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A contact problem for a Reissner plate
and an isotropic elastic halfspace

Probléme de contact d'une plaque de Reissner
sur un demi-espace élastique isotrope

by

A. P. S. SELVADURAI *

ABSTRACT. — The axially symmetric contact problem for a thick circular plate resting in smooth contact
with an isotropic clastic halfspace and subjected to a uniform load over a finite area is examined by using a
variational method. The thick plate theory utilized in this paper takes into account the effect of shearing
deformations in the plate as developed in the thick plate theory of Reissner. Numerical results presented in
this paper illustrate the manner in which the plate deflection, contact stresses and flexural moments can be
infinenced by the thickness effects in the plate.

RESUME. — On étudie par une méthode variationnelle le probléme de contact axisymétrique pour une plague
circulaire épaisse, soumise & une charge répariie uniforme, et reposant sur un demi espace élastique isotrope
dans I'hypothése d’un contact sans frottement. La théorie de plaque épaisse utilisée dans cet article prend en
compte Peffet des déformations de cisaillement dans une plaque selon la théorie de Reissner. Les résultats
numériques présentés mettent en évidence de quelle fagon la déflection de la plaque, les contraintes au contact
et les moments fléchissants sont influencés par les effets d’épaisseur de la plague.

1. Introduction

The analysis of flexural interaction between finite elastic plates and elastic media is of
particular interest in geotechnical engineering. Solutions to such problems have applica-
tion in the structural design of raft foundations resting on soil and rock media. This
paper investigates the flexural interaction of a thick circular plate resting on an isotropic
elastic halfspace. Conventional treatments of the flexural interaction between a circular
plate and an elastic medium usually assume that the flexural behaviour of the plate can
be adequately described by the classical Poisson-Kirchhoff thin plate theory. (Poulos
and Davis [1]; Selvadurai [2]). When dealing with moderately thick plates (i. ¢. thickness
to diameter ratios of the order of 1/8) subjected to localized loads, it becomes necessary
to examine the influence of shearing deformations on the raft settlement and flexural
moments. The thick plate theory proposed by Reissner [3] can be adopted for the
analysis of this class of interaction problem (see e. g. Gladwell and Iyer [4] and Svec [5]).
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The method of analysts employed in this paper utilizes a variational formulation in
which the transverse deflection of the thick plate [w(r)} and the shear strain [y(r)] are
represented in the form of power series in the radial coordinate r. These distributions
are specified to within a set of undetermined constants ordered in such a way that (i) the
kinematic constraints of the axisymmetric deformation and (ii) the boundary conditions at
the free edge of the raft, are identically satisfied. The variational formulation proposed
here requires the development of a total potential energy functional for the thick plate-
elastic halfspace system which consists of (i) the strain energy of the halfspace region,
(i) the strain energy of the circular plate region and (iii) the work component of the
external loads. The strain energy component of the halfspace region can be developed
by computing the work component of the surface tractions which compose the contact
stresses at the thick plate-elastic medium interface. These contact stresses associated
with the imposed displacement field w{r) can be uniquely determined by making use of
integral equation methods developed for mixed boundary value problems in classical
elasticity (Sneddon [6]). The strain energy of the thick circular plate is composed of the
flexural and shear energies corresponding to the prescribed functions w (r) and v¥{r). The
total potential energy functional thus developed is defined in terms of constants which
characterize the two distributions for the thick plate deflection and shear strain. These
constants are uniquely determined from the linearly independent algebraic equations
generated from the minimization of the total potential energy functional.

The general procedure outlined above is used to analyse the flexure of a thick circular
raft resting in smooth contact with an isotropic elastic halfspace and subjected to a
uniform circular load over a finite area. The deflections and shear strains in the raft
are represented by even and odd order power series to the sixth and third powers in r,
respectively. Numerical results presented in this paper illustrate the manner in which
raft settlements and flexural moments can be influenced by the raft thickness and the
localized nature of the external load.

