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The load—deflexion characteristics of a deep rigid anchor
in an elastic medium

A. P. S. SELVADURAI*

The axially symmetric problem of an infinite elastic
solid containing a bonded symmetrically loaded
spheroidal rigid inclusion is considered. This prob-
lem is of interest in connexion with the geotechnical
study of the time-independent, load-deflexion charac-
teristics of deep rigid anchors embedded in cohesive
soil or rock media. The solution to the deep rigid
anchor problem is obtained by making use of Bous-
sinesq’s three-function approach applicable for the
rotationally symmetric problem in the classical theory
of elasticity. Load-deflexion relationships for rigid
anchors of both prolate and oblate spheroidal shapes
are presented in exact closed form. By treating the
single anchor as a solid of revolution it is possible to
investigate the influence of various geometric aspect
ratios. From the exact load-displacement relation-
ships presented here it is possible to recover solutions
to anchors with spherical, circular or elongated shapes
simply as limiting cases.

On examine le probléme 4 symétrie axiale d'un solide
élastique infini contenant une inclusion rigide
sphéroidale chargée symétriquement. Ce probléme
présente un intérét pour I'étude géotechnique des
caractéristiques indépendantes du temps de la dé-
flexion-charge, d’ancrages rigides profonds dans des
sols cohérents ou rocheux, La solution du probléme
de I'ancrage rigide profond est obtenue en utilisant les
trois-fonctions de Boussinesq, applicables pour le
probléme circulaire symétrique dans la théorie
classique de Délasticité. Les relations déflexion—
charge pour les ancrages rigides de forme sphéroidale
allongée aussi bien gu’aplatie sont présentées sous
une forme exacte. En traitant 'ancrage seul, comme
un solide de révolution, il est possible d’examiner
I'influence de divers paramétres géométriques. A
partir des relations exactes entre deplacement et
charge presentées ici, il est possible de retrouver des
solutions pour les ancrages de formes sphériques,
circulaires ou allongées, simplement comme cas
limites.

In recent years ground anchors have been extensively used in both temporary and permanent
geotechnical structures such as retaining walls, foundations and earth slopes which require
support to resist either lateral, uplift or gravitational loads. A variety of anchors including the
grouted rod type, which were developed predominantly for use as rock anchors, embedded
plates and driven deep screw anchors have found efficient use in the aforementioned areas of
study (Girault, 1969; Hanna, 1972; Adams and Klym, 1972; Jaeger, 1972; McRostie et al.,
1972; Johnston and Ladanyi, 1974). Most investigations to date have largely concentrated
on the analysis and experimental verification of the ultimate bearing capacity of both shallow
and deep anchors, taking into account either their individual or group action. In order for
the analytical treatment of the anchor problem to be complete it is, of course, advantageous to
establish the load—deflexion characteristics of anchors especially at working loads. A com-
plete analysis of these effects requires a knowledge of the mechanical response of both the
anchor or the anchor system and the mechanical response of the surrounding soil medium.
However, owing to the complexity of stress-strain characteristics of both the soil and the
anchors, and their group action it becomes expedient to introduce certain plausible simplifica-
tions of the anchor problem. Thus, to a first approximation the soil can be considered to be a
linearly deformable elastic solid and the anchors are regarded as being rigid.

Discussion on this Paper closes 1 March, 1977. For further details see page 648.
* Associate Professor, Department of Civil Engineering, Carleton University, Ottawa.
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This Paper is primarily concerned with the analytical treatment of the load-deflexion
characteristics of a deep rigid anchor embedded in an isotropic infinite elastic medium. This
type of anchor is usually constructed by first drilling a small diameter shaft to the necessary
depth; subsequently an expandable reaming device is used to develop the required anchor
shape; finally the enlarged cavity is filled with concrete and this serves as the anchorage.
Alternatively, the anchor could be regarded as being composed of a power driven deep screw
pile. Tt is assumed that (a) the resulting anchor has the shape of a solid of revolution; or
more precisely, it is approximated by a rigid sphercidal region, (b) the anchor is in bonded
contact with the surrounding soil medium, and (¢) the depth of embedment of the anchor is
large in comparison with the largest dimension of the anchor such that the presence of external
boundaries do not in any way influence its mechanical behaviour. The spheroidal rigid anchor
is subjected to a resultant load directed along its axis of symmetry. Any frictional restraint
that may be offered by the tie rod or other device used for the purposes of applying this load
will also be neglected.

