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1. INTRODUCTION

Problems dealing with inclusions embedded in elastic media is of some
interest to the mathematical modelling of composite and multi-phase elastic
solids. A very comprehensive account of current developments in this area
of micromechanics of solids is given by Mura [1]. Specific applications

of these theories to composite materials are also documented by Christen-
sen [2], Willis [3] and Walpole [4].

This paper examines the asymmetric rotation of a rigid elliptical
disc inclusion which is embedded at a bi-material elastic interface (Figure
1). A disc inclusion is a particular simplification of the general class
of three-dimensional inhomogeneities considered in the classical studies
by Eshelby [5], Lur'e [6] and others. Problems related to disc inclusions
embedded in isotropic and transversely isotropic homogeneous elastic media
have been studied by Collins [7], Keer [8], Kassir and Sih [9], Kanwal and
Sharma [10] and others. References to further articles are also given by
Selvadurai [11] and Selvadurai and Singh [12]. The majority of the articles
dealing with disc inclusion problems concentrate on inclusions embedded in
homogeneous elastic solids. The analysis of disc inclusion problems per-
taining to bi-material elastic regions have received limited attention.

In particular, the problem related to a disc shaped rigid inclusion located
at a bi-material elastic interface can serve as a useful model for the
study of precipitation hardening which occurs at the local scale of the
elastic inclusion - elastic matrix interface. This paper focusses on the
problem of the asymmetric rotation of a rigid elliptical disc inclusion
embedded in bonded contact at a bi-material elastic interface. An exact

formulation of this inclusion problem yields a set of three simultaneous



integral equations. These integral equations cannot be solved analytically
owing to the occurrence of complicated kernel functions. For this reason

it is desirable to explore alternative analytical techniques which will

yield results of engineering interest. In this paper we discuss the develop-
ment of a set of bounds which can be used to estimate the asymmetric rota-
tional stiffness of a rigid elliptical disc inclusion which is embedded in
bonded contact at an isotropic bi-material elastic interface. These bounds
are developed by imposing kinematic traction constraints at the bi-material
interface. The upper bound solution imposes an inextensibility constraint

at the interface and the lower bound imposes a frictionless bi-lateral con-

tact at the interface.
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Figure 1 - Geometry of the rigid elliptical disc inelusion embedded at a
bi-material elastic interface

2. BASIC EQUATIONS

For a three-dimensional problem in elasticity, the displacement components
uga) (i =Xx,Y,z; a = medium 1 or medium 2) in a medium free of body forces
are governed by the Navier equations

where Ga and Aa are the Lame constants; lu = ZGquXCI—zva); Ga are the

shear moduli; v, are Poisson's ratios and V? is Laplace's operator referred



to the rectangular Cartesian coordinate system. Here and in the sequel
the Greek indices and superscripts will refer to quantities and variables
pertaining to the two half-space regions.

The displacement equations of equilibrium (1) can be solved by
using a variety of stress function techniques (see e.g., Truesdell [13]

and Gurtin [14]). For example, in the generalized Papkovich-Neuber repre-

sentation, the solution for u(a) is
( () , (o) (&)
= (3-4v )¢, J¢J,i“¢g,i , (2)
- . = . = (a) 3 - ( J L}
where Xx; X; X3 = Y; X z and ¢i (i 1,2,3) and ¢¢g ° are harmonic
functions, i.e.,
v2¢£“) =0 ; v2¢§“) =0 . (3)

Once the displacement components are known, the stress components in the
isotropic elastic media (o = 1,2) can be obtained from the stress-dis-

placement relationships

o(@ g (o), (a)
%4 © AaGi‘ Kk ' *+ Gy [u i,j" ] (4)

where 61j is Kronecker's delta function
3, THE UPPER BOUND

Consider the problem of a rigid elliptical disc inclusion which is embedded
in bonded contact at a bi-material elastic solid. For ease of reference

we shall adopt the following nomenclature. Referring to the plane z = 0
(Figure 2(a)) the region occupied by the elliptical inclusion (i.e.,
(x*/a*)+(y?/b*) < 1; where a and b are the major and minor semi-axes of

the ellipse) is denoted by SI' The plane surface exterior to thé inclusion
is denoted by‘SE; also S = SI u SE. To develop the upper bound estimate
for the rotational stiffness of the elliptical inclusion we assume that

the bi-material interface region SE behaves as an inextensible surface.
Since the rigid disc inclusion is embedded in bonded contact with the
bi-material interface the inextensibility condition is also satisfied in
the region S;. The interface conditions associated with the upper bound

problem can be stated as follows:



uMx,y,0 = w0 =05y e s, (5)
u$y,0 = ulP ey =05 o s, (6)
uP xy,00 = w30 () €5, (7)
uil)(x.y,o) = ugz)(x.y.o) = x5 (xy) € S;, (8)
UE;)(XsY=0) = Ugi)(x,y,O) ; (x,¥) € S . (9)

