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The additional settlement of a rigid circular foundation on an
1sotropic elastic halfspace due to multiple distributed extemal
loads

A.P.S. SELVADURAI*

The paper is concernied with the interaction between a
rigid circular foundation resting on an elastic halfspace
and a distributed external load of finite extent which acts
at an exterior region of the halfspace. This problem serves
as a model for the examination of the interaction between
an existing structural foundation and a newly
constructed adjacent foundation. The. mathematical
procedures which lead to the theoretical analysis of the
title problem are summarized. It is shown that the
additional elastic settlements éxperienced by the rigid
circular foundation dué to the ‘action of a concentrated
external force can be evaluated in exact closed form: This
solution is used to generate results which are applicable
to distributed loadings. From the results presented it is
possible to determine the additional elastic settlement of
a rigid circular foundation on an elastic halfspace due to
multiple loads, of arbitrary shape and location, which act
in its vicinity.

La communication traite de l'interaction entré' tune
foundation rigide circulaire reposant sur un-semi-éspace

et une charge extérieure répartie de surface finie:qui-agit -

sur une zone extérieure 4 la surface du semi-espace. Ce
probléme sert.de modéle 4 I'étude de I'interaction:d'une
fondation structurale existante et dune '{fondation
contigué nouvellement  construite.,, Les ; procédés
mathemathues qu1 ont condmt a lan se‘ theonque du
problemelenonce en’ titre sont’ résumés”ef il est montTré
que les tasséments &ldstiqiles supplcmcntal.res subis par
la fondation: ngldc circulaire, dus a I'action d’une force
extérne concentrée, peuvent, se caléuler: d'uné maniére
exacte. Cette solution sert pour: bbtenir des ‘résultats qui
sont applicables 4 des charges réparties. A partir des
données énoncées, il est possible de. déterminer le
tassement  élastique supplémentaire que. subira .une
fondation circulaire rigide sur un semi-espace élastique
sous des chargcs multiples de formc et de loca]:satmn
arbitraires; intervenant dans son voisinage.

INTRODUCTION

The classical theoretical solutions in the area of
soil-foundation  interaction are  primarily
concerned with the examination of the
performance of an isolated foundation. For
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cxample, Boussinesq’s (1885) solution for the
indentation of an isotropic elastic' halfipace by a
rigid circular foundation explicitly assumes that
the region exterior to the foundatlon is free of
loads or nmghbourmg foundations. However, the
mutual interaction between a- structural
foundatxon and an external]y placed surface load is
unportant to the assessment of the settlement of an
emstmg foundation due to surcharge loads applied
in'its vicinity.

‘This Paper éxamines the problem of the
interaction between” a loaded’ rigid circular
founidation rcstmg in smooth contact with an
isotropic elastic halfspace and a distributed
loading which acts at an exterior point on the

" surface of the halfspace. There is no analytical

solution available for this lmear elastostatic
mteractlon problem. Ong to the ngld nature of
the circular foundation it is not passible to use the
influence charts developed by Newmark and
others for the settlement of 2 ha.lfspace region (see
e.g. Poulos & Daws,, 1974) to estimate settlements
assoclatgd with the, mutua] lnteractaon. problem.

The mathematlcal a.nalys1s of the basm problem
is dlscussed. The problem related to the

force can be reduced to a mixed houndary value
problem associated with a halfspace region. The
dual integral équations associateéd-with the tixed
boundary problem are solved by using the
standard :techniques outlined- by:Sneddon (1977)
and Sneddon & Lowengrub (1969): The Paper also
shows: the -reciprocal relationship which. exists

between the displacement at an internal location of -

the rigid circular foundation due to the external
concentrated force and the displacement of an
external point due to a concentiated force applied
at a point within the circular foundation. The
applicability of such a reciprocal theorém to this
class of interaction problem extends the use of
classical results derived for- the directly. loaded
foundation (see e.g. Poulos & Davis, 1974;
Selvadurai, 1979) to the examination of mutual
interaction effects.
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Fig. 1. Geometry of the rigid circular foundation and the
co-ordinate system
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The exact solution derived for the displacement
of the rigid circular foundation due to a
concentrated external load is used as a Green’s
function for the generation of equivalent results for
the displacement of the rigid circular foundation
due to distributed external loads. From the
numerical results given it is possible to calculate
the additional settlements induced in a rigid
circular foundation on an elastic halfspace due to
multiple loads of arbitrary extent and variable
locatlon

