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Abstract-The present paper enamines the problem of the axial loading ofa penny-shaped inclusion 
which is embcddcd in partial bonded contact with an isotropic elastic solid of infinite extent. The 
debonded rqons correspond to circular areas which are symmetrically and centrally located on 
the plane faces of the mclusion. The mathematical analysis of the problem focusses on the evaluation 
of the and stityness of the partially dehonded incluswn. The mixed boundary value problem 
;woclc~tcd wth the inclusion problem can be reduced to the solution of ;I single Fredholm integml 
equation of the wcond-kind. A numerical snlutwn of this integral equation is used to gencratc the 
wfTncw e\tlmatcs for the alc~ally loaded incluswn. 

I. INTRODCJCTION 

IItc class of prohlcms which deal with the stress analysis of elastic bodies rcinforccd with 

inclusions which arc tither rigid or elastic. is of importance to the study of muiltiphasc 

composite niatcri:iIs. Dctailcd accounts of studies rclatcd to inclusion prohlcms in classic;~l 

elasticity arc given by fishclhy (1961). Willis (1981). Walpolc (I9YI) and Mura (IOXI). I;lat 

disc shaped inclusions arc ;I p;lrticular limiting C;ISC of the gcncral class of thr~c-diril~nsion;ll 

ellipsoidal and sphcroitl;ll inclusions. The rcinforccmcnt of a11 elastic solid by disc-shapccl 

inclusions ctihanccs ils slill’ncss and strength char:iclcrislics. A study by Wu ( IOOh). 
intlkitcd th;il disc-shapctl inclusions give by far the ~iiost signilioant incrcasc in the clTcclivc 

~notlulus of’ multiph;isc composilcs. ScvcraI invcstigalors have thcrcforc cxamincd the disc 

inclusion problem rclatcrl to a11 elastic medium of inlinitc cxtcnt in o&r to cxaminc 

the inllucncc of cllkcts such as transvcrsc isotropy of the mcilium, annular ;iritl elliptical 

conliguration of inclusion, Ilcxural bchaviour of the inclusion, interaction with nuclei 01 

strain. inllucnccs of traction-free surfaces, constraincrl surfaces and bi-material regions. 

The p;lrticular gcomctry of the disc inclusion cnablcs the study of thcsc problems by appeal 

to mix4 boundary value problems rclatcd to ;I halfspace region. A comprchcnsivc account 

of the disc inclusion problem in classicnl ckticity theory will bc prcscntcd in ;I forthcoming 

article by Sclvaclurai ( IWU). 
In the m;ljority of studies relating to inclusion problems it is assumed that pcrfcct 

continuity or ;I bondctl contact exists at the inclusion-elastic medium interface. Rcscarchcs 

of Ashby (1966). McClintock (1968). Argon L’I nl. (1975) and others suggest that cavities 

can nuclcatc at the intcrfaccs by tearing of the inclusion away from the ductile matrix or 

by cracking of ;I non-dcformablc inclusion. The category of problems which rclatc to 

partially bonded three-dimensional inclusions cmbcddcd in elastic media appear to have 

rcccivcd only limitccl attention. Studies of tlaws located at the boundary ofcylindrical elastic 

inclusions cmbcddcd in cktic media with dilrcring propcrtics. arc given by England (1966). 

Other classes of problems in which impcrfcct contacts arc modcllcd by distributions 01 

dislocations have been invcstigatcd by Rullough and Bilby (I 956). Dundurs (1967) and Lin 

and Mum (1973). Rcfcrcnccs to further studies arc also given by Mura (19YI). In the 

context of disc inclusion probkms. Hunter and Gamblcn (1974) and Kccr (1975) have 

invcstigatcd problems rclatcd to disc inclusions in which complete dcbonding occurs at a 

plant fucc. In this particular paper WC cxaminc an axisymmctric problem rclatcd to a disc 

inclusion in which symmetric dcbonding exists over a circular region. Such dclaminations 

can bc induced by thickness non-uniformities of the disc inclusion. The debondcd inclusion 

is loaded by a central force which acts in the axial direction. Also it is specifically assumed 

that the axial loading of the inclusion does not lead to the re-establishment of contact in 
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the d~bondcd rtqons. .Alternari\rl~. it ma> be assumed that the el;~st~c mcdlum i\ zubjtlctcd 

to ;I hamogcncous st;ltt’ of tensile btress normal to the plane of the Inclusion. Thi; state ot 

