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CIRCULAR RAFT FOUNDATION WITH
A RESTRAINED BOUNDARY

A. PATRICK S. SELVADURAI*

SYNOPSIS

The present paper ¢xamines the axisymmetric flexure of a circular raft foundation
resting in smooth contact with an isotropic elastic soil mass. In particular, the periphery
of the circular raft is fully or partially restrained against rotation due to the presence
of an interacting cylindrical shell. Such a condition can occur in structural foundation
systems used for nuclear reactor vessels or silos used for the storage of bulk solids and
fluids. A solution to this idealized soil foundation interaction problem is obtained by
using a variational method. Numerical results présented in this paper illustrate the
manner in which the settlements, contact stresses and flexural moments in a circular
raft can be influenced by the degree of restraint offered by an interacting cylindrical
shell. ,

INTRODUCTION

The class of problems which examines the behaviour of circular foundations
resting on elastic soil media has received considerable attention. Solutions
developed for the circular foundation problem have useful application in the
analysis and design of structural foundations resting on soil and reck masses.
The classical problem relating to the axisymmetric interaction between a
circular plate and an isotropic elastic halfspace was examined by Borowicka
(1936) who employed a power series expansion technique to represent the
deflected shape of the raft. The investigations of Ishkova (1951) and Brown

" (1969) modify the power series expansion technique to incorporate effects of a

singularity in the contact stress distribution at the interface. A host of ather
numerical techniques, such as finite difference techniques, finite element

. methods, boundary element methods and other discretization techniques have

also been applied to the analysis of this interaction problem. A compre-
hensive account of the axisymmetric problem relating to the interaction
between the circular plate and an elastic halfspace is given by Selvadurai
(1979). :

In existing treatments of the interaction -problems related to the
circular foundation it is explicitly assumed that the edge of the circular
foundation is free from any edge restraint that may be provided by the
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superstructure. In engineering structures such as nuclear reactor vessels,
as indicated in Figure 1, or storage silos, itis conceivable that a certain degree
of edge restraint may be provided by the continuity that exists between the
cylindrical shell and the circular raft foundation. The main objective of this
paper is to investigate the manner in which such edge restraint can influence
the interaction between the circular foundation and the supporting elastic soil
mediuwm.

reactor pedestal

secondary
containment shell

monolithic circular raft

connection

age. T brigd, i L% y . H i
B AR R AT 2R

soil or rock mass

Fig. 1. Schematic cross section of a pressurized water reactor.

The method of analysis of the interaction problem employed in this paper
is novel and presents a departure from the conventional precedures outlined
in the references cited earlier. Basically the present paper employs an energy
method for the analysis of interaction between the restrained circular raft and
the isotropic elastic soil mass. The analysis assumes that the deflected shape
of the restrained circular raft foundation can be represented in the form of a
power series in terms of the radial coordinate r. This deflected shape is
specified to within a set of undetermined constants and ordered in such ajway
that the kinemati¢ constraints of the axisymmetric deformation and the
conditions at the restrained edge are identicaliy satisfied. Furthermore, the
assumption of continuous smooth contact between the restrained raft and the
soil medium ensures that this prescribed raft deflection corresponds to the
surface deflection of the soil mass within the plate region. The energy method

172




CIRCULAR RAFT FOUNDATION

proposed here centres around the development of a total potential energy
Sfunctional for the foundation-elastic soil mass system which consists of the
following: '

(i) the strain energy of the soil region,
(ii) the strain energy of the circular raft foundation,

(iif) the strain energy of the superstructure or shell element which provides
the edge restraint, o

(ivj the potential energy of the external loads.

The total potential energy functional thus developed is defined in terms of
the constants which characterize the assumed form of the foundation deflec-
tion. These constants can be uniquely determined from the linearly indepen-
dent equations generated from the minimization of the total potential energy
functional. The general procedure outlined above is used to examine the
flexural interaction of a circular foundation with an edge restraint resting on
an isotropic elastic soil mass and subjected to uniform load of finite extent.
The deflected shape of the foundation is represented by an even order poly-
nomial in r (the radial coordinate) up to the sixth order. Using the energy
method analytical solutions are developed for the deflected shape of the
circular foundation, the contact stress at the interface and the central and
edge moments in the foundation. These results depend on

(i} the relative rigidity of foundation—elastic soil mass system and
(if) the degree of rotational restraint at the boundary.