ANALYSIS

This Paper gives a brief account of-the
theoretical analysis of the interaction between an
externally located surface force P* and a rigid
circular foundation resting in smooth contact with
an 1sotrdp1c ‘elastic halfspace. This interaction
takes place in the presénce of a direct load P,
which acts at the centré of the rigid circular
foundation (Fig. 1). The magnitude ‘of P, is
assumed to be such that the development of tensile
contact stresses at the smooth interface is
suppressed for all choices of magnitude and
location of P*. When this requirement is satisfied,
the contact region at the rigid circular foundation—
elastic halfspace Interface always corresponds to a
plane surface,

Results for directly loaded rigid circular
foundation

Some fundamental results relate to the directly
loaded foundation. In particular, consider the
problem of a rigid circular foundation resting in
smooth contact with an isotropic elastic halfspace.
The foundation (of radius a) is subjected to an
eccentric vertical load P which acts at the location
r = {a and 8 = a. The solution to this problem can
be obtained by combining the separate solutions
developed for the rigid circular foundation
subjected to a central force (see e.g. Boussinesq,
1885; Sneddon, 1950) and a central moment
{see eg, Bycroft 1956; Florence, 1961) about a
horizontal axis. The analysxs of these problems can
be approached by using a Hankel transform

- u{r,8,0y=

Rigid circutar foundation /
/ . / )< e
? Z 2a /

elastic
Fig. 2. Eccentric direct loading of the rigid circular

halispace
foundation

technique. From Fig. 2, the settlements in the
foundation region are given by

P(1—v7) ip
3Fa [1+ > cos(B—a)] (1)

where p = rfa and 0<p<1.
Similarly, the surface displacements in the
exterior region are given by
P 1— 3
( ){ sin- Lp
T

2E ;+—2——cos(9—o:)

N e

where 1< p< 0. In equations (1) and (2) E and v
denote Young’s modulus and Poisson’s ratio of the
elastic material respectively.

u,(r,6,0) =

Displacements of rigid circular foundation due to
external load

Consider now the interaction between a rigid
circular foundation resting in smooth contact with
an isotropic elastic halfspace and an external force
P* which acts at the location (i4,0,0). It is
assumed that perfect contact is maintained
between the rigid foundation and the elastic
halfspace by the application of a central force P,
To facilitate the analysis of the problem it is
assumed that the rigid circular. foundation is
subjected to fictitious additional force resultants P
and M (as shown in Fig. 3) such that the
foundation experiences zero vertical settlement in
the z direction within the foundation region r<a.

The surface of the halfspace region is now
subject to the mixed boundary conditions

u(r,8,00 =0, 0<0<2n, 0<r<a
3

'6,.(r,0,0) = —p*(r,0), 0<0<2n, a<r<w
@

G,.(r,8,0) =0, 0028, O<r<w

(5)

where p*(r, 8) is the external loading which can be
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Fig. 3. External loading of the rigid circular foundation
and the associated corrective forces

expressed as an even function of 8. For the solution
of this mixed boundary value problem a Hankel
transform development of the equations of elastic
equilibrium is used. Following Muki (1960) it can
be shown that when the boundary condition (5)
relating to the shear stress is satisfied, the
appropriate expressions for u, and ¢, can be
represented in the form

ur,0,0) =
2(1—0) i |: j ©,(5],(Erfa) d{:l cosmf (6)
. m=0 1]

o'zz(r, 8,0) =

(1+ V) m=0

The unknown functions ®,(¢) in equations (6}
and (7) should be determined by satisfying the
mixed ‘' boundary conditions (3} and (4). By
assuming that p*(r, B) can be expressed in the form

p¥r.0) = z En(r)cosmd (8)

