
Citation: Selvadurai, A.P.S.

Theoretical Developments for the

Interpretation of Cavity Flow

Permeability Tests Conducted on

Intact Lac du Bonnet Granite.

Geosciences 2023, 13, 241.

https://doi.org/10.3390/

geosciences13080241

Academic Editors: Mohamed Shahin

and Jesus Martinez-Frias

Received: 6 June 2023

Revised: 5 July 2023

Accepted: 19 July 2023

Published: 10 August 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

geosciences

Article

Theoretical Developments for the Interpretation of Cavity Flow
Permeability Tests Conducted on Intact Lac du Bonnet Granite
A. P. S. Selvadurai †

Environmental Geomechanics Laboratory, Department of Civil Engineering, McGill University,
Montréal, QC H3A 0C3, Canada; geosciences@mdpi.com
† Deceased Author.

Abstract: The permeability of intact geologic media features prominently in many geo-environmental
endeavours. The laboratory estimation of permeability is an important adjunct to the field estimation
of bulk permeability values, which involves a great deal of supplementary in situ investigations to cor-
rectly interpret field data. Laboratory permeability estimation is also a viable method if core samples
are recovered from in situ geological mapping of the region under study. The basic methodologies
for permeability estimation rely on either steady-state or transient tests of the geologic material
depending on the anticipated permeability value. This paper presents a steady flow test conducted
on a partially drilled cavity located on the axis of a cylindrical specimen. Certain compact theoretical
relationships are proposed for the estimation of steady flow from a cavity of finite dimensions located
along the axis of a cylindrical specimen. The relationships are used to estimate the permeability of
a cylinder of Lac du Bonnet granite obtained from the western flank of the Canadian Shield. The
results from the cavity flow permeability experiments are compared with other estimates for the
permeability of granitic rocks reported in the literature.

Keywords: surface permeability tests; cavity flow permeability tests; flow from a spheroidal cavity;
experiments on Lac du Bonnet granite; analytical results

1. Introduction

Permeability is a key parameter governing many hydro-geological, geoenvironmental
and geomechanical endeavours. These can include general problems related to flow and
geologic processes in intact, fractured and porous media with random pore networks,
groundwater hydrology and estimation of yield, pumping rates in aquifers used as hy-
drologic basins, ground subsidence due to water and resource extraction, water level
fluctuations in geologic formations due to earthquakes and tidal effects, groundwater and
geomechanics issues in geologic sequestration groundwater flow in geologic processes
and during contaminant transport, coupled processes during glacial advances and ground
freezing, geothermal energy and resource extraction, and the use of deep geologic forma-
tions for the storage or disposal of hazardous materials and nuclear fuel waste. The articles
and texts covering these topics are many and merit a separate review article.

In their natural setting, geologic media are rarely intact, defect-free rock formations.
Defects such as fractures, both sparse and high density, intrusions created during the forma-
tion of the rocks, fractures created during injection and extraction activities, heterogeneities
and other defects at various scales can influence the bulk fluid flow behaviour, particularly
in a large-scale geological horizon. In their natural setting, geologic media are rarely in-
tact, defect-free rock formations. Defects such as fractures, both sparse and high density,
intrusions created during the formation of the rocks, fractures created during injection and
extraction activities, heterogeneities and other defects at various scales can influence the
bulk fluid flow behaviour, particularly in a large-scale geological horizon. Typical areas
of application are illustrated in Figure 1. With such observations, it is natural to enquire
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whether the permeability of an intact rock has any relevance to the geosciences. On the
contrary, intact permeability can influence the behaviour of fluid transport characteristics at
the scale of a fracture where the migration of fluids permeating isolated fracture extremities
or stagnant zones can be controlled by the permeability of the intact geologic medium
(Figure 2).
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Historically, the estimation of the permeability of soils dates back to the work of
Darcy [2], where the permeability is regarded primarily as a rudimentary scalar quantity.
In applications with respect to geologic media that possess stratifications, the permeability
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has directional properties requiring a definition based on a second-order symmetric tensor
K with six independent components

KAnisotropic =

Kxx Kxy Kxz
Kxy Kyy Kyz
Kxz Kyz Kzz

 = KT
Anisotropic

and the units of permeability are given in L2. The symmetry of the permeability tensor
relies on the absence of a rotational or vorticity component in the movement of a particle of
fluid through a porous medium. With geological stratifications, the permeability measure
reduces to a porous medium with transverse isotropy, which enables the description of
permeability by two measures that are applicable to flow along and perpendicular to the
stratifications, i.e.,