The deep anchor problem as formulated above constitutes an axisymmetric problem in the
classical theory of elasticity which can be analysed by means of stress functions in a variety of
ways (Sadowsky and Sternberg, 1947; Sternberg, 1960; Truesdell, 1960). These include an
adaptation of the general three harmonic function approaches of Boussinesq (1885} and Timpe
(1924) and the more widely used single biharmonic function approach of Love (1944). The
technique used here is that of Boussinesq for which case the general solution of the displace-
ment equations of equilibrium, in the absence of body forces, is representable as the sum of the
displacement fields derived from two harmonic functions. The governing equations are
essentially those derived by Sternberg et al. (1951) for generalized axisymmetric curvilinear
co-ordinates. It is found that the load-deflexion characteristics for anchors of both prolate
and oblate spheroidal shapes can be obtained in exact closed form in terms of elementary
functions. From these solutions it is possible to recover solutions to anchors with spherical,
circular or elongated shapes simply as limiting cases. From the spatial symmetry of the deep
anchor problem it also follows that the load—deflexion relationships thus developed are also
valid for situations in which the surrounding soil medium experiences moderately large elastic
deformations. The stress analysis of elastic media subjected to moderately large deformations
is carried out by taking into consideration the effects of both the linear and quadratic terms in
the displacement gradients (Selvadurai and Spencer, 1972; Selvadurai, 1975).

GOVERNING EQUATIONS

The solution of the axisymmetric problem in three-dimensional linear elasticity, in the
absence of body forces, is facilitated by the use of the three-function approach proposed by
Boussinesq (1885). According to this formulation the general solution of the displacement
equations can be represented as the sum of the displacement fields generated by two harmonic
stress functions @ and ¥. Sadowsky and Sternberg (1947, 1949) and Sternberg et al. (1951)
have presented the general expressions for the displacement and stress fields corresponding to
Boussinesq’s method referred to a general system of axisymmetric curvilinear co-ordinates.
For the purposes of analysis of the spheroidal anchor problem, and for future reference, the
results referred to a prolate spheroidal co-ordinate system (e, B, ) will be summarized. The
prolate spheroidal co-ordinate system is defined here by the transformation

X = ¢, sinh « sin 8 cos y
¥ = ¢, sinh ¢ sin B sin y s owm o8 o5 o8 om ow o« (1)
z = ¢, coshacos B
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Fig. 1. Prolate spheroidal co-ordinates in a meridian plane

in which c, is a positive constant. The parametric surfaces «=constant, say «o, B=P,, y=%o
form a triple orthogonal confocal family of prolate spheroids, hyperboloids of two sheets and
meridional half-planes respectively (Fig. 1). By considering the expression for a differential

arc length (ds) given by
(ds)2=(g—1‘f)2+(:—f)z+(ﬁ—:)2 R )

it can be shown that the metric, or local, scale coefficients are given by

hy, = hy = [c,? (sinh? a+5sin? B)] "2 = h } 3)
hs = (c, sinh e sin B)~* I
For deformations which are symmetric about the z-axis the displacements and stresses in the

elastic medium are independent of the longitude y. The Boussinesq potentials @(«, 8) and
¥(e, P) referred to the spheroidal co-ordinate system satisfy the differential equations

V2P(e, B) = 0; V3¥(e, B) = 0 N (%))
where
o2 o2 2] é
2 _ hK2 J— e, e
VZ=h (aa2+a,82+°°‘h @ 5. oot B 6,8) (4b)

is Laplace’s operator in prolate spheroidal co-ordinates. We denote the curvilinear com-
ponents of the displacement vector by u, and u; and the curvilinear components of the Cauchy

stress tensor @ are given by
[ | T
a=|0 g, O B &)

gep O Opp

The displacement fields of the Boussinesq solutions in curvilinear co-ordinates are given by