In order to satisfy the constraints (5) and (6) we select the following

simplified forms of the Papkovich-Neuber potentials:

6@ = g 2o ol L el® o (Mo (10)
y z
The displacement components derived from (10) are
(a) - (a)
@ _ 0% @
u; = -z ; U, el : (11)
(a)
(o) _ (@) 3%
and the relevant stress components 05:) are given by
(a) 24(a)
(@) _ 20 3%
S ZGa 2(1-va) 32 - 2 (13)

3z

Considering the boundary conditions (7) and the result (12) it is evident

that

(1) _ (3-4va) ,(2) _ 4.
@ oo (3-4\)1} ¢ ot ¢ . (14)

The mixed boundary conditions (8) and (9) on S yield the following:

(3-4v,)0* = Ox ; (x,y) ¢ SI - (15a)
*
gt =0 ; (x,y) € SE . (15b)

For the analysis of the mixed boundary value problem defined by (15) it
is convenient to express the potential ¢* in relation to a system of ellip-

soidal coordinates (&,n,z) which are defined in such a way that £, n, and ¢



are the roots of the equation

2 2 2
)4

X Z
—:1
S

(a2+s) = (bZ+s)

) (16)

where the coordinates have values subject to the restrictions
2 2
~a* < <bf<n<0<E., : (17}

In the ellipsoidal coordinate system SI corresponds to £ = 0 and SE cor-
responds ton = 0. When £ = 0, the remaining coordinates n, ¢ are obtained
from the roots of

x2 y2
(az+s) = (b2+s)

1, (18)

and the products of these roots is found to be

K2

ng = azbz(l v i

A%

). (19)

Using the techniques outlined by Segedin [15], Kassir and Sih [16] and
Stallybrass [17] it can be shown that the appropriate solution for ¢* is

R et ds _2Cx[u-E(u)]
br.2. L é (aZ+s) [s(azes) (b2+s) ]2 = aleZ  ° (20)

where C is an arbitrary constant and e3 = (a®-b?)/a%. The variable u is

related to the ellipsoidal coordinate § by

£2 = a%(sn"*u-1) , (21)
u

E(u) = / dnt dt . (22)
o

The quantities sn u, dn u, etc., represent the Jacobian elliptic functions
(see e.g., Greenhill [18]) which have real and imaginary roots 4K and 2iK'’
respectively corresponding to the moduli e, and e; = b/a. It may also be

noted that

1 1 2,212
dt 1-eft
K(eq) = i [(I-t2) (I-e2t2) 12 ° E(eo) = g [ Tt ] dt . (29)



Considering the boundary condition (15a) and (20) it can be shown that

o Qa’ed
€ = - I[K(eo)-ECen)1(3-4v,) " (24)

The normal stress ng) acting on the plane z = 0 is given by

(1 __4xqa’ef[zn(a’+g) (b*+£)] Y6, (1-vy)
T2 (0Y:0) = - FT ey [K(eo) -E(e0) ] (B-1) (B-0) B-4vy) * 29

The normal stress in the inclusion region is given by

4Gy (1-v;)esxs
A yzjuz : (26)

(3-4U1)[K(en)-E(eo)]b[1 55
Similarly, by using (14) and (20) it is possible to develop an equivalent

. 2 . .
expression for the normal stresses c( ) acting at the bonded interface.

2z
The upper bound estimate for the rotational stiffness of ‘the embedded

inclusion is obtained by evaluating the resultant of moments of ng) about

the y-axis, i.e.,
1 2

M=JS [ogz)(x,y,o)~c£z)(x,y,o)]xdxdy . (27)
S
I

With the knowledge that the rotation Q occurs in the direction of applica-

tion of M 1t can be shown that

M =

81a3G,e30 { (1-v1) (3-4v,)+T'(1-v2) (3-4vy) (28)
3[K(eg)-E(es)] (3-4v,) (3-4v2) ’

where I' = G;/G;.
4. THE LOWER BOUND

To develop a lower bound for the rotational stiffness of the embedded

rigid elliptical disc inclusion we impose a frictionless bi-lateral contact
at the bi-material interface. According to this assumption the interface
is capable of transmitting only normal tractions. The smoothly embedded
rigid elliptical inclusion is subjected to a couple M about the y-axis.
Also, it is assumed that during the application of M, the two half-space
regions remain in contact with each other over the entire interface region.