KTransvers. Isotropic =

KT 0 0
0 KT 0
0 0 KN


where KT and KN are, respectively, the permeabilities along and normal to the stratifica-
tions. The mechanics of groundwater flow in stratified media modelled as hydraulically
transversely isotropic media is described in many studies and further references are given
in [3–9]. In particular, the in situ permeability characteristics of transversely isotropic
porous media are determined by considering the flow rates into cased boreholes and the
transient rise of water levels within the casing discussed in the above studies. For incom-
pressible steady flow conditions, the fluid mass conservation equation ∇.v(x) = 0, together
with the generalised Darcy’s law v(x) = −(Kγw/η) ∇ϕ(x), where ∇ is the gradient operator,
ϕ(x) is the reduced Bernoulli potential (units of L), γw is the unit weight of the permeating
fluid (with units F/L3), η is the dynamic viscosity (with units FT/L2), gives the governing
partial differential equation

∇.[(Kγw/η)∇ϕ(x)] = 0

and this elliptic partial differential equation can be solved for a flow domain by prescribing
Dirichlet-, Neumann- or Robin-type boundary conditions [10]. In the case of hydraulic
homogeneity of the porous medium and the percolating fluid, the above result reduces to
Laplace’s equation for ϕ(x)

∇2 ϕ(x) = 0

When undisturbed samples of rock can be recovered from the depth at which the per-
meability is to be measured, laboratory estimation of the isotropic permeability is perhaps
the most convenient approach. Two standard types of laboratory permeability tests can be
performed on cylindrical samples of rock that can either be cored from block samples or
cored directly from the formation. The most straightforward approach is to induce steady-
state one-dimensional flow through a saturated cylindrical rock sample under a prescribed
hydraulic gradient. To achieve one-dimensional conditions through a cylindrical sample,
the cylindrical surface is usually sealed with a membrane and each of the plane surfaces is
maintained at a constant potential but with a potential difference to induce flow. These tests
are well documented in the geomechanics literature. When the permeability of the rock is
sufficiently large and the experimental techniques are capable of maintaining a constant hy-
draulic gradient across defined surfaces of the test specimen, the constant flow permeability
test provides the most efficient method for estimating rock permeability. These techniques
have been applied to estimate the permeability of intact cores of rocks such as Indiana
limestone, Vosges sandstone, etc. Early attempts to estimate permeability using steady-state
tests were performed by Fatt and Davis [11] and Fatt [12], to assess permeability alterations
in reservoir rock with confining stress. McLatchie et al. [13] discussed the influence of
skeletal compressibility on the permeability of reservoir rock and the correlation between
permeability reduction both with confining stresses and with an increase in clay content.
Similar studies on sandstone and argillaceous limestone are documented in the bibliog-
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raphy. The concept of localised fluid flow approaches for estimating the permeability of
rocks was put forward by Dykstra and Parsons [14] and the experimental techniques were
modelled by Goggin et al. [15] The application of steady-state techniques for permeability
estimation in large samples of Berea sandstone was discussed by Tidwell and Wilson [16]
and the interpretation techniques were improved by Tartakovsky et al. [17]. The concept
of an annular patch permeameter was proposed by Selvadurai and Selvadurai [18] and
successfully utilised to estimate the permeability distribution on the surface of a 508 mm
cuboid of Indiana limestone, using kriging techniques to estimate the interior permeability
heterogeneity in the cuboid. Computational procedures were used to estimate the geomet-
ric mean of the permeability of the cuboid [18,19]. The geometric mean-based estimate for
the permeability of the Indiana limestone was found to be K ≈ 73.75 × 10−15 m2. Rigor-
ous mathematical approaches based on triple integral equations in potential theory were
employed to develop an analytical solution, which related the flow rate to the potential
difference, and these are documented in the bibliography.

An international benchmarking exercise related to the estimation of the permeability
of Grimsel granodiorite and involving 24 research laboratories is documented figure [20,21].
The application of external isotropic compressive stresses to fluid-saturated rocks and their
influence on reducing permeability has also been investigated by appeal to steady-state fluid
flow tests. The influence of non-isotropic stress states in enhancing permeability derived from
steady-state tests has also been discussed in the references cited in the bibliography.