‘rtrcw ian be assigned in such ;I \\a~ that the aria1 loading of the inclusion does not lead to 

the re-etablishment of contact at the dchondcd region. The analysis ~LUISSCS on the 

evaluation of the a?tial lwd-displacement relationship for the debonded inclusion. In the 

study of multiphaw composite material behaviour. the reinforcin= 0 inclusions in\uriabl> 

intc.ract uith other dc’fxts such LIZ cracks. dislocations. dipoles. centres of dilatation. etc. 

to alter tht’ local energy field in the vicinity of the inclusion. This in return ;ItTt’cts the 

propcrtie of the solid. The solution developed in this paper for the dircctty loaded 

dcb~~ndcd inclusion can be used in conjunction with Betti’s reciprocal theorem to study the 

interaction of the inclusion with other nuclei of strain and external forces. .A Hankel 

transform dewl~~pmcnt uf the = w~erning equations is used to formulate the reduced mi,\ued 

bound;lry value problem ;wwiated \rith the disc inclusion. The system ofintegral equations 

gcncrxtcd by the mixed boundary conditions is &duced to a single Fredholm integral 

quatinn of the second-kind. This integral equation is solved in a numerical fashion. to 

cvaluatc the load displaccmcnt relationship for the debonded disc inclusion. 

2. fl:\SI(‘ f:Qr r/\-rloUS 

r:or thc;lnaly~is ot‘thc auisymmctric problem rcl;ltcd to thcxxial loading ofthe partially 

tlchoiidcd rigid tliw inclusion wc employ ctr;iin potential apprwch proposed by Love 

(1927). In the ;thscrwc ol‘ hotly forces. the solution of the displaccmcnt equations 01 

ci~iiilibrium ~311 hc rcprewitctl in tcrrns ofa hi-harmonic function (l)(r, 2). i.f. 

V.‘V”d)(r, :) = 0 (1) 

i5 tlic ;tui\yriiiiictric forni 01’ I.;~placc’s operator rcfcrrcd Lo the cylindrical polar coordinate 

5ystcni. ‘I‘lic ~~~~iip~~~~c~ils cjt’thc displxcriicnt vector u and the Cauchy stress tcnsvra rcfcrrcd 

to the cylindrical polar cwrclin;itc systcni can bc cxprcsxd in tcrms of the dcriwtivcs of 

(I). IL’c hvc 

(3) 

Ivhcrc (; amI I’ arc t tic Iincar clastic shcar modulus and Poisson’s ratio, rcspcctivcly. 

Similarly. the wnipoiicrtts of the hlrcss tcnwr arc gi\cn 

(5) 
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Wc cx;iminc the prohlcm of ;I penny-sh;lpctt rigid inclusion of r;ldius h which is 

cmhcctdctt in b~mttcd cont;lct over the region (I < r < h whcrc (I is the radius of the sym- 

mc~rically ptacctl tlchontlctl regions (I:ig. I ). The inclusion is tlispl;~ccd by ~111 :lmounI A in 

the I-direction. The force rcctuircd to initiate this dispt:iccmcnt is dcnolcct by i’. When the 

ctchondcct regions remain so during the apptic:llion of /‘, it C;III bc shown (see Appendix A) 

that the particular mode of deformation induces ;L state of asymmclry about the plant 

-_ 2-z 0. As ;I consqucncc. WC c;ln restrict the ;mntysis to Ihc cx:lmination ofa singtc h;~tt’sp~c 

the region occupying z > 0. The rctcvant mixed bounttury conditions ;lssociatcct with 

inclusion pro&m ;lrc ;I?; follows. 