To physically realize this condition the bi-material interface can be



subjected to a sufficiently large uniform compression oy (Figure 2(b)).

As long as no separation takes place at the smoothly interacting bi-material
interface the action of Uy does not influence the rotational stiffness of
the embedded rigid elliptical inclusion., For the lower bound estimate the

interface conditions are as follows:

Uii)(x’y’o) = Uiz)[x»Y»O) =0; (xy) €S, (29)
(1) = o(?) =0
Oy, (X3¥50) = 0,7 (X,y,0) = 05 (Xy) €5, (30)
W igy,e) 2wy s (x,y) € 5, (31)
uéljtx,y,oJ = ugz)(x,r,OJ = Qx5 (xy) e S, (32)
Ug;](X.y,OJ = Ogi)(x,y,OJ 5 (x,y) € S . (33)
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Figure 2 - Embedded Inclusion at Interfaces with Kinematic/Traction
Constraints

(a) bonded inextensible interface
(b) frietionless interface

In order to satisfy the interface conditions (29) and (30) we select the

following simplified forms of the Papkovich-Neuber potentials:

6{™ ¢;“) =05 oM =0, (34)
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The function ¢§“) is chosen such that oi:3 and oig) are zero at the inter-
face, i.e.,
(o) |
300 L (1a2y yol®) | (35)
az &

The relevant displacement and stress components derived from (34) and
(35) are

(o)

(a) _ (a) ad

u,® = 2(1-v )6 - 2 _— (36)
(o) 24 (@)

{a) . 3% 3°d
GZ(: = é‘;‘ -z 'a“z'z ) (37)

({1) = 32¢(G) . (G.J _ 32¢(a) 8
Oxz : axdz %2 : dydz (38)

Considering the boundary condition (31) and the result (36) it is evident
that

(1) (A-vs) ,(2) _ 3
® SET . (39)

The mixed boundary conditions (32) and (33) on S yield the following:

2(1-v1)® = 0x ; (x,¥) €S, (40a)

30 _ .
il 0 ; (x,y) € S - (40b)

The system (40) can be solved by employing the techniques outlined pre-
viously in connection with the evaluation of the upper bound estimate.
Avoiding details of calculations it can be shown that the lower bound

estimate for the moment-rotation relationship is given by

_ ZwaaGleEQ {LL—\’:]*F(].A\M)} '
M= SK(e)-E(en)] | v (va) [ ° (41)

5. BOUNDS FOR THE ROTATIONAL STIFFNESS

Considering the results derived in the previous sections it is proposed
that the rotational elastic stiffness for the rigid elliptical disc shaped
inclusion embedded in bonded contact at a bimaterial elastic interface can

be presented in the following set of bounds:



{(1-v;) (3-4v,)+T(1-v3) (3- 4va} 3M{K(ep)- E(eo) } o {(1-v2)+T(1-v1)}
(3-4v,) (3-4v3) (1+7) —~ Bma3Q(G+Gz)ed = 4(1-vy) (1-vz) (1+T) °

(42)

In the ensuing, the accuracy of these bounds will be examined by appeal to

certain limiting cases of material behaviour. In the limit when Vo T 0,

the bounds reduce to the following result:

3M{K(eg)-E(ep)}
snam(él+(;z)g‘f = 4 ’ (43)

3>
Also when Vo = %, the bounds (42) converge to the single result:

8ma’Q(G,+Gz2)e? =7

3M{K(es)-E(e)} _ 1 (44)

This result indicates that in the limit of material incompressibility the
bi-material elastic interface behaves essentially as an inextensible sur-
face which is capable of transmitting only normal surface tractions. When
Gu = G and Vo =V the asymmetry of the deformation imposes an inextensi-
bility constraint in the plane z = 0.

