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ABSTRACT

The present paper examines the problem of a rigid penny-shaped
inclusion embedded at a bi-material elastic interface. Certain solu-
tions are developed for the elastostatic stiffness of the embedded
inclusion by considering bonded inextensibility or complete smoothness
at the interface. These solutions are proposed as bounds for the
elastostatic stiffness of the rigid penny-shaped inclusion which is
embedded in full bonded contact at the bonded bi-material interface.

INTRODUCTION

The class of problems which deals with defects such as inclusions or
flaws located at the interface of two dissimilar elastic solids has
important applications in the stress analysis of composite materials.
Considerable attention has been devoted to the study of cracks which
are located at the interface between bonded dissimilar elastic materi-
als. The investigations by Mossakovskii and Rybka," Willis,” Kassir
and Bregman,® Erdogan and Arin,* and Lowengrub and Sneddon®
examine problems related to the stress analysis of penny-shaped
cracks located at the interface of two bonded dissimilar elastic
materials. Recent studies by Keer et al.° re-examine the interface
penny-shaped crack problem in which an annular zone of frictionless
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contact is incorporated to eliminate the oscillatory form of a stress
singularity observed at the crack boundary.

The analogous problem related to the behaviour of a rigid penny-
shaped inclusion embedded in bonded contact at an elastic bi-
material interface has received little attention. Much of the literature
on the embedded disc inclusion problem focuses on the behaviour of
rigid or flexible disc inclusions which are embedded in bonded
contact with an isotropic or anisotropic elastic infinite space. Com-
prehensive accounts of the subject of three-dimensional inclusions
embedded in homogeneous elastic media are given by Eshelby,’
Mura® and Willis.® Also articles by Selvadurai'® and Selvadurai and
Sing'® give detailed accounts of the disc inclusion problem related to
a homogeneous elastic solid. The problem of a penny-shaped rigid
inclusion embedded at a bi-material elastic interface can be examined
by employing procedures outlined in the references cited earlier in
connection with the analogous penny-shaped crack problem. Such a
formulation essentially reduces the problem to the solution of three
simultaneous singular integral equations.'” The numerical treatment
of the problem is non-routine and is currently under investigation.

The purpose of this paper is to outline an alternative approach to
the problem of a rigid penny-shaped inclusion embedded at a bonded
bi-material interface. In particular the methodology focuses on the
development of a set of bounds for the elastic stiffness of the
embedded inclusion. The upper bound is derived by imposing an
extensibility constraint at the bi-material interface. The lower bound
assumes the presence of a frictionless interface. The bounds are
developed in exact closed form.

FUNDAMENTAL EQUATIONS

We consider the axisymmetric problem in which a rigid penny-shaped
inclusion is embedded in bonded contact at a bi-material interface
region consisting of isotropic elastic materials with shear moduli G;
and Poisson’s ratio »;(i = 1, 2), respectively (Fig. 1). For the analysis
of the axisymmetric problem we employ Love’s strain potential
(®:(r, z), i=1,2) development of the displacement equations'' of
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Fig. 1. Rigid circular inclusion embedded at a bi-material elastic interface. (a)
Bonded inextensible interface, (b) frictionless interface.

equilibrium which satisfies
VV2®,(r, z) =0; i=1,2 (1)

where V? is Laplace’s operator referred to the cylindrical polar
coordinate system. Also, the solutions of eqn. (1) appropriate for the
halfspace regions ‘1’ and ‘2’ should satisfy regularity conditions
pertaining to the stresses and displacements at infinity. A Hankel
transform development of eqn. (1) yields the following solutions for



158 A. P. S. Selvadurai
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where A;(¢) and B;(¢) are arbitrary functions which are to be
determined by satisfying the interface conditions applicable to the
relevant bounds. The displacements and stress components in the
elastic media can be expressed uniquely in terms of ®,. The relevant
components of the stress tensor o and the displacement vector u are
given by
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respectively.

AN UPPER BOUND

In order to develop an upper bound for the elastic stiffness of the rigid
penny-shaped inclusion embedded in bonded contact with the
bonded interface region we assume that the interface z =0 exhibits
inextensibility in the radial direction in the region r=a. Since the
rigid inclusion is embedded in bonded contact in the region r=<a, it is
evident that the upper bound solution enforces an inextensibility
constraint over the entire interface region z =0; r=0. The relevant



Elastic stiffness of a rigid penny-shaped inclusion 159

interface conditions are

u®(r, 0)=u®(r,0)=0; r=0 (8a)
u®(r, 0)=u?(r,0)=5; r<a (8b)
ul(r, 0) = u2(r, 0); r=0 (8c)
o2(r,0) = a2(r, 0); r>a (8d)

By making use of the interface conditions (8a) and (8¢c) it can be
shown that

(3 - 4V1)
(3 _4V2)

where T = G,/G,. The mixed boundary conditions (8b) and (8d) yield
the following set of dual integral equations for the unknown function

