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Abstract-The transient response of a pressurized penny-shaped crack subjected to a time-dependent 
load is considered. The crack is embedded in an elastic-plastic solid and the plastic zone has the shape 
of an annulus of small thickness surrounding the crack and extending radially. The Dugdale 
hypothesis is applied to find the length of the plastic zone as a function of the applied time-varying 
load. The results are applicable for so-called quasibrittle solids. 

1. INTRODUCTION 

BY ACCEPTED terminology, “quasibrittle” fracture is fracture involving a highly localized plastic zone 
which precedes the crack tip. This type of behavior is exhibited by some low-carbon steels and 
aluminum alloys. A penny-shaped crack in an infinite elastic-plastic medium under static load has 
been considered by Wnuk[l] and Olesiak and Wnuk[2]. The transient response of a penny-shaped 
crack under a uniform tensile stress in an elastic medium was discussed by Embley and Sih[3]. 
References to the plastic deformation around cracks and the governing fracture criteria are found in 
the book by Parton and Morozov[4] and in the paper by Vitvitskii, Panasyuk and Yarema[5]. 

The purpose of this note is to determine the length of the plastic zone around the pressurized 
penny-shaped crack in an infinite elastic-plastic solid subjected to a time-varying load. The plastic 
zone surrounding the crack is considered to be very thin in comparison with the length of the crack. It 
is well known that for “quasibrittle” solids the Dugdale hypothesis[6] can be applied. In the plastic 
zone, the yield condition is satisfied for finite normal-stress values. By using Dugdale’s hypothesis, the 
length of the plastic zone is obtained as a function of time and the results are shown graphically. 

2. BASIC EQUATIONS AND FORMULATION OF THE PROBLEM 

We consider that the impact load is applied symmetrically about the z axis about which the 
penny-shaped crack is centered. For axially symmetric deformation, material elements remain 
unchanged in the 8 direction. In terms of the wave potentials 4(1, z, t) and $(r, z, t), the displacement 
and the stress fields are 
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It can be shown that the equations of motion are satisfied if C$ and tj are governed by the wave 
equations 

where 

2+2p l/2 
cl= - ( > P ’ 
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l/2 
c2=E ) 

P 

(2) 

(3) 

p being the mass density of the material and J. and p the Lam6 constants. 
The material is perfectly elastic-plastic. The nonzero components of the stress tensor CJ,, (T@, dZ, orz 

satisfy the Huber-Mises-Hencky condition in the plastic zone. This condition is approximately 
satisfied if we assume that cZ is equal to a constant Yin this region. This constant is called the “effective 
yield stress”. 

Suppose that the material is initially at rest. At time t = 0, the normal stress of magnitude -(T,, is 
suddenly applied to both crack surfaces and maintained at this same value thereafter. Then 

UAr., 0, t) = - o,W), O<r<l,t>O; 

cz(r, 0, t) = K 1 <r < a,t > 0; 

(44 

W 

r > a,t > 0; (5) 

dr, 0, t) = 0, O<r<m,t>O. (6) 

The initial conditions at time t = 0 are all zeros. The plastic zone has the shape of a thin annulus, 
I < r < a, surrounding the crack. The problem discussed here addresses the case of large-scale 
yielding. 

3. METHOD OF SOLUTION 

The standard Laplace transform off(t) is 

f(t) eep’ dt, (7) 

whose inversion is 

_fw = & s f(P) 
BI 

ep’ dp, (8) 
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where Br denotes the Bromwich path of integration. Now in the p plane, eqns (2) and the boundary 
conditions (4a)-(6) become 

v2ljL ; 21$, 0 v2$_L !c 2$ 0 r2 c2 ’ 
(9) 

b,(r, 0, p) = d W, O<r<a, (10) 

G(r, 0, P) = 0, r 7 a, (11) 

and 

G(r,O,p) = 0, O<r<cm, (12) 

where 

F(r) = 

i 
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Y, l-crca. 
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Equation (2) may be solved with the help of the Hankel transform to render 

m Wr,z,p) = s Ads, PVOW exp (- ~~4 ds, (14) 
0 

s 
m G(r,Z,p) = A2(s,~Vl(73) exp (-Y~z) ds, (15) 
0 

where 

2 
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and J,(rs) denotes the Bessel function of order v 2 0. A,(s, p) and A,(s, p) are unknown functions to be 
determined from the boundary conditions. We denote the displacement and stress components in the 
p plane by I?,, U,, O,, Ce, (5, and &. Hence, making use of(l), (7), (13), (14) and (15), we find that 

W,Z,P) = - s m [sA,(s,p) e-Y1z-y2A2(s,p) e-YZ’]Jl(rs) ds, (17) 
0 

&(r, z, p) = - 
s 
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~,,(r~ Z,P) = P 
s 

m {2ylsAl(s, p) e-y*pJ1(rs) +(p”/c$ -27:) e-Y*“A2(s,p)J1(rs)} ds, (19) 
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c,(r, z,P) = 
s 
m{(2pyt+p2/c:) e-Y1zA1(s,p)-2s,uy2 e-Y”A2(s,p)}Jo(rs) ds. (20) 
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Making use of condition (12), we find with the help of eqn (19) that 
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and 

A,@, PI = 
&a P) 
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where 
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and v denotes Poisson’s ratio. Making use of eqns (21) and (22), we find that 
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The conditions (10) and (11) lead to a pair of dual integral equations : 

s 

00 
sA(s, p)J&s) ds + 

0 s 
m s[R(s, p) - l]A(s, p)J,(rs) ds = -F(r), O<r<a; (27) 
0 

s 

00 

A(s,p)Jo(rs) ds = 0, r > a. (28) 
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Solving the dual integral eqns (27) and (28) by the method of Copson[7] and using (13), we find 
that 
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where 

da P) = 0, kf, and 
1 

m =-. 
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1 -m is the length of the plastic zone. 
From eqn (29), we find that 

s 
’ &(n, P) cos (ans) dn , 
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where the prime denotes the derivative with respect to rr. We can write the expression for r?=(r, 0, p) in 
the following form : 

.,,,O,,,=~[~+~~~~]+~~~~(~,P,dn 

s m 

X s(R(s, P) - 1) sin (asn#,(r,sa) ds, 1 < rl, (39) 
0 

where rI = r/a. Now uz(r, 0, p) should be finite in the plastic zone. Hence, we find that 

m w,fv = s 4(T) eePT dT = 0. 
0 

Applying the inverse Laplace transform, we get 

epT4( 1, P) dP p =o, 

T=CZt. 
a 

w 

(41) 

(42) 

The values of 4(1, P) are evaluated after solving numerically the integral eqn (30) at the discrete 
points P for sufficiently many values of 1 and m. Then, with the help of the relation (41), the numerical 
Laplace inversion technique developed by Miller and Guy[8] is used to obtain the size of plastic zone, 
1 -m, for different values of T. From Figs. 1 and 2, we see that the length of the plastic zone increases as 
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Fig. 1. Variation of length of plastic zone with T for different values of A with Y = $ 
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Fig. 2. Variation of length of plastic zone with 1 for different values of T with Y = $. 

time increases. As p + 0, we obtain the static solution of the problem. With the help of the book by 
Parton and Morozov[4] or Wnuk[l], we find the solution for the case T + a~ in the following form : 

1 -m = length of the plastic zone = l- J 1+21 

1+A * (43) 

The solution for T + co is shown by a dotted line in Fig. 1. 
The difference observed between the transient solution and static solution obtained using (43) for 

large values of T is shown in Figs. 1 and 2. 
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