Consequently, the upper bound estimate (28) corresponds to the
exact solution for the rotational stiffness of a rigid elliptical disc

inclusion embedded in bonded contact with an isotropic elastic solid, i.e.,

3 5
l16mGa~epf2(1-v) (45)

M= SKCeo)-E(e ) T (3-4)

It can be shown that in the limit when e¢ =+ 0, (45) reduces to the result
given by Selvadurai [19] for the rotational stiffness of a rigid circular
disc inclusion embedded in an isotropic elastic solid.

When G; and v, + 0, the problem reduces to that of the rotation
of an elliptical rigid disc which is bonded to the surface of an isotropic

elastic halfspace. The bounds (42) give

(1-v1) 3M{K(eo)-E(eo)} 1
(3-4$1) z 8ﬂa3&G1e§ i 4(1-vy) (46)

The result (46) represents the limiting estimates for the rotational stiff-

ness of an elliptical punch which is bonded to a halfspace region. To the
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writer's knowledge there does not appear to be an exact analytical solu-
tion to this particular elliptical punch problem. The limiting bounds of
(46) for the bonded circular punch can be compared with the exact analy-
tical result available in the literature (see e.g., Gladwell [20]). In

the 1limit when ey » 0, (46} gives

4(1-vy) M 1
(3-4vy) = 8ma3G;0 — (1-vi)’

(47)

From the results given by Gladwell [20], the moment-rotation response for

the bonded circular rigid punch is

M1 {“M}:g, (48)

8ma3GiD ~ (1-v)) 272

Again as v +-%, the bounds coincide and agree with the exact result.
When vy = 0, (47) gives 1.33 > M > 1; whereas the exact result (48) gives
M= 1.16.

The analysis of the bounds for the rotational stiffness pre-
sented here examines only the case where the rigid elliptical inclusion
rotates about the y-axis. The analytical techniques can be extended to
cover the situation in which the inclusion is subjected to a couple M*
which induces a rotation Q* about the x-axis. In this case the appropri-

ate bounds are

{(1—u1)(3-4v2)+r(1-u2)(3-4v13}> 3M*{E(eo)- (1-e§)K(eo)} 5 {(1-vy)+I'(1-vy)}

(3-4v,) (3-4v,) (1+) —-8na3ﬂ*(Gl+GzJe§(l-e:} — 4(1-v;) (1-v3) (1+T)
(49)
Figures 3 and 4 illustrate the manner in which the upper and lower bound
estimates for the rotational stiffness vary with the modular ratio I' and

Poisson's ratios V- The normalized value of the moment M is defined by

—  3M{K(eg)-E(eq)} :
N = 4wa39(él+cz)g§ é (50)

From the numerical results it is evident that the difference between the
upper and lower bound estimates diminish either when v approach limits

of incompressibility or when the modular ratio I' becomes large.
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Figure 3 - Bownds for the Rotational Stiffnese of a Rigid Elliptical
Inclusion Embedded at a Bi-Material Interface

6. CONCLUSIONS

This paper develops a set of bounds which can be used to estimate the
rotational stiffness of a rigid elliptical disc inclusion which is embedded
in bonded contact at a bi-material elastic interface. These bounds are
developed by imposing either an inextensibility constraint or a bi-lateral

frictionless contact at the bi-material elastic interface.



14

lower bound
o8 o8t
Vl 02 - yl =02
¥3+0'3 L "2 09
00 " i i 00 A L i i
00! [+1} 1 10 100 001 [+ ] I 10 100
r r
M
2. 3
L ﬁ =0-5
L % 08
o_o i L - — 3
0-01 Ol I 1] 100

Figure 4 - Bounde for the Rotational Stiffnese of a Rigid Elliptieal
Inclusion Embedded at a Bi-Material Interface

It is found that the bounds for the rotational stiffness can
be evaluated in closed form. These bounds provide accurate engineering
estimates for the elastostatic inclusion problem, the exact analysis of
which requires the solution of a set of complicated integral equations.
Owing to the imposed kinematic constraints, the analysis presented here
cannot be used to determine additional displacements that can be experi-
enced by the inclusion as a result of imposed asymmetric rotation. It
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may be noted that the couple M can induce a displacement Gx in the
x-direction. A change in the direction of application of M would indicate
that Gx is a first-order quantity which can be evaluated only from a com-
plete analysis of the problem. On the other hand, any displacement Gz
induced by the couple M is a second-order contribution. Also by virtue

of the symmetry of the problem the application of a couple M about the
y-axis induces no lateral displacement of the inclusion in the y-direction.
These additional displacements do not influence the bounds developed for

the rotational stiffness of the embedded disc inclusion.
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