Aq(8):

aBy(§) =£€Aq(&);  aBy(§) =—£Ax8)=—¢ FA.(&) ©

_2Gida*
(3 - 4V1) ’

Ho[£°Aq(£); r]=0; r>a (10b)

H[£A(§);r]= r<a (10a)

where H, is the Hankel operator of zero-order defined by

HAf(€); r]= fff(sﬂo(fr/a) d (11)

The solution of the dual system is given by Sneddon'? and the details
of the method will not be pursued here. It is sufficient to note that the
solution of eqn. (10) is given by

4G,8a*sin &

A=~ G e

(12)

The upper bound elastic stiffness of the embedded inclusion can be
evaluated by considering the normal tractions that act at the inter-
faces z =0® and z =0? in the region r <a. Evaluating the total load
P we have

a

P=2r [ [0 0020, 0l ar (13)
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Assuming that the displacement of the embedded inclusion
occurs in the direction of the applied force we have, from eqn. (13),

p_168Gi(1-7)
(3‘—41/1)
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[1”(1—:11)(3—4@)

(14)

A LOWER BOUND

The lower bound estimate for the elastic stiffness of the rigid penny-
shaped inclusion embedded at the bi-material interface is developed
by assuming that the interface in the region r>a is completely
smooth. The rigid inclusion is also assumed to be embedded in
smooth contact at the interface region. The smoothly embedded
inclusion is subjected to a central concentrated force P which causes
a rigid displacement 8 in the z-direction. Furthermore, it is assumed
that during the application of P the two halfspace regions remain in
contact with each other. To physically realise this condition the
. interface can be subjected to a sufficiently large uniform compressive
stress o, (Fig. 1b). As long as no separation takes place at the
bi-material interface the presence of o, does not affect the elastosta-
tic stiffness of the inclusion. The interface conditions associated with
the problems are as follows

a2(r,0)=02(r,0=0; r=0 (15a)
u®(r,0)=u?(@r,0)=6; r<a (15b)
u(r,0)=u?(r, 0); r=0 (15¢)
ol(r,0) =o2(r, 0); r=a (159)

It may be noted that since o =0 for r=0, there is no restriction on
the radial displacements at the interface. Again by making use of the
interface conditions (15a) and (15¢) it can be shown that

_ gFVz(l - Vl)

=) Aq(8)

(16)

2v1aB1(€) = A4(8); 2V2¢le(§) = _fAz(f) =

The mixed boundary conditions (15b) and (15d) yield the following
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dual system for the function A,(£):
286G,via*
- 1-w) ;
H[£Aq(£); r]=0; r=a (17b)
The dual system (17) can be solved by employing the techniques
outlined by Sneddon.'”> The result of primary importance to this

paper, namely the elastic stiffness of the smoothly embedded inclu-
sion, can be evaluated in the following form:

_4Gida[, T(A-wy)
T [” (1) ]

H[£A(&);r]= r<a (17a)

P (18)

BOUNDS FOR THE ELASTIC STIFFNESS

Considering the developments presented in the preceding sections it
is proposed that the elastic stiffness for the rigid penny-shaped
inclusion embedded in bonded contact at a bonded bi-material inter-
face can be presented in the form of the following set of bounds:

4{1-v)+T(A—v)} _ P

A—v)(1—v)1+TD) (G1+Gy)éa
- 16{(1—v)(3—4v,) +T'(1—1,)(3—4v))}
- (B—-4v)(3—41,)(1+1)

(19)
In the limit when »; =0 the bounds reduce to the following result
P 16
= (20)

js—————=—
(G1 + Gz) da 3
Also when v, =3 the bounds (19) converge to the single result
P=8(G1+G,)éa 21

The convergence of the bounds for »; =3 indicates that in the limit of
material incompressibility the bi-material interface essentially be-
haves as an inextensible surface which transmits only normal stresses
across the boundary. When G, = G, and v; = v, the asymmetry of the
deformation imposes the inextensibility constraint at the interface
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z =0; consequently the upper bound of eqn. (19) gives the exact
solution (see, for example, Selvadurai'®) for the stiffness of a rigid
circular inclusion embedded in bonded contact with a homogeneous
elastic solid.

Also, when G, and v, — 0, eqn. (19) reduces to

4 P 16(1—v,)
= =
(1— V1) G18a (3"‘47/)
which represent the bounds for the stiffness of a rigid circular punch
which is in adhesive contact with an isotropic elastic halfspace. The

exact result for this problem is given by Mossakovskii'* and Uflyand"®
as follows:

(22)

P 4In(3—4v,)
G18a (1 - 2V1)
Again, as v, — 3, the bounds of eqn. (22) converge to the exact result,

eqn. (23). In the limit when v; — 0, eqn. (22) yields 4=<P/G,8a <%,
whereas eqn. (23) gives P/G,8a =4 1n 3=4-394.

(23)
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