2. The thick plate theory

The classical Poisson-Kirchhoff thin plate theory has been widely applied in the
examination of several important problems pertaining to soil-foundation interaction (see
e g Borowicka [7), Barden {8}, Brown [9], Timoshenko and Woinowsky-Krieger
[10)). A comprehensive account of the axisymmetric interaction problem related to a
thin plate resting on an isotropic elastic halfspace is given by Selvadurai {2]. There are,
however, many engineering situations for which the use of the classical thin plate theory
may be open to objection. Such situations include the stress analysis of thick circular
rafts with thickness to diameter ratios of the order of 1/8 and rafts subjected to highly
localized loads. The various thick plate theories that have been proposed in the literature
provide useful refinements to the Poisson-Kirchhoff thin plate theory. The thick plate
theories of Reissner [3] and Mindlin [11} incorporate the effects of transverse shear
deformations in the analysis of flexure. Further accounts of the various thick plate
theories are given by Timoshenko and Woinowsky-Krieger [10], Naghdi {12] and
Selvadurai {2],
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In the thick plate theory proposed by Reissner [3] the total rotation of a cross-section
is expressed as the sum of the following: (i) the rotation corresponding to the normal
which remains perpendicular to the middle surface of the plate and (ii) a straight line
rotation which represents the shear deformation effect. In the ensving, attention is
restricted to the axisymmetric flexure of a thick circular plate, the deformation of which
is characterized by the displacement components @(r, z} and w{r, z) in the r and z
directions respectively. We have:

(1) ulr, 2)=z®{r); wir, 2)=w(r),

where @ is the average rotation of a section r=constant, and w(r) is the mid-plane
transverse displacement. The rotation © can be written as:
cQ

dw
2 P(r)=—— +7v; =,
(2 =——41  v=

where v is the additional rotation due to transverse shear; (Q is the shear force;
G(=E/2(1+v)) is the linear elastic shear modulus; ¢ is the plate thickness and c is a
shear coefficient representing the restraint of the cross-section against warping. This
constant can vary between 1.0 and 1.5 depending on the degree of restraint and is usually
taken as 6/5. The curvature and force equilibrium relationships yield:

‘ _ fdw v _ f1dw vy
) s b U PR
and:

4 4Q + Q +p(n—q(r)=0,

dr T
respectively, where g(r) is the contact stress at the thick plate-elastic medium interface

and p(r) is the external load. Using the above results, the moment-curvature relation-
ships yield the following expressions for the flexural moments M, (r) and M, {r) :

d®w  vdw dy v
S5a MFl=—D| —/+ - — — ¢ — + - ,
PeL ) |:dl"2 r dr {dr rY}:I

1 dw diw ¥ o dy
Sb M, ("= D _— Y — — - +y— R
©8) o(") [rdr dr? {r vdr}:l
where:

3
(6) D= Lt
12(1—v3)

is the plate rigidity. The shear force in the deformed thick plate is defined by the second
equation of (2). By utilizing the above relationships it can be shown that the total strain
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energy of the thick plate is given byf

_ 2
) Ure= 3 ] [ 17wy 200 o
s

r dr dr?
dy y1* 2(1-v) dy dy { d*w v dw}
— L -y — 2=
+{dr+r} r Ydr dr { dr?  r dr

Z
_ﬂ{l d_W +Vﬂ_]f} +B»Yz]ra'rd9,

r lr dr dr?

where B=6(1-v)/t?c and § corresponds to the plate region.

3. The strain energy of the halfspace region

The second component of the total potential energy functional corresponds to the
elastic strain energy of the isotropic elastic halfspace region which is subjected to the
displacement field w(r) in the region r<a, where a is the radius of the thick plate. It is
assumed that the external loading configuration on the thick plate is such that no tensile
tractions are generated at, the smooth thick plate-elastic medium interface. To physically
achieve continuous contact in the region r<a, the contact stresses should be
compressive. This fact has to be verified upon completion of the interaction
analysis. From a practical point of view, the self weight stresses of a thick foundation
raft may be sufficient to prevent seperation at the smooth interface, The normal contact
stresses at the smooth interface can be uniquely determined by making use of the integral
equation methods developed by Sneddon {6], Green [13] and others for the analysis of
mixed boundary value problems in classical elasticity. The normal contact stress associa-
ted with the imposed displacement w (r) (in the region r<a) is given by:

o G, d [ sg(s)ds
(8) Gzz(r’ 0)-?(’)— (l—-\f’)r dr a\/sz_,ﬂ’

where;

(S)_g_ei *rw(r)dr
) g= n ds 07;?——;;,

and G, and v, are, respectively, the linear elastic shear modulus and Poisson’s ratio of
the elastic medium. From the above results, the elastic strain energy of the halfspace
region is given by:

= G@ (w1 s Va0 rwdr d]dd&
(10) Uys= Tt(l-V,)J.J.s a [:rer; /SZ_rl{ds 0(11 /sz—rz} s | rdr
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The potential energy of the external loads is given by:
(1) U=~ J] p(ryw(r)rdrd?,
1

where S is the region occupied by the external load p (r).