(ua;us)=%(¢’a;¢’3) x4 x e a2 o« o« = f6m)

(e s} = o ([8Ve- (-8 ¥ [g¥—C=4)g¥D . . . . (6b)
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where G, v are respectively the linear elastic shear modulus and Poisson’s ratio of the elastic
medium and g=c, cosh « cos 8. We shall also note that the subscripts attached to functions
such as @ and ¥ which originally bear no subscripts denote partial differentiation. The stress
components derived from @ («, f) and ¥(«, B) take the form

h h
Oqg = h? (qjaa +f Q“__}f tﬁs)

(7a)
,,—h”( 2P +f"¢)
aa—h( ast ®+hdﬁ)
and
- \
vee = 1 [¥uut (S he=22.) - € he¥st (e P85 7))|
I
opp = h? | g¥ss+ (g hs_zgs) ‘I’B—%ha‘ff“+2y(g33ffﬂ—g“¥fa):|
. (7b)

oy = 2 %(fa'i”ﬁfs'f’s)—2v(ga'f’a+gn5"a)]

Tup = B [@¥est 0¥yt By ¥ )~ (122 ¥,+ 2,70 |

respectively, where f = ¢, sinh « sin 8.

THE PROLATE SPHEROIDAL ANCHOR PROBLEM

We consider an isotropic elastic infinite medium which contains a rigid anchor of a prolate
spheroidal shape. The anchor is assumed to be in bonded contact with the surrounding
elastic medium at its boundary e=e,. It is subjected to a resultant force P directed along its
axis of symmetry (Fig. 2); this causes a rigid body translation of the anchor, 8, in the z direction.
The displacement boundary conditions at the anchor/soil interface are

8 cos B. 8 coth o, sin 8

uq(to, B) = o, ug(eo, B) = :T I )
where
2 = [1+sin? B cosech? ]2 F I 10))
and
2y = 2(a)

Since the elastic medium is of infinite extent, in addition to these boundary conditions, all the
displacement and stress components should tend to zero as « — c0. For the solution of this
displacement boundary value problem we require two independent solutions of the governing
differential equations (4a). The harmonic functions which will be employed here are the
Lamé products associated with the spheroidal co-ordinate system; the general expression for @
is given by

P(a, B) = [Pa™(cos ) or Q,™(cos P)I[P,™(cosha) or Q,™(cosh a)]
(mn=0,1,273,...) }
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Fig. 2. Prolate spheroidal anchor

where P, and Q,™ are associated Legendre functions of the first and second kind (e.g.
Hobson, 1931). Considering the form of the boundary conditions (8a) and the conditions at
infinity it can be shown that the appropriate solutions of eqns (4a) are

_ cosh & cosh «+1
D(o, B) = C4 [1— 3 log(cosha_l)]cosﬁ . . . . (102)

and

cosh e+ l) (10b)

¥(a, f) = 4 Cs log (Sop oty

where C, and C, are arbitrary constants. These harmonic functions when substituted in the
sets of eqns (6) and (7) give displacement and stress components which are single-valued in the
domain «y<a<00; 0<B<m, and which tend to zero as « — c0. The arbitrary constants C,
and C, can be determined by making use of the boundary conditions (8a) and the complete
expressions for the displacement components

1 ]
Uy = 3Ge,0 {C,[2 cosech « coth «—log £]
+ Cyep[—2 coth « cosech «—(3—4v) log £]} cosp an
Uy = - {C,[—2 cosech a+coth a log £]+ Cac,[(3 —4v) coth « log £]} sin B
4Gc, 2
where
__cosha+1
¢= cosh e—1 (12)
The expressions (11) together with the boundary conditions (8a) give
(Cy; Cy) = 28:"6 (coth ap; cosech agsecheg) . . . . . (13a)
[i]
where
Xo = —cosech o, sech ay{3[(3 —4v)+cosh? ] log £, —cosh wo} . . (13b)
and

