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Abstract 

The present paper examines the axial translation of a rigid el- 
liptical disc inclusion which is embedded in bonded contact with 
a transversely isotropic elastic medium of infinite extent. The 
load-dlsplacement relationship for the embedded elliptical inclusion 
is evaluated in explicit closed form. 

Introduction 

The stress analysis of an elastic infinite medlumwhich is bounded 

internally by an inhomogeneity is of considerable interest to the 

study of composite materials. Solutions developed for spheroidal 

and ellipsoidal inhomogenelties embedded in an isotropic elastic 

medium are given in the classical works of Eshelby [i], eur'e [2]; 

and Edwards [3]. The disc shaped inclusion is a particular sim- 

plification of the above class of three-dlmensional inhomogeneities. 

The studies by Collins [4], Kasslr and Sih [5], Kanwal and Sharma [6], 

and Selvadurai [7,8] are primarily concerned with the study of disc 

inclusions embedded in an isotropic elastic medium of infinite extent. 

Several authors have extended these solutions to include other features 

such as transverse isotropy of the elastic medium, flexural behaviour 

of the disc inclusion and delamination at the inclusion - elastic medium 

interface. A recent review of inclusion problems in classical elasti- 

city and references to further work in this area are given by Mura [9] 

and Selvadurai [i0]. 

This paper examines the problem of the axial displacement of an ellipt- 

ical disc inclusion embedded in bonded contact with a transversely 

isotropic elastic medium. The plane of the elliptical disc inclusion 
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is assumed to coincide with the plane of transverse isotropy (Fig. i). 

The method of analysis follows a complex potential function approach 

similar to that developed by Green and Sneddon [ii] for the analysis 

of elliptical crack problems in isotropic elastic media. 

Fundamental Formulae 

Complete accounts of the methods employed in the analysis of three- 

dimensional problems in transversely isotropic elastic media are 

given by Elliott [12, 13], Green and Zerna [14] and Kassir and Sih [15]. 

It can be shown that, in the absence of body forces, the displacement 

and stress fields can be expressed in terms of two 'harmonic' functions 

~i' ~2 which are solutions of 

32 32 32 

{ -- +-- + _---2 } ~i = O; 
3x 2 3y 2 3z. 

i 

(i = 1,2) (i) 

where z. = z/~/~i and ~i are roots of the equation 
1 

2 =0 
Cll c44 ~ + [c13(2c44+c13 ) - c13c33 ] " + c33 c44 (2) 

We note that cij are the elastic constants of the transversely isotroplc 

elastic material and the z-axis is normal to the plane of isotropy. The 

displacement and stress components relevant for the present problem can 

be written in the form 

{u : u : u } = { ~-- (#i+~2): 3__ (~i+~2): ~__ (kl~l+ k2#2 } 
x y z 3x 3y 3z 

zz (klC33 -~ic13 ) 

32~i 32~2 

3z 2 + (k2c33- ~2c13 ) 3z 2 

(3) 

(4) 

where k I and k 2 are given by 

ci19 i - c44 
k. = ; (i = 1,2) 
1 

c13 + c44 

(5) 
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The elliptical inclusion problem 

We consider the problem related to a elliptical disc shaped rigid 

inclusion which is embedded in bonded contact with the transversely 

isotropic elastic medium of infinite extent (Fig. i). For ease of 

reference we shall adopt the following nomenclature. Referring to 

the plane z = 0 (which contains the inclusion) the inclusion region 

(i.e. (x2/a 2) + (y2/b2) ~ i: where a and b are the major and 

minor semi-axis of the ellipse respectively) is denoted by Si; the 

region exterior to the inclusion is denoted by Se; also S = S.U S . 
i e 

The state of deformation induced in the elastic medium due to the axial 

displacement of the elliptical inclusion is such that the displacements 

u and u and the stress o exhibit a state of asymmetry about the 
x y zz 

plane z = O. The analysis of the inclusion problem can therefore be 

restricted to the analysis of a single half-space region in which the 

plane z ~ 0 (also denoted by z = 0 +) is subjected to appropriate 

mixed boundary conditions. Due to the fully bonded conditions at the 

inclusion region it is evident that u and u are zero in S.. 
x y 1 

Considering the above conditions we have 

Ux(X, y, 0 +) = Uy(X, y, 0 +) = 0; (x,y) e S e (6) 

o (x, y, 0 +) = O; (x,y) e S (7) 
ZZ e 

In the inclusion region 

u (x, y, 0 +) = ~ ; (x,y) e S. (8) 
Z 1 

Ux(X, y, 0 +) = Uy(X,y,0 +) = 0; (x,y) a S. 
1 

From (6) and (9) it is evident that 

(9) 