(1 + W)
the boundary conditions (3) and {4) can be reduced
to a system of dual integral equations of the type

'rda,,(a:r,,(ér/a)d¢=o, o<r<a ()

_Lm‘:mmte:nm(&r/a) dé =g (), a<r<co (10)

In equations (9) and (10) J,, is the mth order
Bessel function of the first kind. This system of
dual integral equations has been studied by Noble
(1958), Sneddon & Lowengrub (1969) and others.
For the concentrated loading

golr} | _ P*(1+v)aA(r—Di1 (11
2ol 4n* Er 2
where A(r—

) is the Dirac delta function. The
solution of the systems of dual integral equations
determines ©,(&). Using these results, formal
expressions for the displacement and stress

[ j C@(c) I mlSr/a) dﬁ:l cosmé (7)

distribution in the elastic halfspace region can be
obtained in integral series form.

In particular, the contact stress distribution
induced beneath the rigid circular foundation
subject to the boundary conditions (3}5) can be
evaluated in explicit closed form, ie.

P* f(A2—1
0, 6,0) = =~ 2 \/(z z)
a® \J(1—p*)[* +p*—24pcosd]
(12)
where A =[/a and | is the distance between the

external load and the centre of the rigid
foundation.

This solution has been obtained by applying
force resultants P and M within the foundation
region r<a to ensure t,(r,0,0) =0, in the region
r<a. The force P required to achieve this
condition is given by

_ L 2P* 1
P= ZJ. J‘ Goor, 8,0)rdrd@ = —sin~t —
oJo n

(13)
Similarly, the moment M required to maintain

P,

" zero displacement in r<a is given by

M= 2j J a,,(r,8,00r* cos 0 dr d6
. 0.Jo

2 2. J(42~1)
— p=% — 1 2y NV T
P l[l - tan~',/(2*—1) T ] (14)
As the rigid circular foundation is not subjected
to any loading other than the central force P, it is
necessary to apply corrective force resultants F
and M to the foundation, in the opposite sense.
The displacements induced within the foundation
area due to — P and -- M can be obtained by using
the prefiminary results (1) and (2) developed for the
directly loaded foundation. It can be shown that
the setilement of the rigid circular foundation at an
arbitrary location (pa, 6, 0) due to the external load
P* applied at (1a,0,0) is given by

CPHi—v{2 . 1 3dp
w,(r,0,0) = T{E sin E+T cos
2 2 ‘
[1—»-tan"\/(i2 - 2\/(11 l)}}, 0<r<a

(15)
Generalized results and reciprocal relationships
The results derived for the displacement at an
external point due to an internally loaded
foundation and the displacement at a point within
the foundation due to an externally placed load
can be generalized to include arbitrary locations
for the loaded and displaced points. This can be
achieved by a straightforward change in the frame
of reference. ‘Consider a force P, applied at the
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location {pa,8,0) within the rigid circular
foundation. The displacement at an external
location B (da,¢,0) is denoted by u,® (Fig. 4).
Similarly Py and u,* refer to the situation where
the load and displacement locations are reversed.
1t can be shown that

ut _(l—vz)H P,
e B
where
2 1 3dp
.H_;sm II+TCOS{9_¢)
2 2. /(A%—1

As a consequence of the result in equation (16) it
is evident that the displacements u,* and u.® and
the corresponding applied loads P, and P, satisfy
Betii’s reciprocal relationship

PAH=H=PBHZA (18)

In general, the applicability of the reciprocal
theorem to this class of soil-foundation
- interaction problem is valid only in situations
where the foundation is in smooth or fully bonded
contact with the soil medium. The reciprocal
theorem does not extend to situations where
dissipative phenomena such as Coulomb friction
or finite friction effects are present at the interface.
Nevertheless, the smooth and fully bonded cases
provide useful bounds for practical purposes. In

/V
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Fig. 4. Reciprocal siates

the case of undrained elastic behaviour of the soil
medium (v = 1/2), the elastostatic solutions for the
settlements for both the fully bonded and
frictionless interface situations are identical. The
applicability of the reciprocal theorem to this class
of external load—foundation interaction problem
extends the use of available elastostatic solutions
for square and rectangular foundations to the
examination of combined interaction problems.

