't roor [

is the axisynmetric form of Laplace’s operator referred to the cylindrical polar coordinate
system. The components of the displacement vector u and the Cauchy stress tensor g referred
to the eylindrical polar coordinate system can be expressed in terms of the derivatives of
. We have

o
2Gu, = —~ Ao (3)
. i (‘,3(‘)
2Gu, = 2l =)V — 4

('z"

where G and v are the lincar clastic shear modulus and Poisson’s ratio, respectively.
Similarly, the components of the stress tensor are given

B X o

5, = . {vV-— _ 2] (5)
'z [Seg
’ , e

Ty = 4 \'V- - - (I) (6)
oz rcr

S
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Fig. 1. Geometry of the debonded penny-shaped rigid inclusion embedded in an elastic infinite
space.
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3 THE PARTIALLY DEBONDED INCLUSION PROBILEM

We examine the problem of a penny-shaped rigid inclusion of radius b which is
cmbedded in bonded contact over the region a € r < b where ¢ is the radius of the sym-
metrically placed debonded regions (Fig. 1). The inclusion is displaced by an amount A in
the z-direction. The force required to initiate this displacement is denoted by £. When the
debonded regions remain so during the application of £, it can be shown (see Appendix A)
that the particular mode of deformation induces a state of asymmetry about the plane
= = 0. As a consequence, we can restrict the analysis to the examination of a single halfspace
region occupying = = 0. The relevant mixed boundary conditions associated with the
inclusion problem uare as follows.

u(r.0)=A; a<g<r<hbh V)
1w, (r,0) =0, a<r<w (10)
c..(r.0)=0; O0<r<a (I
g..(r.0)=0;. b<r<w (12)
c,.r,0)=0; 0<r<ua. (13)

For the integral equation formulation of the mixed boundary value problem posed by (9)-
(13) we seck solutions of (1) which can be obtained by a Hankel transform development
of the basic differential equation (1). Furthermore the displacements and stress ficlds
derived from @(r. 2) should satisfy the regularity conditions u — 0(1/R) and ¢ — O(1/R*) as
R(=[rF+:"%) - =».

Following Sneddon (1977). it can be shown that the relevant solution is given by
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O(r.z) = A +:B(D) e 7 Sy di (14

where J,(Zr) is the zeroth-order Bessel function of the ftirst hand. A(2) and B(3) are the
arbitrary functions which are to be determined by satisfying the mixed boundary conditions
(N-(13). Employing the integral representation for ®(r. 2) given by (14) in the expressions
for u and ¢ it can be shown that the mixed boundary conditions (9)-(13) can be reduced
to the following system of integral equations.

Hy[EEAD+200-20B(H)} . r] = =2GA: a<r<h (15)
H S -+ B ir] =0, u<r< 7 (16)
Hy[B A +(1=20BE) ir)=0: 0<r<u (17
H S EAO+ =208 ir] =0 b<r<x (18)
HFEAD =B :r] =00 O0<r<ua (19)

where #H,[g(3) 1 r]. (n = 0. 1) is the Hankel transform ot order n which is defined by

IAVINEG =J (I, (Er) ds (20)

[}

where J,(Er) is the nth order Bessel function of the first kind. To further reduce the system
of integral equations (15) -(19) we make the assumption that as ¢ — 0 we should recover,
from the solution developed, the appropriate result for the problem of the axial loading of
the completely bonded rigid dise inclusion. We introduce functions AM() and N(S) such
that

!
AG = 5 _ e = (1=20ME+ N 21

B = SAME)+ NG (22)

21 =) S

Using these substitutions, the system of integral equations (15)-(19) can be reduced to the
forms

H“[z '{N(su . M(;)}: r] = asrsr ey
HE "M@E):rl =0, a<r<= (24)

HoN©Eirl =0 0<r<u (235)

HyNE@E):rl=0: b<r< =« 26)
HU=2mNE) -ME.r)=0. O0<r<ua (27)

Introduce an auxiliary function ¢(¢) such that
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M) = : o) cos (I de. (28)
J
Substituting (28) into {24) we note that
‘[: o1y dr = 0. (29
Integrating (27) it can be shown that
HS ' =2NO)-M(D}:rl=C0 O0<r<ua (30)

where C is a constant. By using the substitution (28), the equation (30) can be reduced to
an integral equation of the Abel type:

T i v
j [}‘f’('if}»f—i - —C+ —Zv)f NN 4 D <r<a. 31)
il - i

The sotution of (31} can be written as

B

B A N A . .
P = rr( -+ x MO cos EnNdé;, <t <a (32)
0

The value of the constant ¢y can be determined by making usc of (32) and the consistency
condition (29 ; consequently, the complete expression for (32) tukes the form

k) 4 9 z
b1y =~ (I sz)U N(E) {cus @&n-"" ‘f'*)} dj]; 0<1<a (33)
n i Ng

We now examine the system of triple integral cquations defined by (23), (25) and (26).
Introduce an auxiliary function g(r) such that:

f NN A =gl u<r<b (34
1
Using the properties of Hankel transforms we can obtain an integral expression for N(&)

as o result, (23) can be expressed in the form

*h

(=20 4GA(I—v) .
Jt, ug(y Ll r) du+ (3_4")-‘“ M(OJ i déE= — Gedy) agsr<h (39
where the operator L(u, r} is delined by
i 2 it r) d.‘.
r) = o(E W& .~ g e 36
L(u.r) \ Jo(S) Sy (Er) A& 2l [ S5 =ah)) (36)

and min (1. r) denotes the minimum values of « and r. The first integral in (35) can be
written as:

SAS I5:7-F
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f.] o {u, r} r 4 f:4 r
Lo e [ e[ ors [ u]
4 n u 1 r n
r 3 u L]
=j dsf du+J dsj du. 37
a ¥ B ]

Using the properties of these integrals and observing that

Y ¢(u) du

D P %)

j M(EYJ,(Gr) dS =
[
we obtain, from (35), the following

J" ds * ug(u) du J' J"’ ug(u) du
" [r:_s:]l:’Z ] [ul__sZ]l/Z'“ [’. —yt ]I [ S]‘

2nGA(I—v)  m (1=2v) {" ¢(u) du
TG4y 2034 ) IF-gv

£rgbd (39
Introduce the substitution

b
j {;‘;’f“i ‘;f‘ =T(): a<s<h (40)

Note that (40) is an integral equation of the Abel type, the solution of which takes the form

d [* sT(\) ds
" nu du L 5 = ]'

g(u) = agu<gh. 4n

Introducing (40) into (39) we obtain a second Abcl-type integral equation for T(s); its
solution gives the following (see also the results given by Cooke, 1963) :

o AGAU-Ws 45 J (T K(s.1) dr
)= - Gods —a 7 s =] [P =a]'?
_ (1=2ws [4° -u] *d(u) du .
T (B-dv)[si—d’ ]"'J\ BT N asesh @
where
B u (a3 _}.3) d}'
K(S‘ l) = J:) [(_S': -}'2)(!:_}'2)] . (43)

Making use of (33), the expression for N(&) derived from (34), and (41), we obtain the
following integral equation for ¢(u).

—(l—~2v)s J‘ (a®— (u) du

BNt @
(3 ~4v)[s*—a’] P L a‘ (. 07(0)de (44)

T =

where
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Lo ,)_(1—2\-)3 ' (~ 1) o
SRRk [ N L Ve SrE I

Y (PR ) A o gy
‘ </’[P3—a:1” 2 = =T ey S

Introducing the transformations

IGAN —v)
S =— —-— - 5. "6
) (3—4v) T (36)

the integral equations (44) and (435) can be reduced to a single integral equation for T*(s)

§ 4A\' h l\(‘ ”
TH*$) = - .+ yoc—=ys | (T* L*(s.0)— =<5 | dt: <5< h
%) [.\"—u']"+n‘[.\"—-u~]'-J; ([)[ (s.) (F—al a <y
(47)
Also, using the substitutions
s=asec O f=asecm: (sed Q)Y see ) = HO), (48)

eqn (47) can be written in the form

*we M
H)sin @ cos™ O =1 + :J H(eN[ (O, m) - I:((-).m)l des: 020 <see '(ha)

T Jo
(+9)
where
. I . .
KO, w) = . v fsint e see @ dn {tan (002)) —sint © see © In Htan (©,2))]
(sec” © —see )
(50)
- (I =2v)%¢* tan @ ! n: . n
L(O.w) = 1 —sin ®)— _
(©.0) (3—4v) atan o 4u( sin ©) 207 tan O see O

(o (@S = w2 da [ | Ry dp ) R
+ T el * 12 T :,::] 2 el INE LY
o (- —a”see Q) ), plp —u’) (p-—u} f(u seCcTmw—p)t T

It may be noted that when © — w, K(©, m) can be evaluated by applying L Hospital's rule.