(9) lr,(r,O) = A; (I < r < h 

u,(r,O) = 0 ; 0 < r < 8-h 

a,,(r.O) = 0 ; 0 < r < N (11) 

c,,(r.O) = 0: h < r < '-a (12) 

a,l(r,O)=O; Ocrcu. (13) 

For the intcgrat equation formulation of the mixed boundary v~~tuc probtcm posed by (9)- 

(I 3) WC seek solutions of (I ) which can bc obtained by a Hank4 transform dcvctopmcnt 

of the basic ditfcrcntiat equation (I). Furthcrmorc the displaccmcnts ;lnrt stress fictds 

dcrivcd from (P(r. :) should satisfy the rcgutarity conditions u +O(l/R)anda+O(t/R’) ;ts 
R( = [r’+:‘]’ ‘) -+ z. 

Following Sneddon (1977). it c3n be shown that the rctcvant solution is given by 



where J,,(ir) is the zeroth-order Bessel function of the tirst hand. ‘4~:) and B(5) are the 

arbitrary functions which are to be determined by satisfying the mixed boundary conditions 

(9)-( I?). Employins the integral representation for @(r. Z) given by ( 1-i) in the espressions 

for u and 0 it can be shokvn th;lt the mixed boundary conditions (9)-( I?) can be reduced 

to the following system of inteyal equations. 

H,,[<(<.A(<)+Z(l -2~)fI(<)), r] = -2GA: (I 6 r d h (IS) 

H,[5t-i’.-r(T)+B(.r)):r] =O; u<r< x (16) 

\vhcrc //,,[!I(<) ; rl. (II = (1. I) is the Flankcl transform of order II which is dclincd h> 

whcrc _I,,($) is the rrth order Bcsscl function of tlic lirst kind. To I’urlhcr rcducc the system 

of integral equations (I 5) ( 19) we make the assumption that 2s (I 4 0 we should rccovcr, 

from the solution dcvclopcrl, the apprqktc result for the prohlcm of the axial lo;Iiling ol 

the complctcly honilcil rigid disc inclusion. WC inlroclucc functions I\/(<) and iv(<) such 

111;it 

I ” 
J(i) = z(l _,,)<I I ‘-(I -‘V)n/(,-)+N(<); 

I 
/I(<) = 

7( I -Y)<2 
(M(<)+N(<)). (22) 

Using thcsc substitutions. lhc system of inlcgral equations (I 5). (I9) can be rciluccd 10 tllc 

forms 

l/,,[N(<) ; r] = 0; 0 < r < (I (25) 

H,[iV(<) : r] = 0: h < r < x (36) 

//,[((I -l~)iV(<)--J/(t)); r] = 0; 0 < r < (1. (17) 

Introduce an ausiliary function C/J(/) such that 
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(28) 

Substituting (28) into (24) we note that 

I 

II 
&!) dr = 0. 

1, 

Integrating (27) it cm be shown that 

M,,[<- 1((1-7\~)s(~)-‘\f(~,t;r] = c‘,; 0 <r < (1 (JOI 

where C, is a constant. By using the substitution (ZP), the equation (30) can ix reduced to 

an integral equation of the Abel type: 

J^ f lb(f) dt r 

() [p _ (21 i-.5 = -c-,-f-(I-3) s ~(~)*f,~(~r) d<: 0 < r < 0. 

,I 

(31) 

Wc now cxminc the system of’ tripk intcgrai equations dcfincd by (23). (25) and (26). 