It is observed that as the relative rigidity and edge restraint reduce to zero,
the results of the energy solution compare accurately with the exact results
for an isotropic elastic halfspace subjected to a flexible load. Similarly,
Boussinesq’s (1895) exact solution for the indentation of a halfspace by a

" rigid circular foundation cccurs as a limiting case of the energy solution. The
numerical results presented in this paper illustrate the manner in which the
stiffness of the cylindrical superstructure can influence the flexural interaction
effects in a restrained circular raft.

ANALYSIS OF THE INTERACTION PROBLEM

In orderto examine the axisymmetric interaction of the circular raft founda-
tion with a restrained boundary, resting in smooth contact with an isotropic
elastic soil mass, it is convenient to idealize the structural system. Such an
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Fig. 2 (a), Geometry of the plate - shell system.
7na
I Ag
i
circular line load Fo Po R /. rotational spring constant k
@ —_— r
_L_l
<‘ <
isoftropic elastic
halfspace
V" J‘
z

Fig. 2(b). The circular plate — cylindrical shell system on 2n elastic halfspace.
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jdealized form is shown in Figure 2. The rotational stiffness element at the
boundary of the foundation represents the interaction effect of the shell
element. Similarly, the line load P, represents the weight of the shell element.
The smooth contact at the raft-soil medium interface is assumed to be such
that there is no loss of contact at the interface. The deflection of the circular
foundation, w(r), therefore corresponds to the surface deflection of the elastic
soil mass in the region r < a, where a is the radius of the plate. The deflection
w(r) is prescribed in such a way that the kinematic constraints of the raft
deformations and the soil deformations are satisfied. An expression for the
total potential energy functional (appropriate to the idealized system shown
in Figure 2) is developed by making use of w(r).

(a) Flexural energy of the raft foundation

The flexural behaviour of the raft foundation is described by the small
deflection Poisson-Kirchhoff thin plate theory. The elastic energy of a thin
circular plate subjected to an axisymmetric deflection w(r}is composed of only
the flexural energy of the plate Uy, which is given by

2n ra 2
_D 2(1-v) dw(r) d2w(r)
U = Tfo J-o\ [{VZW(I')} ~ - T 4 :Irdrde ....... o

where
d2 d - Eh3
= — 1 : D

2 ~ = =
VZ'T & 200—2)

and E and v are, respectively, the elastic modulus and Poisson®s ratio for the
plate material, with h corresponding to the plate thickness. The analysis of
this problem can, of course, be extended to include effects of shear
deformations and in-plane membrane stresses in the plate region.

(b) Flexural energy bf the shell

The flexural _energjr of the cylindﬁcal shell which is in continuous contact
with the boundary of the circular foundation is given by

Us - Kﬂ 1; [[d‘;'fﬂ]m]z T S 3)

In Equation 3 the stiffness constant k depends on the geometry and elasticity
characteristics of the shell element. Consider, for example, the behaviour of
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a thin shell of diameter 2a and thickness t and of semi-infinite length. The
radial deflection of the shell, w* (2), subjected to a concentrated moment of
intensity M, acting along the circular edge is given by (see e.g. TIMO-
SHENKO and WOINOWSKY - KRIEGER, 1959)

Moe_ﬁzsin Az .

w*(2) = 1 E20 i 4
(2) 57D, (
where
— 3y . 3 ;
p - 3___(12_ 2"0) Dy = B (5)
ast 121 —v?

and Eq, v, 2nd t are, respectively, the Young's modulus of the shell material,
its Poisson’s ratio and its thickness. (The distance Z is measured along the
generator of the shell.} By conmdermg Equation 4 and the relationship

t
M, = k[dw ] we have
3=0

dz

Eot? 12714
k= _Fof? [3(1_\,3)_2] ............... ©)
6(1—v?) &

Tt may be noted that representations similar to Equation 5 can be developed
to examine the rotational stiffness effects of thin shells of finite length.

(c) Elastic energy of the soil region

The third component of the total potential energy functional corresponds to
the elastic strain energy of the isotropic elastic soil mass which is subjected to
the displacement field w(r) {in the z-direction) in the region r<a. In the
ensuing discussion it is assumed that the external loading configuration of the

plate region is such that no tensile stresses act at the smooth plate-elastic
mcdm.m interface. To physically realize continuous contact at the smooth
interface region r < a, the contact stresses should be compressive. This
assertion should be verified upon completion of the interaction analysis.
From a practical point of view, the self weight may introduce suﬂicxently
large contact stresses to prevent separation at the interface.