The integral equation (49) is o Fredholm integral equation of the second-kind for the

function H(©®). The integral cquation (49) can be solved in a numerical fashion to denve

results of engineering interest. [n the present paper we shall focus attention on the evaluation

of the axial load -displacement relationship for the partially bonded disce inclusion.
Considering (25), we note that

[ I i ‘l
0..(r.0) = j N JuEn di = . {'J N (&) di}: a<r<bh (52)
o rdr 0

Using (34) and (41}, the above result can be reduced to the form
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o..(r.0) = — a<r<bk (

N
(%)
—

2 d "N sTiv) do
[

nr dl“v ,\‘:-r:]‘ -

Considering the axial contact stresses at the bonded surfaces of the inclusion it is evident
that 0..(r.0) = —0o..(r.0 ) where the negative superseript refers to the contact stresses at
the surface of the inclusion-elastic medium interface in contact with the halfspace region
= £ 0. Considering the equilibrium of the inctusion we obtain:

M~

2n (A
P = ~J J [6.r. 0 )~a..(r.0 }]rdrdO. (54)

Using the results of (46). (48) and (53). (54) can be reduced to the form

R2GA ~v)a ' S
= aean H(©®) dO. (55)

4. NUMERICAL SOLUTION OF THE INTEGRAL FQUATION

In the ensuing we shall present a brief summary of the numerical procedures that are
used to solve the Fredholm integral equation of the second-kind derived previously. More
complete accounts of the various procedures that can be employved in the solution of this
category of integral equation are summarized by Atkinson (1976) and Baker (1977). The
Fredholm integral equation (49) can be written in the form

~

S - -
11(O) sin O cos’ O ~ J HO, ) =K@, do=1: 0O < (56)
o

]

where &= cos (a/b) ; the function KO, m) is delined by (50). the function L(®. ) can
be written in the modified form

- (1=2v)n* ) . n cos” O
L(O,w) = G-dv) | 4 (I —=sin Q)(1 —sin ) 2 sin ©
n tan® cos’ O cost o] tan o
5 C . - . [, (sec O, see 57
2ua (sec m—seet ) { sin © sin f (see @, sec m)] 7

and the integral function 7,(x, ff) ts given by

Lo(x. ff) = jl , “\—;:.]l : T
’ o (CT=xNBT =0

5
2

[ v.‘]ll
2 +[ﬁ!_|]|1

1
. dg. (58)
2 w241
l/; s ]
In the numerical procedure adopted here, we employ a Gaussian quadrature scheme to
solve the integral equation (56). Considering .V Gaussian points. (56) can be reduced to a
matrix equation of the form

K, H(O) =1 (59)
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Fig, 2. The stitfness ol debonded penny-shaped inclusion.

¢
9, =,(+9)
47 o Ce
= L [U9,.0)-K0O,.0)]|., 1 i#)
K,=4 7 - (60)
: 4 N
sin O, cos” O, — n:j'((-),)}_, L=

where g, and 4, ure, respectively, the points and weights of the quadrature scheme and f(©)
is obtained tfrom the result “I.I [L(O,m) - K(O.w)]; i.e.

£(©) = (1=2v)° {n3 7 cos' @ tan ©

G—dv) | 4 (1 —sin @) — 10 sin © + o I,(sec O, sec u))}. 61)

Upon solution of the matrix cquation (59), the relevant load-displacement relationship
(55) can be evaluated in the discretized form

P 32—y f{a & . 7
GAb ~— (3~4v) {2,, ) ”(Q)A,}. (62)

1=

S. NUMERICAL RESULTS AND CONCLUSIONS

The numerical technique outlined in the previous section is used to evaluate the axial
load-displacement relationship tor the partially debonded penny-shaped rigid inclusion
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embedded in an elastic infinite space. Figure 2 illustrates the manner in which the axial
stitfness of the embedded inclusion is intluenced by the extent ot the debonded region and
Poisson™s ratio of the elasue medium. A total of 24 Gauss points were used in the numerical
evaluation. An increase of the number of points from 24 to 64 did not result in any
appreciable improvements ot these numerical results. The numerical results also converge
to the exact closed form result (see c.g. Selvadurai, 1976) as (@ h) =0 i.c. P GAh =
32(1 —v) (3 =3y, The numerical results also indicate that appreciable chinges in the axial
stiffness of the deboanded penny-shaped inclusion oceur only for values of (¢ h) > 0.4,

The puper outlines the mathematical analysis of the axial leading of a penny-shaped
rigid inclusion which is embedded in partial bonded contact with an isotropic elastic infinite
space. Since the debonding is assumed to be symmetric, the infinite space problem can be
etfective reduced to a mixed boundary value problem assoctated with a halfspace region.
The analysis can also be extended to situations in which debonding occurs in a non-
symmetric fashion. Such an analysis however requires the consideration of two sets of
mixed boundary value problems for the halfspace regions - > 0 and = < 0. For this case
the symmetry constraints on w, and o.. in the region - > 0: re(h, ) are replaced by
continuity conditions for u, . w., o and o,