The need for transient flow methods to estimate the fluid transport properties of low
permeability rocks was recognised in the pioneering article by Brace et al. [22]. Other
contributions relevant to transient tests are also given in [23,24]. Transient techniques are
complicated because other properties relevant to the interpretation of the tests have to
be determined, including the compressibility of the porous skeleton, the compressibility
of the solid material composing the porous skeleton, the compressibility of water, the
porosity of the porous medium, the Biot coefficient the air voids that can be present in the
fluid region that is pressurised to attain the transient flow, and the appropriate mathemat-
ical formulation and modelling (i.e., the diffusion equation approach or a poroelasticity
approach) used to interpret the experiments [25–37]. With the advent of high-precision
pumps that can provide flow rates as low as 0.000070 mL/min, steady-state experiments
can be performed on low permeability materials such as the Cobourg limestone and the
granites from the Canadian Shield. In the case of the Cobourg limestone, the effective
permeability of a region measuring 80 mm × 120 mm × 130 mm was estimated using
experimental and computational approaches to obtain an isotropic permeability in the
range K ∈ (10−23, 10−19) m2. Similarly, steady-state flow patch permeability tests were per-
formed to determine the effective isotropic permeability of cuboids of Lac du Bonnet granite
and Stanstead granite, measuring 300 mm and 280 mm, respectively, from the western and
eastern flanks of the Canadian Shield [38]. The geometric mean-based permeability ranged
from K ∈ (54.6, 59.3) × 10−19m2 for the Stanstead granite to K ∈ (0.84, 1.09) × 10−19m2

for the Lac du Bonnet granite. The brief review presented in this section is not intended
to be a comprehensive review of the topic of permeability measurement of rocks; how-
ever, the recent key articles that address novel experimental and theoretical developments
are instructive.

The development of innovative steady flow techniques for the estimation of perme-
ability of low permeability rocks can benefit the overall utility of permeability testing of
intact rocks. This paper deals with the laboratory evaluation of the permeability of the Lac
du Bonnet granite using cylindrical samples of the rock with an axisymmetric cylindrical
cavity and subjected to steady seepage. The installation of a cylindrical cavity through
which steady flow takes place enables the permeability of the interior region of the rock
to be estimated, as opposed to surficial tests that only probe a region of the rock close
to the surface as achieved by adopting the basic sealed annular patch permeameter [18].
The paper discusses the complexity of the modelling, which involves the purely analytical
modelling of the associated potential flow problem and proposes approximate solutions
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that can be used to estimate the bulk permeability of the granitic rock specimen based on:
(i) A combination of radial flow through the cylindrical surface of the cavity and axisym-
metric flow through the base of the cylindrical cavity with impermeability constraints on
a plane located at the base of the cylindrical cavity. (ii) Flow into an extended rock mass
through an oblate hemispheroidal cavity located in a semi-infinite porous medium. The
approximate theoretical relationships are used to estimate the permeability of a Lac du
Bonnet granite cylinder measuring 150 mm in diameter and 300 mm in length with a central
cavity of 10 mm in diameter and a depth of 50 mm. The results of the experiments are
compared with values obtained from other investigations reported in the literature.

2. Theoretical Developments

The experimental arrangements involving the initiation of flow from the partially
drilled cavity in the granite cylinder are shown in Figure 3. The co-axial nature of the
potential flow problem induces a state of axial symmetry. In the experiments conducted,
the upper surface of the cylinder is sealed over a finite region as shown in Figure 4.
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Considering axial symmetry, the partial differential equation governing steady flow
from the cylindrical cavity is governed by Laplace’s equation of the form(

∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2

)
ϕ(r, z) = 0 (1)

The potential ϕ(r, z) can be expressed in units of length. Considering a Hankel
transform solution of (1) (see, e.g., [10,39–42]), the general form of the solution of (1) can
be written

ϕ(r, z) =
∫ ∞

0
[{A(ξ) + zB(ξ)} exp(ξz) + {C(ξ) + zD(ξ)} exp(−ξz)]J0(ξr)dξ (2)

where A(ξ), B(ξ), . . . are arbitrary functions and J0(ξr) is the zeroth-order Bessel function
of the first kind. The arbitrary functions can be identified in relation to the domain (Regions
I and II in Figure 3) over which the flow takes place. If a complete mathematical formulation
of the problem is contemplated, it is convenient to divide the flow domain into two regions
with Region I occupying the domain r ∈ (0, C) ; z ∈ (0, l) and Region II occupying the
domain r ∈ (0, C) ; z ∈ (l, l + L). The potential functions applicable to Regions I and II can
be defined by the integral forms