& = f(“u)
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The force-displacement relationship for the prolate spheroidal anchor can be obtained by
considering the resultant of tractions in the z direction acting on any closed surface «=con-
stant. It is, however, convenient to compute this resultant force by choosing the closed
surface to be the anchor/elastic medium boundary ¢=c,. The resultant force in the z direc-
tion is given by

P = 2mc,? f B0 (0 ualts— Oush)emsy Sinh aosin BdB . . . (14)
0
where

8(x, B) = (sinh? a+sin?B); O = O(e) . . . . . (I5a)

and n, and n, are the components of the unit outward normal to «=c, in the positive r and z
directions, evaluated from the expressions

[n,;ng]=§-%~2(coshasin3;sinhacosﬁ) .. . . . (@sb

The complete stress components o,, and o,, derived from the harmonic functions (10) and
the relationships (7), can be written as

_G { 1 cosech?« 1 [cotl’ﬁx_i_cosh’ a 2(1-— v)]} cos B

OIC\'C\'

2\ 78T 8 Teoshlag| 0 62 6 16)
C 1 1 cos? 1-2v .
Tupg = E;; COth Gﬂ{'—Fz'i'coshz % 92 ﬂ—( ] )]}Slﬂﬁ

By substituting the above expressions in (14) and performing the integrations we obtain the
relationship for the applied force as

_8nCy(1—)

P= cosh? «,

an

A combination of eqns (13a) and (17) thus yields the load-deflexion relationship for the
prolate spheroidal anchor:

P = 16m(1 —v) 8¢,G{3[(3—4v)+cosh? «,] log &, —cosh eg} .. (18

Further, by considering the geometry of the prolate spheroidal inclusion the focal distance ¢,
(Fig. 1) can be related to the dimensions of the major axis and the equatorial radius of the
inclusion is

a, = ¢, cosh op; b, = ¢, sinh «, R 1))

Thus eqn (18) can be re-written as

P = 16m(1—v) 8Gay(1 — A2 {%-[(3—4.;)+ = AQ)] log [}f\‘;ﬁ:i?) - (I_;z)l,,}_l 0)

where
A(=by/a;) < 1

Limiting cases
Incompressible elastic medium. In the particular case of an incompressible elastic medium
v=} and the load-deflexion relationship reduces to
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Fig. 3. Oblate spheroidal anchor

P = 8r 8Gay(1—N3)12 {5 (f:;:) log E + vg :;z;] -a _;2)“2}”1 . Qla)

This result is consistent with the force—-displacement relationship obtained for the undrained
elastic problem (Selvadurai, 1976) by a consideration of the mathematical equivalence between
the incompressible elastic problem and the analogous slow viscous flow problem.

Rigid spherical anchor. In the particular case when A — 1 we obtain from eqn (20) the load-
deflexion relationship to the problem of a spherical rigid anchor embedded in an isotropic
elastic medium. Taking the limit of (20) as A — 1 we obtain
247 8Ga,(1—v)

(5—6v)
where a, is the radius of the spherical anchor. This result is identical with the load—deflexion
relationship obtained by Josselin de Jong (1957) in connexion with the deformations of a
consolidating medium loaded by a rigid sphere.

Rigid anchor with an elongated shape. 1In the special case where the major axis, a,, of the
prolate spheroid is much greater than its equatorial radius b, the spheroid resembles a long
thin rod (very similar to rock anchors of the grouted rod type (e.g. Obert and Duvall, 1967).
For this limiting case, the load-deflexion relationship takes the form

P=snscap(l—v){z(lw)[1og(%:)+1og2]—5}'1 L L. @9

where the third and higher order terms in (b,/a,) have been neglected.

The analysis of the prolate spheroidal anchor problem presented here is primarily concerned
with the determination of the load-deflexion characteristics of the rigid anchor. The state of
stress induced in the surrounding elastic material as a result of the loaded anchor can be
obtained in a straightforward manner by considering the expressions for the stresses, (7) and
the harmonic functions (10).