APPLICATIONS

The solution developed for the interaction
between the rigid circular foundation and the
external concentrated force can be generalized to
include other forms of distributed external loading.
This is achieved by a direct integration of the result -
in equation (15) within the limits of the loading
region. Several external loading configurations are
of interest to geotechnical application.” The
approach adopted here is to develop a solution for
the interaction between the rigid circular
foundation and a circular external loading of
uniform intensity and arbitrary radius, which can
then be used to examine the effects of distributed -
loadings of arbitrary shape and varying intensity.

Consider the problem of the interaction between
a rigid circular foundation and a uniform circular
external load of intensity P,/rf* a® (where P, is the
total external load acting within the circular area
and fa is the radius) which is at a distance sa from
the centre of the rigid circular foundation (Fig. 5).
As B becomes small the external uniform circular
load resembles a lacalized or concentrated force,
In Fig. 5 the frame of reference is altered to a -
specific  direction N -such that all angular
measurements are referred to this direction.
Considering the solution for the interaction
between the external concentrated force and the
rigid circular foundation it may be observed that

External circular load
(total load Py}

[

Rigid circular
foundation

Fig. 5. Interaction between the rigid circular foundation
and the external circular load
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the settlement within the foundation reglon 1s
given by

I—vYP
o Lsabnt 19

where the influence function I {s,w,f,p,0}
given by the multiple integral

I{s,w,8,p,0} =

6 PA) ! 31 g
7 r sz {—sm 1+§ pcos(0—¢)
[1 —~Ztan~! .\/(J.2 2 \/(;_2 ]}Adﬁ. d¢

(20)

u/{pa,d,0) =

where
Q =sin"!(f/s)
A1(@) = scos (¢ —a) +[p*—s?sin’ (p— w)]i 21
Ao($) = scos(p —w)—[#? —s? sin*(¢ — )]

The influence function I, can be evaluated
numerically (by using a numerical scheme based
on Gaussian quadrature) to examine the effect of
the distributed circular loading on the settlement
of the rigid circular foundation. Fig. 6 shows the
variation of I.%(= I.{s,0,8,0,0}), i.e. the settlement
of the centre of the rigid circular foundation. The size
of the distributed loading has an appreciable effect
on the central settlement only when the external
load approaches the rigid circular foundation, For
values of §<1 and s> 3 the central settlement of
the rigid circular foundation due to the distributed
loading is identical with that which is obtained for
the concentrated external loading, The influence of
the external circular loading on the settlement at
specific locations of the rigid foundation is shown
in Figs 7-9. The following convention is adopted

L)
E-Y
LR
@
—
(=]

Fig, 6. Variation of 1,° with size and location of external
load .(0,0,0) = [P,(1 —v*)/2naE] 1 °
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Fig, 7. Influence coefficients I/(s, w, f)
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Fig. 10. Solution scheme for the anzlysis of the interaction
of rigid circular foundation with irregular external loading 7

to describe the settlements at the edges N, E, S and
W of the rigid foundation

*1 _u2
uz(ax 0» 0) = %‘l [Fe I:N(s, W, JB)] = uzN
PXl1—vH .
uz(a, . o) - —3‘;!?” [P 155, B = ,®
AR N
uz(a, n, 0) - 2naE [Pe Ic,s(ss w, ﬁ)] = U,
uz(a;:;_ﬂ:, 0) = fﬁL_vz) [P-e Ic“...(s’ o, ] = l"‘zW ]

2 2naE

(22)

where P * is a normalizing load and P, = P/P,*.
Again, it is evident that the effects of the variable
size of the external circular loads become
noticeable only when the load approaches the
boundary of the rigidmrcular foundation.

From these findings it is possible to represent a
distributed loading of arbntrary shape as a
collection of circular loading regions of uniform
extent. The overall effect of the irregular loading on
the additional settlement of the rigid circular
foundation car be obtained by superposition, as
shown in Fig. 10.