ϕI(r, z) =
∫ ∞

0
[{AI(ξ) + zBI(ξ)} exp(ξz) + {CI(ξ) + zDI(ξ)} exp(−ξz)]J0(ξr)dξ (3)

ϕII(r, z) =
∫ ∞

0
[{AII(ξ) + zBII(ξ)} exp(ξz) + {CII(ξ) + zDII(ξ)} exp(−ξz)]J0(ξr)dξ (4)

where AI, AII, BI, BII, . . . . . . . . . . . . , DI, DII are eight arbitrary functions that need to be deter-
mined by satisfying (i) the boundary conditions applicable to the Region I

ϕI(r, z) = ϕ0 ; r = a ; 0 ≤ z ≤ l

ϕI(r, z) = ϕ0 ; 0 ≤ r ≤ a ; z = l

ϕI(r, z) = 0 ; b ≤ r ≤ C ; z = 0

ϕI(r, z) = 0 ; r = C ; 0 ≤ z ≤ l
∂ϕ
∂z = 0 ; a < r < b ; z = 0

(5)

and (ii) the boundary conditions

ϕII(r, z) = ϕ0 ; 0 ≤ r ≤ a ; z = l

ϕII(r, z) = 0 ; r = C ; l ≤ z ≤ (l + L)

ϕII(r, z) = 0 ; 0 ≤ r ≤ C ; z = (l + L)

ϕI(r, z) = 0 ; r = C ; 0 ≤ z ≤ l

(6)

applicable to the Region II. The continuity conditions applicable to the common boundary
between Region I and Region II are given by

ϕI(r, z) = ϕII(r, z) ; a < r < C ; z = l

n∇ϕI(r, z) = n∇ϕII(r, z) ; a < r < C ; z = l
(7)

The boundary and continuity conditions (5) to (7) are both necessary and sufficient
to uniquely determine a solution to the mixed boundary value problem in potential the-
ory. The research conducted in this area points to the observation that exact solutions of
these mixed boundary value problems are not possible; the presence of mixed boundary
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conditions, where Dirichlet and Neumann boundary conditions are present means that the
problem can only be solved in an approximate fashion. Furthermore, the presence of mixed
boundary conditions can give rise to solutions where the potential and its derivatives can
exhibit singularities, which need to be addressed even if numerical approaches are used
to solve the mixed boundary value problem. Computational approaches, such as finite
element and boundary element techniques can, of course, be readily applied to solve the
porous media flow problem provided special techniques are utilised to accommodate the
singularities encountered at a boundary where the boundary conditions change abruptly
from a Dirichlet to a Neumann type.

The approach adopted in this study is to obtain approximate solutions that can be used
to estimate the flow from the cylindrical cavity that is maintained at a constant potential ϕ0
and where the outer boundary of the cylinder is maintained at zero potential. One approach
is to assume that the entire upper surface of the cylinder z = 0 and the common boundary
between Regions I and II are subjected to null Neumann boundary conditions (Figure 5).
Invoking this assumption introduces a state of radial symmetry in the potential problem
and reduces the partial differential Equation (1) to an ordinary differential equation in r,
which can be solved, subject to the boundary conditions ϕ(a) = ϕ0 and ϕ(b) = 0. Omitting
details, it can be shown that the total flow through the domain can be expressed in the form

QI =
2πlγwKϕ0

η loge(b/a)
(8)
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Figure 5. Purely radial flow in a cylindrical domain.

Implicit in the solution of the radially symmetric flow problem is the requirement that
the flow domain is finite and cannot occupy the boundary r = 0 and, as (r, b)→ ∞ , the
result (8) yields an inadmissible result.

The flow in Region II can be examined by considering the mixed boundary value
problem indicated in Figure 6. The mixed boundary value problem applicable to Region II
is governed by the boundary conditions

ϕII(r, z) = ϕ0 0 ≤ r ≤ a ; z = 0
∂ϕII
∂z = 0 ; a < r < b ; z = 0

ϕII(r, z) = 0 ; b ≤ r ≤ C ; z = 0

ϕII(r, z) = 0 ; r = C ; 0 ≤ z ≤ L

ϕII(r, z) = 0 ; 0 ≤ r ≤ C ; z = L

(9)
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Again, the analytical solution of the mixed boundary value problem defined by (9)
is possible, but the procedures are non-routine. If the flow domain is considered to be
semi-infinite (i.e., C → ∞ and L→ ∞ ), the mixed boundary value problem can be reduced
to a system of triple integral equations for a single unknown function A(ξ) of the form∫ ∞