4. The total potential energy functional

The total potential energy functional U for the thick plate-clastic medium system is
obtained by combining (7), (10) and (11} i. e.;

(12) U=Urp+Uys+ Uy

For the total potential energy functional to satisfy the principle of stationary potential
energy:

(13) dU=0,

where 68U is the variation in the functional. In order to apply the principle of total
potential energy to the interaction problem it may be assumed that the deflection of the
thick plate w(r) and the shear strain y(r) can be represented in the form:

(14) w(r)=a Z Cui02:(r); y{r)= Z Cixe(r),

i=0 i=1

where C; and C,; are arbitrary constants and o,(r) and y,(r) are arbitrary functions
which satisfy the kinematic constraints of the axisymmetric deformation associated with
a distributed loading. In addition, the arbitrary constants C; and C,; are ordered in
such a way that the flexural moments and shear forces derived from (14) satisfy the
boundary conditions applicable to the free edge of a thick plate. For axial symmetry
these reduce to:

d*w vdw dy vy
—_ + U
ar*  r dr  dr 3

(15) SM,(a)w—D[—m-l-wm“’r*

2 Q(a):—“m %[Y}r*aﬂo'

Using the representations (14) the total potential energy functional for the thick plate-
elastic medium system can be represented in terms of (m +n+ 1) independent constants
C;(j=1, 2i). The principle of total potential energy requires that U be an extremum with
respect to the kinematically admissible deformation fields characterized by (14). Hence:

U

(16) PO

0, (j=0,2,4, .. .,n.j=1,3 ... m.
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The above minimization procedure yields (m +n+ 1) linearly independent equations for
the undetermined constants (.
»

5. The interaction problem

In order to apply the formal theory developed in the preceding sections to the analysis
of axisymmetric interaction between the thick circular plate and the isotropic elastic
halfspace. explicit representations of (14) are considered. Since complete contact is
assumed, the functions w (r) and v (r} are approximated by a power series of the form:

3 . 21 2 r 21—t
(17} W(r):azczi(“) 4 y(r)= 2C2i1(‘> '
i=0Q d (=1 &

i ‘ptfrticular Ch_oice of functions corresponding to ¢, (r) and y,(r) give kinematically
adrfnsmble deflection fields and finite flexural moments and shearing forces in the plate
region 0=r=a. The distributions (17), when combined with the constraints:

) Ci=~Cy; C,=—{(1+VC,+2C, 3+ +3C,(5+V) |,

identica}ly §ati§fy the boundary conditions applicable to the free edge r=a. The contact
stress @stnbuhon corresponding to the imposed displacement field w{r) of (17) can be
determined by making use of the relationships (8) and (9); thus:

a

T(l—v) \;alwrl

8 r r* 16 rt rt ’6}]
+-C,d —1 -4 - = —1=2— —8-— +16-— :
9 “{ ‘ 4a2+8a4}+25C6{ a at  af

By u ing the expressions for w(r) and ¥(r} in the generalized expression for U given by
(12) 1t can be shown that:

20) U= 222
( ) (1 )[{BGDC%+B22C§+B44C3+B66Cg
#Po2 CoCy+ By CuCy + Bos CoCy+ Bys CoCa+Pae C2Cq +Bas CoCo }
. 2
_ ’LPL(;EE& { kyCotkyCrtk,CoitkeCy } :|

In (20), the constantg §,; take the form:

(21
) ﬁszpij+K MNijs
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where:
1— 2 3
(22) K= dzw) E (14
12(1—v*) E, \ a
is a relative rigidity parameter for the plate-elastic medium system and the constants p,;
and m;; are defined in Appendix A. The constants n,; depend on a parameter Q where;

Q= Se(t/a+3(1—v)
12 ¢ {t/a)?