Ux(X, y, 0 +) = Uy(X, y, 0 +) = O; (x,y) e S (lO) 

In order to satisfy the above boundary condition, we select solutions 
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of (i) which are of the form 

~i = ~(x'Y'Zl); ~2 = -~(x'Y'Z2) (li) 

2 2 
where V ~ = 0 and V is Laplace's operator referred to the 

Cartesian coordinate system. Considering the reduction (ii), the 

expressions for u and o yield 
Z ZZ 

kl ~¢~2 -k2 ~¢~i u ={ )~_! 
g 

~-i~2 bz 

(12) 

kl~ 2 - k2~ I ~2~ 
Ozz = c33{ }- 

~i~2 ~z 2 

(13) 

and the mixed boundary conditions (7) and 8) can be expressed as 

--= ; (x,y) a S. (14) 

bz {kl ~/~2 _ k2 ~/~i } i 

D2O 
--= O; (x,y) E s (15) 

2 e 
~z 

Following Lamb [16], and Green and Sneddon [II] it can be shown that 

~/~z represents the velocity potential of the motion of a perfect 

fluid flowing through an elliptical aperture in a thin boundary. 

Thus we have 

oo 

~__~ = 6a~iv2 f ds (16) 

(b +s)] ~z 2{kl ~/~- 2 _k2 ~/~l}K(e0 ) E [s(a2+s) 2 ½ 

where (~, n, ~) are the ellipsoidal coordinates of the point (x,y,z) 
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and are the roots of 

2 2 2 
x + y + z 

a2+8 b2+% 8 
i = 0 (17) 

In these coordinates S. corresponds to $ = 0 and S cor- 
1 e 

responds to n = 0. In (16), K(eo) is the complete elliptic 

integral of the first kind where e 0 = (a 2 -b2)/a 2. It can 

also be shown that $ a2(sn -2 u dn 2 = u - i) and E(u) = /0 t dt, 

where sn u is the Jacobian elliptic function which has real 

and imaginary roots 4K and 2iK' respectively, corresponding 
! 

to the moduli e 0 and e 0 (=b/a). To complete the analysis it 

is necessary to determine an explicit form for the function ~(x,y,z), 

such that (16) is satisfied. We note, however, that it is possible 

to obtain u and o directly from (16) and the formulae (12) and 
Z ZZ 

(13). In particular, the value of o at the bonded faces of the 
ZZ 

elliptical disc inclusion (in contact with the regions z ~ 0 or 

z ~ 0) are given by 

(kl~ 2 (x,y,0+) = + - k2~i)c336 
zz 2 2 ½ x y_] 

/~i~2 {kl ~/~2- k2 ~/~l}bK(e0)[l 2 b 2 
a 

The force acting on the inclusion is given by 

(18) 

P = f/ [Ozz(X,y,0 +) - Ozz(X,y,0-)]dx dy (19) 
S. 
I 

Evaluating (19) we obtain the force-displacement relationship for the 

embedded rigid disc inclusion. Assuming that the displacement 6 

occurs in the direction of the applied force we have 

p = 
4~c33 a6{kl~ 2 - k2~ I} 

~-i~2 {kl v/~2 -k2 ~/~i }K(e0) (20) 
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Limiting cases 

In the limiting case when v. ÷ i, we recover from (20) the result 
i 

for the force-displacement relationship for an elliptical disc in- 

clusion embedded in an isotropic elastic medium. We note that as 

v. ÷ i, 
I 

kl~2 - k2~l 2c44 (21) 

kl ~2 - k2~v~l Cll + c44 

where Cll = c33 = % + 2U; c44 = ~ and %,~ are Lame's constants 

for the isotropic elastic material. Making use of these results, 

(20) can be reduced to the form 

16~ (l-v) a6 

P = (22) 

(3-4~) K(e 0) 

In the limit as a * b, (22) gives the solution for the force- 

displacement relationship for a rigid circular inclusion in an 

isotropic elastic solid i.e. 

32~(i-~)a6 

p = 

(3-4~) 

(2 3) 

Also, as a * b, (20) gives the force-displacement relationship 

for a penny shaped inclusion in a transversely isotropic elastic 

solid 

8c33a6{kl~ 2 - k2v I} 
P = (24) 

v~-~iv2 {kl ~/~2 - k2 ~i } 

The limiting cases derived above (22-24) are in agreement with the 

appropriate results given by Collins [4], Kassir and Sih [5], Kanwal 

and Sharma [6] and Selvadurai [7,17]. 
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