0 A(ξ)J0(ξr)dξ = ϕ0 ; 0 ≤ r ≤ a∫ ∞
0 ξA(ξ)J0(ξr)dξ = 0 ; a ≤ r ≤ b∫ ∞
0 A(ξ)J0(ξr)dξ = 0 ; b ≤ r < ∞

(10)

The system of triple integral equations defined by (10) has been extensively studied [43–47]
with applications to problems in elasticity and potential theory. The approximate solution of the
system of triple integral equations involves a series approximation of the unknown function
A(ξ) in terms of a small non-dimensional parameter c(= a/b) < 1. Omitting details, it can
be shown that the steady flow rate through the central aperture of a sealed annular region
a ≤ r ≤ b at the surface of the porous halfspace region can be obtained in the form

QII =
aϕ0Kγw

η
F(c) (11)

where

F(c) = 4

 1 +
(

4
π2

)
c +

(
10
π4

)
c2 +

(
64
π4 +

8
9π2

)
c3 +

(
64

9π4 +
256
π8

)
c4

+
(

92
225π2 +

384
9π6 +

1024
π10

)
c5 + O(c6)

 (12)

The accuracy of the series approximation solution (12) has been compared with equiv-
alent results derived from finite element computations and the results agree to within 2%
of each other, which is sufficient for the purposes of interpretation of permeability test
data. In the particular instance when the flow takes place over the central region 0 ≤ r ≤ a
and the remaining part of the boundary of the halfspace region is sealed, a two-part mixed
boundary value problem is obtained for a single unknown function A∗(ξ)∫ ∞

0 A∗(ξ)J0(ξr)dξ = ϕ0 ; 0 ≤ r ≤ a∫ ∞
0 ξ A∗(ξ)J0(ξr)dξ = 0 ; a < r < ∞

(13)
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The solution of the two-part mixed boundary value problem is standard [10,39] and,
omitting details, it can be shown that the flow rate is obtained in the exact closed form

QII =
4aϕ0Kγw

η
(14)

which corresponds to the leading term of (12) as c→ 0 . The flow induced in the porous
domain due to the cavity subjected to the potential ϕ0 can be obtained using the results
obtained from the reduced models with the null Neumann boundary conditions imposed
in the critical surfaces. The reduced results given by (8) and (14) for the flow induced in
Regions I and II give the following expression for the permeability of the domain

Kγw ϕ0a
Qη

=
1

4
{

1 + π(l/a)
2 loge(b/a)

} (15)

The expression (15) contains both the influence of (l/a) and (b/a), which makes it
applicable to only a cylinder with a finite external radius. If the external diameter b→ ∞ ,
or if (l/a)→ 0 , flow is restricted to the surface-sealed halfspace region, and we recover
the exact solution

Kγw ϕ0a
Qη

→ 1
4

(16)

A further procedure for estimating the steady flow from the cylindrical cavity main-
tained at a constant potential assumes that the cylindrical cavity region can be represented
by a prolate spheroidal cavity with suitable dimensions to reflect the flow process. Figure 7
illustrates the flow in a semi-infinite porous medium bounded internally by a prolate
hemispheroidal cavity, the boundary of which is subjected to a constant potential ϕ0. By
maintaining the plane z = 0 as an impervious barrier, the flow problem is equivalent to
considering the flow from a complete spheroidal cavity subjected to a constant potential ϕ0.
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The axisymmetric prolate spheroidal coordinates (α, β) are related to the cylindrical
polar coordinates (r, z) through the relationships

r = cp sinh α sin β; z = cp cosh α cos β (17)

and cp can be expressed in terms of the dimensions of the semi-major axis and the equatorial
radius of the bounding prolate spheroid defined by α = α0 with the semi-major axis lp and
semi-minor axis ap with

(lp)
2 = (cp)

2sinh2α0 ; (ap)
2 = (cp)

2 cosh2 α0 (18)
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In prolate spheroidal coordinates, (1) takes the form

∇2 ϕ(α, β) = b2
p

(
∂2

∂α2 +
∂2

∂β2 + cothα
∂

∂α
+ cot β

∂

∂β

)
(α, β) = 0 (19)