Intrwlucc a11 auxiliary i’unction g(r) such that : 

Using the propxtics 01’ tlilllliCl translbrms WI: can Obtilill ;Ifl integral cxprcssion for I%‘(<) : 
:IS ;I result, (22) can bc cxprcssctl in the lix-m 

whcrc the optxator Qtr. r) is dc:lincd by 

and min (rt.~) ritnotcs the niiniinurn vducs ol’ II arid r. The first intcgrat 

\vrittcn 2s : 
in (35) can bc 
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Using the properties of these integrats and observing &hat 

J 
x 

M(;,J,,(W dS = 
0 

(381 

we obtain. from (35). the following 

&&A( t - vf n (1 -2~) “ &tJ) drr - 
(3-4v) - - ___ J ’ n < r <h (39) 

2 (3-4v) ,) [r’-IJz]“z’ 

Introduce the substitution 

J h IJ{/(U) dfJ 
- -. -. - , jl;‘--- , ,;? = T(s); (1 <.s 6 h. 

-S-l 
(40) 

Note that (40) is an integral equation ol’thc Abel type. the solution of which takes the form 

(41) 

Introducing (40) into (39) we obtain ;1 second Abel-type integral equation for T(s); its 
solution gives the following (see also the results given by Cooke, 1963) : 

where 

Making use of (33). the expression for N(5) derived from (34). and (4L). we obtain the 
following integral equation for #(rc). 

-(I -2v)s J “[Cl2 -u”] “‘&u) du 4s 

I 

h 

(3-4v)[.?--.X]“z 0 [ 
s’_u’] = n?[s?_a’]‘:’ LI ~r;*(s, I)T((I) dt (44) 

where 



Introducing the trunsformutions 

the integral equations (4-l) and (-IS) c:trt bc reduced to ;I single integral cquntion for T*(v) : 

Also. using the suhstitutic~tts 

cqn (47) c;~n hc wrilkti in the forttt 

whcrc 

[tan ((f):IZ) 

It may t-112 noted that when c-) -+ W. fi(@, f!J) C~lll be cv;l~ll~lkd by ilppl>ing L.‘i lOS~~i~~l~‘S IXlk. 

The integral equation (49) is ;I Frctiholtn intqral equation of the sccontl-kind for the 

function /1(O). The intqral cclu;ttion (49) can lx sol~cd in ;I nutncrical fashion to tlcrivc 

rcsultsof~nginccring intcrcst. In the proscnt papa wcsh;~ll focus attention on the cxtluation 

of the axial load -displacctncnt relationship for the partially bon&d disc inclusion. 

Considering (3). wc note that 

Using (34) and (II). the above result can bc rcduccd to the form 
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(53) 

Considering the axial contact stresses at the bvndcd surlllccs of the inclusion it is evident 

that all(r.O) = -~.__(r,0 ) w-here the nqati~c supcrxript rcccrx to the contact stresses at 

the surface of the inclusion-elastic medium intcrf’icc in contact \\ith the half’space region 

: 6 0. Considering the equilibrium of the incluGon 11~ obtain : 

“In I% 

p= - ! c [~7~_(r.O+)-n,~(r.O )]r dr d@. (5-l) 
0 <I 

Using the results of (46). (48) and (53). (54) can hc rcduccd to the f~~rm 

(55) 

In the ensuing WC shall prcscnt ;I bricl‘ \umniary or the nurricrkxl proccdurcs that arc 

used to solve the I:rcdholm integral equation of tllc xcontl-kind dcrivcd previously. Marc 

com~~lc~c accounts of the wrious procctlurcs that can hc cmplo~crl in the solution o1’ this 

c;ktogory 01‘ intqral oqu;~tion arc suninxlrikxl by Atkiri4on ( 1970) and IIakcr ( 1077). The 

I~‘rcdholm integral equation (JO) c’;~n hc \vr-ittcn in tllc I;jrm 

~0s’ 
4 -. 