The distribution of normal contact stresses at the smooth interface asso-
ciated with the imposed displacement field w{r) can be uniquely’ deter-
mined by making use of the integral equation methods developed by Green
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(1949), Sneddon (1966) and others for the analysis of mixed boundary value

problems in classical elasticity theory. The normal contact stress is given by

cn(r,{)):_,i_.c.l_ ft_g(;t)ﬂ;(forogrga) ............ )]
200 —vyrdr | V2 :

where

2() = Ei * rw(r)dr

—= ;{for0<tga) ... 8
S w | vaa ) ®)

and E,, v, are the elastic constants of the elastic soil mass. From the above
results, the elastic energy of the supporting soil region is given by

U, - B2 o “w(r)[d Tt {d =rw(r)dr]'dt]drde
ST ma-w f L a drfavthrz dtf N7

o
TR ) |

(d) Potential energy of the external loads

It is assumed that the idealized structural system (Figure 2) is subjected
to the line load P, and the distributed load Po- The former correspondsto a

load such as the weight of the cylindrical shell. The distributed loads p,

represent other structural loads. The total potential energy of the external
loading is given by

21 21 A
U, - _f 2P [W(t)],ane 46 _J. j PW(D)CArdO oo (10)
0 . 0J 0 .

The total potential energy functional for the shell-foundation-elastic soil
mass system (U) is obtained by combining Equations 1, 3, 9 and 10; (ie. U
= Up + Us + Ugs + Uy). For the functional U to satisfy the principle of

stationary potential energy we require

U =0 (11)

where U is the variation of the functional. In order to apply this principle to
the soil-raft foundation interaction problem, it is assumed that w(r) admits
a representation in the form

Wit) = a E GBI 12
i=0 .
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where C; are arbitrary constants and ¢; are functions which render the foun-
dation deflections kinematically admissible. The accuracy of the energy
solution is improved if, at the outset, the functions ¢, (r) are ordered in such
a way that the boundary conditions at the restrained edge are identically
satisfied. It should be noted that the boundary conditions related to the
flexural moment atr = a is of a kinematic nature. The boundary conditions are

M,(a) = [d:\:gr) l\:vdw(r) 3 [dw(r) 3
Qfa) = -D [%.{vzw(r)}] - 0 e (13)

By using the boundary conditions of Equation 13, the deflection in Equation
12 can be reduced to a representation in terms of (n—2) arbitrary constants.
The principle of total potential energy requires that U can be an extremum
with respect to the kinematically admissible dJsplacement field characterized
by C, [see e.g. WASHIZU, (1975) MIKHLIN, (1969)]. Hence

Ju

L2 =2 e,
6C =0 (i=0, n-2) (1

The above minimization procedure yields (n—2) linear equations for the
undetermined constants C,.

THE RESTRAINED RAFT PROBLEM

; .

In order to examine the interaction between the circular foundation with
an edge restraint and the isotropic elastic soil mass, it is assumed that,
complete contact is maintained in the plate region 0 < r < a. As such the
deflected shape can be represented in the form of 4 power series

%
wi) = a % Cy (i) ............... (15)
1..0 a .

where Cj; are arbitrary constants. By examining Equations 12 and 15 it is
~ evident that the particular choice of functions corresponding to ¢;(r) con-
stitute a kinematically admissible set of functions which give finite and single
value displacements and flexural moments in the plate region 0 < r < a.
By invoking the boundary conditions of Equation 13 corresponding to
the restrained-edge, Equation 15 can be reduced to the form

wr) = 2 [co + c,{(_;)z + Py (§)4+ Ps (2)6” ............ (16)
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where ‘
| {p1 ;pz} - 8:%% {_g; é} e (1)
and
T[] e

By making use of (16) the expression for the total potential energy functional
can be reduced to the explicit form

Ea?
(1—=v})
—mpea M (1 +N) [Co + XaCal  eevvrcerennns (19)

where the constants %,(n =1, 2, 3, 4) are defined in AppendixII. Also, the
line load P, has been expressed as a multiple of the applied stress pg i.e.