P= (21b)

THE OBLATE SPHEROIDAL ANCHOR PROBLEM

The foregoing solutions were established on the assumption that the spheroidal inclusion is
prolate, i.e. (a,/by)>1. The solution to the associated problem concerning the deep anchor
with the shape of an oblate spheroid (Fig. 3) can be obtained by methods very similar to those
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Fig. 4. Load-deflexion characteristics of a prolate spheroidal anchor: P=16n8Ga.K, where K, is defined by
eqn (20)

employed in the previous sections. Omitting details of calculation it can be shown that the
load-deflexion relationship for the analogous problem of the oblate spheroidal anchor is given
by

P = 16m(1 —») 8Gcy{sinh ay— [sinh? «o— (3 —4v)] cot ~* (sinh )} 2 . (22
where
G
(boz — a02)1.f2
and a, and b, are, respectively, the half length of the minor axis and the equatorial radius of
the oblate spheroidal anchor.

ng = (boz—aoz); sinh oy = (23)

Limiting cases

Incompressible elastic medium. Again, in the particular case of an incompressible elastic
medium v=4% and the load—defiexion relationship becomes

e AN e S

where p (=bo/a,) > 1 and sinh o5 =(u?—1)~12. This result is in agreement with the equivalent
expressions derived from the viscous flow analogy.

Rigid circular disc anchor. As sinh «y — 0, the oblate spheroid degenerates to a flat circular
rigid disc of infinitesimal thickness, which is in bonded contact with the surrounding infinite
elastic medium. Taking the appropriate limit of eqn (22) we obtain the load—deflexion rela-
tionship for this particular case as

_32(1—v) 8Gb,

P = (24b)
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Fig. 5. Load—deflexion characteristics of an oblate spheroidal anchor: P= 1678 GhoK, where K, is defined by

22)

£

where b, is the radius of the disc. Eqn (24b) is identical with the result obtained by Collins
(1962) in connexion with the problem of the penny-shaped inclusion embedded in an infinite
elastic solid. This particular result was obtained by a procedure which reduces the axi-
symmetric problem in linear elasticity to the solution of Fredholm integral equations of the
second kind (Tricomi, 1957).

Rigid spherical anchor. The load-deflexion relationship for the rigid spherical anchor
embedded in an infinite elastic medium can also be obtained as a limiting case of eqn (22), as
sinh «y — c0. Considering a series representation for cot~* (sinh ) we have

P = 167(1—v) 8Ga, {sinh“ oo — [sinh® g — (3—4v) sinh ag]

1 1 1 =1
% [sinh @y 3 sinh® ao+ Ssinh® o ]} (24c)

Taking the limit of (24c) as sinh «, —> o0, the relationship (21b) is recovered directly.

CONCLUSIONS

This Paper presents closed form analytical results for a rigid spheroidal deep anchor em-
bedded in bonded contact with an isotropic infinite elastic medium. The influence of the geo-
metric aspect ratio of the anchor (i.e. a,/b, or by/a,) on the load—deflexion characteristics is
illustrated in Figs 4 and 5. These results indicate that the load-deflexion characteristics of the
bonded anchors are significantly influenced by their geometric shape and that these effects
appear to be more pronounced in the case where the rigid anchor has the shape of a prolate
spheroid.

The deep anchor problem examined here inherently has certain limitations; factors such as
interaction effects of neighbouring anchors, the influence of finite depth of embedment, the
presence of non-contiguous boundary conditions at the anchor/soil interface and so forth are
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clearly excluded from the analysis. The first two factors are generally of peripheral interest
with regard to the mechanical behaviour of single anchors located at a large depth and spacing.
However, the analysis as presented in this Paper could be further extended to include boundary
conditions associated with a completely smooth interface or an interface which exhibits
Coulomb friction, provided it is explicitly assumed that the interface is capable of sustaining
tensile surface tractions. This would seem to be a reasonable assumption for the case of deep
anchors in which sufficient compressional stresses may exist, due to the self weight of the over-
‘burden to prevent any loss of contact at the interface. The class of anchor problems which
take into account influences of neighbouring boundaries, the effects of partial separation or
partial slip at the anchor/soil interface, admittedly, requires a much more rigorous mathe-
matical analysis.
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