(23)

is a parameter which governs the effect of shear deformations in the thick plate. The
constants k,{(n=0, 2, 4, 6) are given by:
o? ot af -

24 ko=1; k,= —: Ky= -—: ka= —,
( ) Q 2 3 4 3 6 4
and wa is the radius of the loaded region ( Fig. 1). The constants C,, C,, C, and C,
can be determined from the set of linear equations which are generated from the
minimization conditions:
(25) U0, (i=0,2 4,6

acl *+ 3 bl » *

The solution of this set of equations can be written in the compact form:

_ PU-vhH
(26) S L
where:
(27 a) [CI'=[C,C,C, C,l,
(275) [k]T=[ko kz k4ks];

2 Bo0 Bo2 Boa Pos
Boz 2022 B2a Bas
Bos Bra  2Pasa Bas
Bos Pzs  Bas 2Bss

(27 ¢) {B]=

and P=p,na’ a® is the total external load on the thick plate.

6. Flexural deflections, contact stresses and flexural moments
The accuracy of the solution for the deflection of the thick plate w(r) developed by

employing an energy approach can be examined by assigning suitabie limits to the relative
rigidity parameter K (the numerical results presented in this section are valid for v=0, 3),

JOURNAL DE MECARIQUE THEORIQUE ET APPLIQUEE




188 A. P. 8, SELYADURAI

2aa
a P
D Tczoz
ARAR Thick circular plote
't | II/— -
Q
a <

\\i
' isotropic elastic halfspace
z

Fig. 1. — The geometry of the thick circular plate and the external loading.

b

Fig. 1. — Géométrie de la plague circulaire épaisse et du chargement extérieur.

(i) Infinitely rigid circular plate

It is evident that as K — oo, the thick circular plate resembles a rigid foundation. This
limiting value may be achieved by increasing either the modular ratio (E/E,) or the
thickness ratio (t/@). In the particular limit as K — oo, however, it is assumed that
w (r}=w, =constant, in the region r<a. From the results of the energy solution we
obtain:

P(1—v?)
28 Wo= —————— .
(28) °" 20%aE,

This result is in agreement with the classical solution obtained by Boussinesq {14] and
Harding and Sneddon [15] for the displacement of a rigid circular punch resting in smooth
contact with an isotropic elastic halfspace. These exact solutions were derived by
considering results of potential theory and integral equation methods respectively.

(ily Flexible circular loading

As K —0 and as p( =t/a) = 0, the interaction problem reduces to that of the axisymme-
tric loading of an isotropic elastic halfspace by a uniform circular load of radius «a and
stress intensity p,(=P/na?a®). For convenience, o is set equal to unity. The two
results of particular engineering interest are the maximum deflection {w (0} and differential
deflection [w (0)—w (a)} within the loaded area. The exact solutions corresponding to
these can be readily obtained by an integration of Boussinesq's solution for the normal
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loading of a halfspace by a concentrated force {Timoshenko and Goodier, [16]). A
comparison of the energy estimates with the exact solutions yields the following:

P(l—v?)

[2.039: 2.G00}
rnakE

{29) { { w (0) }Energy: { w (0) }Exact] =

5

Similarly, a comparison of the differential displacement w,= {w(0)—w(a)} gives:

g2
(30) [ { Wy }Energy: { Wy }Exact} = "E"("“]""—vi“) [0730 0 727}
nak

3

From (29) and (30) it is evident that the energy estimates for the displacement of
the infinitely rigid and perfectly flexible plates compare favourably with known exact
solutions.

(iii) Flexural deflections in the thick plate

In order to examine the effect of the plate thickness on the flexural deflections of the
thick plate it is appropriate to replace the relative rigidity parameter K by:

(3la) K=Kyn',

where:

(31b) Koo n{l—v)E
M

T 12{1 V) E,’

is a reduced modular ratio. The Figures 2-3 illustrate the variation in the central
deflection of the thick circular raft (w,) with p for a range of values of K. Similarly
Figures 4-5 illustrate the distribution of the thick plate deflection along a diametral
section. It is evident that the flexural deflections of the thick circular raft are considera-
bly influenced by the thickness ratio p and the loading configuration o.

{iv) The contact stress

The contact stress distribution at the thick plate-clastic halfspace interface can be
evaluated by making use of the equation (19} and the results of (28). The formal
expression for the contact stress can be written as:

o, (r,0) 1
P/m a? \/1 —ri

{32) ﬂ}(ro)m [C0—2C2{1—2r§}

8

- S Culltar—8r) - 16

Egcﬁ{ ].+2r§+8r$—16r8}],

where ry=ria.