N por2a
2n

The constants C;, and C, are uniquely determined from the minimization
conditions

U =

[Ctz) + xxcocz * cle‘] + ﬂDCix.l

P0=

éu du
— =0 y — = O 20
aC, 3C, @0

The explicit form for the deflection of the circular plate with a restrained edge
is given by

W) < map, (1 ;sN)(l—vi)[c: . cgl-(£)2+ o, (z)‘+ o, (g)‘}] @1

- where

{(x1x4 — 2%, —RX;) ; (X, — 2x4)}
fa cg} - St A, @2)
. [X2—4x,—2RY,]

and R is a relative rigidity parameter defined by

_7(=v)E (h}*
R ‘a(———l_vz)g,(a)
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In addition, the contact stress at the soii-raft foundation interface is given by

12pou+N)[* t(~2-3p, -1 )
(5,0 = 22+ 10 “2—p -3
c,,(1,0) V'I—-(r/a.)z Co"‘cz‘ 9P1 2592
N (r)2(4_32p _32 ) . 'r)“(64p _IZSP)
2 CREE T (a R T
r\6/256 '
Iy (&0 e, 24
. (a) (25 pz)] 24)

The flexural moments in the restrained circular foundation due to its
Interaction with the isotropic elastic soil mass can be obtained by one of two
methods. In the first method, the distribution developed for wi(r) can be
directly used in the relationships for the flexural moments

M, - — D[d?-w(r) . de(r)]
dr2 r dr
_ _plldw® dzw(r)] 5
My = D[;_d;_ + V_dr_z- IR (25)

As has been observed by Dym and Shames (1973) and others, any inaccura-
cies that may be present in the energy estimate for w(r) are greatly magnified
in the computation of M, and Mg, owing to the presence of derivatives up to
the second-order. It can be shown that flexural moments in the unrestrained
circular foundation as determined from Equations 21 and 25 are somewhat
lower than those predicted by Brown (1969) using the numerical method
involving a power series technique. In the second method, the flexural
moments in the restrained circular raft are computed by considering the
action of the external load distribution and the contact stress distribution.
For this purpose it is convenient to utilize basic solutions developed for a
circular plate simply supported along its boundary. Using this technique, we
obtain the following resuit for the flexural moment at the centre of the
- restrained circular raft (M, (0) = Mg (0) = My):

M, LBy (1=v) (Aev)
Mo (I+N) 16 - 4 ot -

where m;, m, and m, are deﬁned in Appendix I. Also, the flexural moment
at the edge of the restrained raft (M, (a) = M,) is given by

-—_(_j, = m3 PRasedbstaeanan ( )
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NUMERICAL RESULTS

In order to develop numerical results for the interaction of the restrained
circular raft foundation, attention is restricted to the particular case where
the raft is subjected only to a uniformly distributed load over the entire
surface area. The effect of the line load is neglected. For this particular form
of external loading N = O and A = 1.

(a) Flexural deflections

The accuracy of the energy estimate for the flexural deflections of the raft
(Equation 21) can be examined by first assigning suitable limiting values for

- the relative rigidity parameter R. As R — « the circular raft resembles

an infinitely rigid foundation resting in smooth contact with an isotropic
elastic halfspace. Taking the appropriate limit of Equation 21 we obtain the
following expression for the rigid settlement (w,) of the circular raft:

wo = (1~ vi)a
2E

This result is in agreement with the exact solution obtained by Boussinesq
(1885) and Harding and Sneddon (1945) for the rigid indentation of an
isotropic elastic halfspace by a circular foundation. These investigations are
based on the use of potential function techniques and integral equation
methods, respectively. It may be noted that for the rigid raft foundation
[dw(r)/dr),_, = 0 ; as such, the degree of edge restraint has no influence on
the settlement.

5

Astherelative rigidity R reducesto zero {i.e. D—0), the interaction problem
reduces to that of the surface loading of an isotropic elastic soil mass bya’
uniform flexible circular load of radius a and stress intensity p,. A comparison
of the energy estimate for the central deflection with the corresponding exact
solution yields the following:

[{W(O) }Encrsy: {W(O)} Exact]
p(l1— v,z).a/}i".s

Similarly, the following results are obtained for the comparison of the
differential deflection [w, = w(0) - w(a)] within the uniformly loaded region:

= [209: 2.00) oo, (29)

[{wd}E“"“:{wd}E"“‘] = [0.730: 0.727) oo (30)
Po(1 — vd)a/E,
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Again, since the flexural rigidity D is assigned a value zero, the edge restraint
has no effect on the deflection of the perfectly flexible plate. ‘