Considering the influence of the single circular
load it can be shown that the total displacement

(i.c. the displacement due to the central load P, and
the additional settlement due to the external load
P} of the rigid circular foundation is given by

_ P1=v) P(1—v)
udpa,0,0) = —
pcosf
1 IJ N sstuinieiy
x[jz (1) +2%2
x{zN-18}+"s‘“9{IE—1W}
23
where

Icn = Icu{ss @, ﬁ}

4= ¥ 1
. J=N,5,W,E

IN+I1S = 1Y +1F

It can be verified easily that when p = 1. and
8 =0,7/2, 7 or 3m/2, equatlon (23) yields the values
for (u/+u,%)(j=N,..,E u,° = P{1—v?)/2aE} in
the presence of both Py and P, Generalizing
equation (23) to a seties of n circular loaded areas
as shown in Fig. 10 gives

wipa 0= T L
X {;Zn:l i P, Ic;’]
+2p cosBI: _i PIN~1§ :I
+2pcos GI: ZH: PATE—1I¥% :I} (24
where ' )

P-ex' = Pei/Pe.*
L= Ie(){sb W ﬁ:}

This result can be used to develep values for the
settlement of the rigid circular foundation due to
an external load of arbitrary shape and/or varying
intensity.

EXAMPLE

As an example, the procedure is applied to the
group interaction of a series of silos. Fig. 11 shows
the plan configuration of a series of silo founda-
tions to be constructed in the vicinity of an existing

Table 1
Load region 3 o B g, LN Pulf I PuLE 7
1 400 /4 1-6 10 0-60 042 042 0-60
2 4-00 nf2 10 1-0 0-50 050 037 0-62
3 400 31_':/4 10 10 0-42 060 042 0-60

»
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rigid circular foundation. The proposed silo
foundations each carry a load of P,. The radii of
the additional silo foundations and the location of
their centres from the existing rigid circular
foundation are shown in Fig. 11. The calculations
for estimating the elastic settlements that may
occur at the locations N, §, W and E of the rigid
circular foundation are outlined in Table 1. The
influence coefficients I/ (applicable for g, = 1) are
given in Fig. 9. The value of P.* is set equal to P,.

Heénce, the additional elastic settlements in-
duced in the rigid circular foundation at the
locations N, S, W and E due to the proposed silo
group are given by

Co™ ul W uF] =
P{l—vY)
2naE

The average settlement at the centre of the rigid
circular foundation is given by

P{1—vH[1 E
o U=V 2 1
Uz 2raE | 4 _;Z‘N ue

1-52P(1 —v?)
- 2naE
This is in agreement with the value that can be
calculated from the results given in Fig. 6.

CONCLUSIONS

[1:52: 1-52: 1-21: 1-82]

The Paper presents an analysis of the problem of -

the interaction between a rigid circular foundation
and an external loading which is formulated within
the framework of the classical theery of elasticity.
It is shown that the settlement of the rigid circular
foundation due to an externally placed concen-
trated force can be evaluated in exact closed form.
This result can be used as an influence of Green’s
function to examine the effects of other forms of
distributed loading. Numerical results are pre-
sented for the settlernent of a rigid circular founda-
tion which is subjected to a central concentrated
force and a uniform circular external load. This
solution can be used to compute the settlements
experienced by the rigid circular foundation due to
multiple’ external loads or external loads of arbi-
trary configuration. Theoretical and numerical re-
suits are presented. "

The Paper also illustrates reciprocal relation-
ships that exist between the displacement induced
at an exterior poiat due to a directly loaded
foundation and the displacement in the rigid cir-
cular foundation due to an externally located
force. The reciprocity property extends to any
form of surface foundation which rests in smooth
or fully bonded contact with the elastic medium,
i.e. a halfspace or layer region. This reciprocity
property can be used to great advantage in the

- /4

Rigtd circular
foundation

i EEEE—— —

Uniform circular load

Fig. 11. Interaction between the rigid circular foundation
and multiple external loads

examination of interaction between rigid rec-
tangular foundations and externally placed loads.
The results presented can be used to produce
influence charts which wiil facilitate the computa-
tion of settlements of foundation groups,
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