/I((->) sin 6) (-1 - 
n[“ J 

//(W)[~((-),W) --E((-h!J)j Cl,,, = I ; 0 6 (-1 < < (56) 
0 

whcrc < = cos ’ (c///J) ; th_! function K(O, (,J) is clclinctl by (50). the function L(0. (0) can 

lx written in llic moiiilictl form 

and the intcgral function /,,(r. /j) is given bq 

In the numerical proccdurc adopted hcrc. IVL’ employ ;I Gaussian quadrature schcmc to 

solve the integral cqudtion (56). Considerin, 11 ,V GxusGn points. (56) can bc rcduccd to a 

matrix equation ol’thc li,rm 

li,,ff(O,) = I (5’)) 

lvith i.,j = I, 2.. , il’, 
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” 

0, = :(I +!,,I 

(I --71q2 
f’(O) = (J_&) 

rr2 , 7L cd 0 tan 0 

_I 
(I -sin @)- - 

411 sin 0 
+ (I~ -' f,,(SW 0, SCC 0,) (61) 

Upon solution of the mltrin equation (59). the rclcvnnt load-displaccmcnt relationship 

(55) can bc cvaluatcd in the discrcti/cd form 

P 

(;Ah = (63 

5. NlJXlERICr\L RESIJLTS AND COSCLUSIOSS 

The nunwrical tcchniquc outlined in the previous section is used to cvaluatc tho axial 

load-displacerncnt relationship I’or the pnrtially debondcd penny-shaped rigid inclusion 
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cmb_lJcJ in an &I.IIC inlinitc space. Figup: 2 illustrates the manner in which the axial 

stiffness dthc cmhddd inclukn is inllucnccd b> the txtcnt c~I’ the clcbon~cd region and 

Poialn’s ration ot‘thc cla<t~c medium. :\ tot;11 c)rZ-l Gauss points UCTC’ uwd in the numerical 

t’\alu~ticw. An incrc;le of the number of‘ points from 2-I tc’ 61 did not result in any 
apprcciahlc improvcmcnt?; of thcsc numcric;ll rcwlts. The numcricd results also converge 

to the cx;;lc‘t cl~wd f<rrrn wult (WC c.g. Sd\aJurrC. 1976) LLS ltl /T) -. 0: i.c. P GM = 

32( I - 18) 13 -IV). The nunwrical rr‘wlts also indicate that apprcciablc changes in the axial 

stitYncss l)V the JcbonJcJ psnn~-shaped inclusion occur only I;lr valuers of (tr h) > 0.4. 

The paper uutlincs the mathsnlatical ;maljsis ot’ the axial loading of a penny-shaped 

rigid inclusion which is tmbddd in partial lwndd contact ivirh an isotropic elastic intinitc 

spaa. Since the dcbondin g is assumctl 10 bc s\mmctric, thr intinitc spxc problrm can be 

rtrcctivc rcduccd to ;I mind boundary value prohlcm associated ivith ;I hdfspacc region. 

The anal>si\ can ;IIW bc c~tcndd to situations in Hhich debonding occurs in ;1 non- 

symrnctric I1l.;hil~n. Such an analysis ho\vevcr rcquircs the wrlsidcration of two sets of 

miwxl boundar! value pr~~hlcms for the halVspucc regions : > 0 and z < 0. For this case 

tlic ~jnlniclr? ccmstr;lints 011 II. ~~iid f7.. in tlic region z > 0 ; rs (1~. z ) arc replaced by 

cclnlinuitv condi~ioris Ii)r II,. II.. fl.. and n,.. 

It is inip~rt;int Lo ri~W that llic slate ol’ slrcss at llic boundary or the rigid inclusion 

ad dt tlic hwrihry ol‘tlicdchuiiilctl rcgicw arc singular. In particular it is known (Atkinson. 

107’)) that the <lrcss singul;lrity at [lx bc~undary 01 such dcbontlcd regions is okllatory. 