_The influence of the edge restraint can, however, be observed for finite
values of the relative rigidity parameter R. To observe such effects it is
instructive to examine the non-dimensional parameter k, which influences
the degree of restraint. Assuming that the cylindrical shell is composed of the
same material as the circular raft (i.e. Bg = E; v, = v} Equation 18 reduces to

2 g2
C ko = 2BV @2 {;} ........................ 3D
10 o e : —
8=0 1 ‘ 8=0.5
p=Ql p=0.1

Ky = ‘l T10.8
————— KM =10
—— Ky = 107 T
—— Ky " 108 1.0
I wir}

Fig. 3. Deflections of the fexible circular raft #(x) = wir)fa,
182 :




CIRCULAR RAFT FOUNDATION

r/a

8=1.0 ' 4
g =0l

8s220
p=0l

Fig. 4. Deflections of the flexible raft w(r) = w(r)/a.

where 8 = t/h and p = h/a.

—_— Ky | L os P
——— Kpy= 10 :
—_—— Ky 102 1
—e— Kpy= 108
: ' 1.0
-1 wir)

It is evident that k, incorporates the geometric characteristics of both the
raft foundation and the cylindricalshell. Assuch, to observe the influences of
the shell and plate dimensions on the raft performance it is convenient to

treat @ and p as separate varjables.
can be written in the form

R = Kypd

where K, is a modular ratio defined by
_#(l-v) E
M T 80-v) E,

........................

........................

Also, the relative rigidity parameter R




SELVADURAI

r/a

§=05
pe=02

Fig. 5. Deflections of the flexible circular raft v_v(r) = wir)/a,

Figures 3-6illustrate the manner in which the deflection of the circular raft
is influenced by the degree of restraint offered by a monolithic cylindrical
The vaue 8 = 0 correspondsto the unrestrained circular raft. The value
0 = 2 represents, from a practical point of view, a somewhat artificial situation
where the cylindrical shell imposes considerable restraint on the edge rotation.
Alternatively, the case of a rigid shell can be depicted by retaining the ratio
(Eo/E) which occurs in Equation 18. This ratio can then be assigned a suf-
ficiently large value to achieve conditions consistent with a rigid shell. From
the results given in Figures 3-6 it is evident that the flexural deflections of the
eircular raft are considerably influenced by the degree of restraint that is
offered by the stiffness of the monolithic thin cylindrical shell.

shell.
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r/a
1.0 0 1.0
T T T T T ] T T
8=10 1 =20
u=02 p=0.2
T 0.2
T 04

——— KM-I

+0a8
————— Ky =10 :
—_——— Ky =102 1
—— Ky- 108
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w(r)

Fig. 6. Deflections of the flexible circular raft W(r) = w(r)/a.

(b) Contact stresses

The analytical solution presented for the restrained raft problem assumes
that.the contact between the supporting medium and the circular raft is
perfectly smooth and that no separation takes place in this region. It is
therefore important to examine the nature of this contact stress distribution
(Equation 24) and in particular investigate the manner in which the edge
restraint influences the contact stresses. The contact stress (Equation 24)
has been evaluated for the same set of representative values of 8 and n
considered earlier. Again it should be noted that A and N are set equal to
unity and zero respectively. Figures 7-10 illustrate the contact stress distribu-
tions evaluated for various degrees of edge restraint. It is evident that edge
stresses are substantially altered by the presence of the restraint.
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Cmm— Ky 10
—— Ky 10° 1
—— Ky =0t

20

Tplryo)

Fig. 7. Contact stresses at the raft - elastic medium interface T, ,(r0)= cru(r,o)lpo.

7, (r,0)

Fig. 8. Contact stresses at the raft - elastic medium interface T,,(6,0) = 0,,(r,0)/pg-
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Fig. 9. Contact stresses at theraft - elastic medium interface G,, (r,0)= 0, (1,0)/pp

o ey KM. 10
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& (r,0}
Fig. 10. Contact sfresses at the raft - elastic medium interface a,, (1,0) = o (r,0)/pg.
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CONCLUDING REMARKS

This paper presents an analytical solution to the problem of the frictiontess
axisymmetric interaction between a flexible circular raft foundation and an
underlying elastic soil mass. In contrast to classical treatments of this inter-
action problem, here we consider the influence of partial fixity at the boundary
of the circular raft. Such effects can be introduced by the monolithic action
between a foundation raft and a containment shell. The interaction problem
is examined by using a variational approach. It is shown that the variational
method yields compact results of engineering interest particularly for the
deflections and flexural moments in the raft and for the contact stresses at the
raft-elastic medium intesface. Numerical results presented in the paper
indicate thatthe degree of edge restraint hasa significant influence on the total
and differential settlements experienced by the circular raft. Similar conclu-
sions apply to the normal contact stresses that are developed at the raft-
elastic medfum interface.