The expression for the contact stress (32), can be evaluated to establish the limits of
applicability of the interaction problem examined in this paper. The assumption of
tensionless contact at the frictionless interface is fundamental to the developments presen-
ted in the preceding sections.
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Figs. 2-3. — The central deflection of the thick circular plate:
Fig. 2-3. — Déflection cenirale de la plague circulaire épaisse :

P1-vhH_
w(0)=*w{1_)w0; P=p, na’a?
2 aE,

For the energy solution to be physically admissible it is cssential that the contact
stresses developed at the interface remain compressive for various combinations of the
loading configuration o, the thickness ratio, pu, and the reduced modular ratio,
Ky Should the contact stresses become tensile in any region of the interface then the
interaction problem becomes one of unilateral contact between the plate and the elastic
halfspace, A detailed account of investigations pertaining to such tensionless contact
problems is given by Selvadurai {2} and Gladwell {17). It is found that frictionless
contact between thin plates and elastic media induced by highly localized or concentrated
loads are susceptible to such separation effects. The variation of the contact stress at
the thick plate-elastic halfspace interface computed for various combinations of «, p and
Ky is illustrated in Figures 6-7. It is evident that tensile contact stresses tend to develop
in the instance where relatively thin plates are subjected to localized external loads.

(v} Flexural moments in the thick plate

The flexural moments induced in the thick plate due to its interaction with the isotropic
elastic halfspace can be obtained by one of two methods. In the first method, the

YOLUME 3 — 1984 — n° 2
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Fig. 8-9. — The central flexural moment in the thick plate:
Flg. 8-9. — Moment fléchissant central dans la plaque épaisse ;

P—
M, (0= Mo 0= ; M(o)-

distributions developed for w(r) and y(r) are directly utilized in the relationships for M,
and M, given by (5). It is clear that the energy method provides accurate estimates of
the plate deflection; however, the accuracy with which w({r) and v(r) are able to predict
flexural moments in the thick plate is, in general, considerably less. As observed by
Dym and Shames (18] and others, any inaccuracies that may be present in the energy
estimates for w(r) and y(r) are greatly magnified in the computation of M, and M,,
owing to the presence of derivatives up to the second-order. In the second method, the
flexural moments in the thick plate are computed by considering the action of the external
load distribution and the contact stress distribution. For this purpose, it is convenient
to employ basic solutions developed for a thick plate simply supported along its
boundary. Avoiding details of calculation, it can be shown that the flexural moment at
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boundary. Avoiding details of calculation, it can be shown that the flexural moment at
the centre of the thick circular plate (M, (0)=M,(0) = M,) is given by:

(33) My _4-(1-va? _(14+v)ina
P/n 16 4

+(1+v){[%+§+5‘&+§_%],,,2_[%+Q+§_C_4+806]}

o e, S

+-nd - S, G 26 543}
1230 35 63

3 15 15 9 75 ' 245

Figures 8-9 illustrate the variation in the central moment. These results indicate that
the central flexural moment is signicantly influenced by the loading configuration, the
reduced modular ratio and the thickness ratio. These solutions agree with known
results [2] for the central flexural moment for a ‘rigid’ plate resting on an isotropic elastic
halfspace.

Conclusions

It is shown that the analysis of axisymmetric interaction between a thick circular plate
resting in smooth contact with an istropic elastic halfspace can be examined by employing
a variational approach. The plate deflections and the shear deformation are prescribed
functions. The results derived for the variational method agree closely with known exact
solutions for limiting values of the relative rigidity between the thick plate and the elastic
halfspace. The various numericai results presented in this paper indicate the manner in
which the deflections, flexural moments and contact stresses in the thick plate can be
influenced by (i) the thickness to diameter ratio of the plate, (ii) the modular ratio of the
plate material and the supporting medium, and (iii) the extent of localization of the
applied loads.
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Appendix A

The constants piyand ny, (i=0, 2, 4, 6;7=0, 2, 4, 6) are defined as follows:

o S

' ] o4 256
Poo=1; Pzz=g, p“=é_1; p66=§2_5;
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4 _ 16 _ 800, _32
Po2= 3’ Pos= 5’ Pos 875’ P24 e
64 256

Pas= 1 Pas=

45 165
‘122=4+4V+Q§§‘C211:

n44=%9+16v+0§i~—§412,

1008
ﬂ56=T+36"+Q§§—c676s

Na=164+16v4+20Q0, 0,1 —L41,,
N2e=24+24v+200,0—Lr16— 67,

Nae=96+48v+2 Q0050416 -L6T4,

and all other n,,(j=0, 2, 4, 6)=0. Also,

and :
La=(1+V); Ca=2(3+V); Le=3(5+V).
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