(.‘oilwquciitl~. 111 r;ilualions wlicrc 1Jic csacl dress iiislribulions or lhc slrcss intcnsily rxtors 

at I hc inllcr tl~l~~rd~d boumlary arc rquircd it is ncccssary to pcrlbrm the analysis by 

appc;~I IO ;I I;~rnlul;ltion hawrl OII 111~ I lilhcrt pr~~ldcrll whcrc IIW exact nature of the 

c)scill;ll~~r) ~iri~uI;iritv i\ invoked. Oii llic cblhcr hand. il’ lhc rcsulls ol’ primary intcrcst 

li)cus OII lllc c~alu;ltioll d’ ~lolwl cs;limalcs such as load dispIxcnlc11~ rcsponscs tkr the L 
inclu4oii lhcii ~IIC iiilcpal lr;iii4iwiii Ix~?;cil scliciiic. bvhich is ;idoptcil in I hc pxxnt paper. 

yicI& ;~cc~ir;iIz kwlls. ‘I’Iic,j~~~lili~.;ilioii liw lhis siiiiplilicalicm c:~ii bc provitlcd by cxaniining 

the ;~~isy~~~n~clri~ proldc~rl oI‘ [hc ;dhcsivcly ho~lkxl pu~~cl~ OII ;I halfspacc region. It can bc 

slumii tllat the \till’ns$s crl’ IIIC puwlI tlcri\d via IIIC inkgr;II ~~~lllsli)rrn-h~lsctl approach 

GIII tx ~~;I~II;I~c~~ lo \\illiirl ().I, “L 01’ llic c?i;icl soluli0n liw Ilic cxtrcnic c;iscs when v = 0. 

WIic11 tlic ni;Itcri;ll i\ iiiC.oiiil”‘~~ihlc holli qytwzhcs Field the s;uiic rcsull. ‘l’hc nicthodoli~gy 

prcscntctl in lliib piper, lhcrcliwc. lwokdcs ;I udul proccdurc Iiw llic dclcriiiini~lion 01 the 

slill’nc5s ch;ira~lcrislics ol’ p;irIially lxJntl~tl rigid incIu5ions H.hiCli arc cnlhcdclccl in claslic 

incilia. 
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APPENDIX A 

Consider the full space with re~,on (I) corresponding to : 2 0 and region (2) corresponding to : < 0. The 
appropriatr integral expressions of Love‘s strain potential for regions (I) and (2) take the forms 

.2 

cpl = [[A(S) + E(<)z] c-;’ I,(+) d< (Al) 

(AZ) 

Considcrmp the full space region. the rnixcd boundary conditions at z = 0. posed by the disbondcd inclusion 
problem t:tkc the following forms. 

uJ”=O; u<r<h (ASI 

a!!’ = di’ = 0; 0 < I < u . . (A7) 

0;: = ujj’ = 0; 0 < r < &.I ww 

u!” = u!” ; h < r < a (A% 

u:” = u:“; b < r < co (AlO) 

o!” = dj’ ; z h < r < ca (Al 1) 

a’!’ = u’?’ I. r. . b c r c co. (AIZ) 

For the region (I) (-_ > 0) we have 

I 
n 

?Guj"(r.O) = - <[<A(<) + 2( I -2v)E(<)j/,(<r) dC 
I) 

(A13) 

Y 

ZGu!"(r. 0) = C[-C40+WCNJl(C’r) di (A14) 

ug’(r.0) = ” C’[iA(t+(l -2v)WC)lJdCr) dC (AIS 

n 

u!:‘(r. 0) = C’ifA(O -2vNC)lJ,(id dC. (Al@ 

Similarly for the region (2) (-_ c 0) WC have 



tr’j’(r 0) - -rr’:‘(r 0) 
r . r 3 

n’!‘(r,ol 7 - n’l’(r.0) 

nj”(r*ol n: “(r.oI 

rr’,“(r.ol .\. I, . I‘ .- I1 (/\31) 

*,~“fr,(l) 0; i,-r:r, 1 (A’7) 

n”‘(r.oJ II. 0 C’f *: ‘l (.\2S, 

n:‘)(r.o) I) : 0 i: I cc t, (;\?V) 



(a) 

(b) 

(cl 