ACKNOWLEDGEMENT

The work described in this paper was supported in part by a Research
Grant awarded by the Natural Sciences and Engineering Research Council
of Canada Grant No. A3866.

REFERENCES

BOROWICKA, H. (1936). Influence of rigidity of a circular foundation slab on the
distribution of pressure over the contact surface. Proc. Ist Int, Conf. Soil Mech. Fdn.
Eng. 2, pp. 144-149,

BOUSSINESQ, J. (1885). Applications des potentials a I'etude de Pequilibre et du
movement des solides elastique. Gauthier-Villars, Paris.

BROWN, P.T. (1969). Numerical analyses of uniformly loaded circular rafts on deep
elastic foundations. Geotechnigue, 19, pp. 399-404.

DYM, C. and SHAMES, LH. (1973). Solid Mechanics: A Variational Approach.
Advanced Engineering Series, McGraw-Hill, New York,

GREEN, A.E. (1949). On Boussinesq’s problem and penny-shaped cracks. Proc. Camb.
Phil. Soc. 45, pp. 251-257.

HARDING, J.W. and SNEDDON, L.N. (1945). The elastic stresses produced by the
indentation of the plane surface of a semi infinite elastic solid by a rigid punch.
Proc, Camb. Phil. Soc. 41, pp. 16-26.

[SHKOVA, A.G. (1951). Bending of a circular plate on the elastic halfspace under the
action of a uniformly distributed axi-symmetrical load (in Russian). Uch. Zap.
Mosk, Ges. Univ, 3, No, 152,

MIKHLIN, G.S. (1964). Variational Methods in Mathematical Physics {translated
from Russian by T. Boddington). Pergamon Press, New York.

188




CIRCULAR RAFT FOUNDATION

SELVADURAI, A.P.S. (1979). Elastic Analysis of Soil-Foundation Interaction.
Developments in Geotechnical Engineering Series, Vol. 17, Elsevier Scientific
Publishing, Amsterdam. :

SNEDDON, IN. (1966). Mixed Boundary Value Problems in Potential Theory.
Noeordhoff Publishing Company, Amsterdam,.

TIMOSHENKO, S.P. and WOINOWSKY - KRIEGER,S. (1959). Theory of Plates and
Shells. Engineering Society Monographs, 2nd Ed., McGraw-Hill, New York.

WASHIZU, K. (1975). Variational Methods in Elasticity and Plasticity. 2nd Ed.,
Pergamon Press, Oxford.

189




SELVADURAI

APPENDIX 1

The functions %, (n = 1, ..., 4) are given by
2 8 16
Ho= e 30080+ Liotd B

. {?ﬁo- ¢ 2 (pitor8) s E(pzamiaﬁéo

1024 }
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APPENDIX IT

cylindrical polar coordinate system
distance along the generator of the shell
raft deflection in the z-direction
shell deflection in the r-direction
2 1d
— e —
dr2 r dr

Eh3
12(1-v2)

E,t
12(1—v)

thiekness of raft foundation

thickness of shell wall

Young’s modulus of raft material
Poisson’s ratio of raft material

Young’s modulus of shell material
Poisson’s ratio of shell material
Young's modulus of the soil material
Poisson’s ratio of the soil material

line load due to shell

distributed load

radius of raft foundation

radius of circular line load

radius of distributed load

2Py

Porla

concentrated edge moment in shell
flexural energy of raft foundation
flexural energy of shell .

elastic energy of soil mass

potential energy of external loads
UF+US+UHS+UL

first variation of U 7

contact stresses at the raft - soil mass interface
radial bending moment in raft . '
circumferential bending moment in raft
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edge moment in raft

shearing force in raft

arbitrary constants

substitution parameters defined by Equation 17
rotational stiffness of shell defined by Equation 6

ka

D

7 (1—vd) E [hr

6 (1-v) E, |2

central displacement of raft
m(l-v) E

§ (I-V) E, .
[4

h

h

a

substitution paramesters
substitution parameters
substitution parameters
substitution parameters