It s important to note that the state of stress at the boundary of the rigid inclusion
and at the boundary of the debonded region are singular. In particular itis known (Atkinson,
1979) that the stress singulanty at the boundary of such debonded regions is oscillatory.
Consequently, i situations where the exact stress distributions or the stress intensity factors
it the inner debonded boundary are required it is necessary to perform the analysis by
appeal to a formulation based on the Hilbert problem where the exact nature of the
oscillitory singularity s invoked. On the other hand. if the results of primary interest
focus on the evaluation of global estimates such as load displacement responses for the
inclusion then the integral transtorm based scheme, which is adopted in the present paper,
yields accurate results. The justilication for this simplification can be provided by examining
the axisymmetric problem ol the adhesively bonded punch on a halfspace region. 1t can be
shown that the stitfness ot the punch derived via the integral transtform-based approach
can be evaluated to within 0.6" 4 of the exact solution for the extrente cases when v = ().
When the material is incompressible both approaches vield the same result. The methodology
presented in this paper, therelore, provides a usetul procedure for the determination of the
stiffness characteristics of partially bonded rigid inclusions which are embedded in elastic
medii.
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APPENDIX A

Counsider the full space with region (1) corresponding to = 2 0 and region (2) corresponding to z € 0. The
appropriate integral expressions of Love's strain potential for regions (1) and (2) take the forms

o = J S + B(S)z] €% Jo(Sr) S (AD
{H]

@, = j SICEE) + D()z] € Jy(&r) d. (A2)

Considering the full space region, the mixed boundary conditions at = = 0, posed by the disbonded inclusion
problem take the following forms.

" =A;, agr<bh (A3)
W =A; asr<h (Ad)
W =0; ag<rsbh (AS)
u? =0, asr<b (A6)
o’ =0"=0; 0O<r<ua (A7)
d'=02=0; 0<r<u (A8)
U= bgr<w (A9)
W =u?; bgr<w (A10)
el =a?, b<r<w (All)
ol =g, b<r<oo. (A12)
For the region (1) (z > 0) we have
2GuM(r,0) = -J‘ SEA) +2(1 ~2v) B(E)Jo(Er) A (Al3)
it
2Gul"(r,0) = I S=§AR) + BN (&N d¢ (Al4)
0
ai'(r.0) = J EEAE+ (1 =2v) B(E)] Jo(ér) d (AlS5)
0
a.(r.0) = J EEA(E) —2vB(EN I (Er) dE. (A16)
0

Similarly for the region (2) (z < 0) we have
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26 = ‘ HICIH =200 =2 Ol ir 42 (AT
"
26U 0) = ) ADUEy = ZCN 3 (AL
o) = ’ L =200 — SOOI de (A1)
A = ’ FLCCE =20 DEA i) dE (A2
For the present let us assume that «t'' = w0” for 7= (0. £). Then from (A13) and (A 17) we have
AH = — Oy B = Doy (A2D)
Using (A2D and (A1H-(A20) we have
0y = e A2
e 0) = w0 (A2}
alltr ) = g Ny (A
sy s 0. (A23)

Using (A22) (A25), the boundary conditions (A3} {(A12) can be reduced to the forms

W0y N w T h (A26)
N0y - 0 g S (A27)
alltr ) 0. Dar<ua {A28)
ety 0 0<r<a (A
allir 0y -, h<r< g, (A3

These are exactly the same as the boundiry conditions given in eyns {93 (123 of the paper. In obtaining {A20)
(A30) we have assumed that #'ir, 0) = ' (e, 0) Tor r=0, £). From (A3), (A and (ATU) we note that
w0y = 0) tor both reta, A) and re (b, 2 ). Consequently, the assertion is accurate provided

W 0y = uf:’{r,(n O r <

Consider the displacement A of the inclusion as shown in Fig. Ala), Let the surfiwes of the dishonded region
re (0, a) exhibit displiwements @4 and 77 at the respective regions. When the inclusion is displaced as shown in
Fig. Alth) the associated surfuce displacements at the debonded regions are — @ " and — 27, Figure Alc) is
obtained by a rigid body rotation of Fig. Alth), about the v-axis and it may be noted that since the halfspace
regtons (1) and (2) are sdentical the designations could be interchanged. Consequently 0" = o7 for ro {0, ).

Thus the reduced boundary vilue problem pertaining to o halfspace region as detined by the mined boundury
conditions (9) (12) in the paper is the complete representation of the full spuce problem.



Axial loading of a rigid disc inclusion with a debonded region

(a) X
(b) X
(c) X

Iig. Al. Reduction ol the boundary conditions applicable to the debonded incluston problem.
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