The PDE (19) needs to be solved subject to the boundary conditions

ϕ(α, β) = ϕ0 ; α = α0 (20)

and the regularity condition
ϕ(α, β)→ 0 as α→ ∞ (21)

The types of potential problems defined by (19) to (21) have been discussed in con-
nection with problems in electrostatic potential theory, fluid mechanics and elasticity and
authoritative treatises covering these areas are given by [48–56] and others. It can be shown
that the harmonic function that satisfies the boundary condition (20) and the regularity
condition (21) takes the form

ϕ(α) =
ϕ0

ln ξ0
ln ξ (22)

where

ξ =

(
cosh α + 1
cosh α− 1

)
; ξ0 = ξ(α0) (23)

The velocity vector can be obtained by employing (22) and Darcy’s law and the flow
rate from the prolate spheroidal cavity can be obtained from the result

Q =
x

Sp

v(α, β)n dS (24)

where Sp is the boundary of the prolate spheroidal cavity that is subjected to the constant
potential ϕ0 and n is the outward unit normal to Sp. Evaluating the integral (24), we
can obtain an expression for the flow rate from the complete prolate spheroidal cavity with
semi-minor axis ap and semi-major axis lp subjected to a boundary potential. Since the plane
of symmetry corresponds to a null Neumann boundary condition, the results for the
flow rate from the complete prolate spheroidal cavity give the flow rate from the prolate
hemispheroidal cavity shown in Figure 7, i.e.,

Q =
4πϕ0Kγwlp

√
1− (ap/lp)

2

η ln

(
1+
√

1−(ap/lp)
2

1−
√

1−(ap/lp)
2

) ;
ap

lp
≤ 1 (25)

It is now necessary to determine a relationship between the geometry of the cylindrical
cavity with radius a and length l and the geometry of the prolate hemispheroidal cavity
with minor radius ap and semi-major radius lp. A very straightforward relationship is to
assume that the aspect ratio for the cylindrical cavity is identical to the aspect ratio for the
prolate hemispheroidal cavity (i.e., (a/l) = (ap/lp)). A more realistic relationship can be
obtained by considering the surface areas over which the flow takes place. If we set a = ap,
by equating the surface areas we obtain

a
l
=

(
ap

lp

) 2
√

1− (ap/lp)
2

(ap/lp)
√

1− (ap/lp)
2 + sin−1

(√
1− (ap/lp)

2
)
 ;

ap

lp
≤ 1 (26)

Although the equal surface area representation between the cylindrical and hemi-
spheroidal cavities is feasible, the inversion of (26) to obtain an explicit expression for
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(ap/lp) in terms of (a/l) is not evident. An alternative is to evaluate the expression (26) for
a range of values of (ap/lp) and a graph similar to that shown in Figure 8 can be used to
determine an aspect ratio (ap/lp) for a specified aspect ratio (a/l) for the cylindrical cavity.

Kγw ϕ0a
Qη

=

(
ap
lp

)
loge

(
1+
√

1−(ap/lp)
2

1−
√

1−(ap/lp)
2

)
4π
√

1− (ap/lp)
2

(27)
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spheroidal cavity.

In (27), the semi-minor axis of the prolate hemispheroidal cavity is set equal to the
radius of the cylindrical cavity; a = ap and the semi-major axis lp is related to the dimension
l of the cylindrical cavity through (26); i.e., once (a/l) of the cylindrical cavity is specified,
the surface area equivalent (ap/lp) is determined from Figure 8. A direct comparison of
the results obtained from (15) and (27) is unwarranted because of the explicit dependence
of (15) on the outer dimension of the cylindrical region. The result (15) is more suitable
for cylindrical cavities that have a small cavity aspect ratio (a/l) →1. The result (27)
is a more suitable expression for estimating the permeability of the granite cylinder of
finite dimensions that contains a cylindrical cavity. The role of the outer boundary in
influencing the estimation of the flow rate was extensively investigated by Selvadurai and
Selvadurai [18] in connection with modelling the annular patch permeameter. Referring to
Figure 6, for far-field relative dimensions C/a > 4 and L/a > 4, the regularity condition is
satisfied by the finite domain.

3. Experimental Investigations and Permeability Estimates

The experiments conducted involved the initiation of steady flow from a central
cylindrical cavity (diameter 10 mm and length 50 mm) located in a cylinder of Lac du
Bonnet granite (150 mm in diameter and 300 mm in length). The granite cylinder was cored
from a cuboidal block of Lac du Bonnet granite measuring 500 mm × 500 mm × 350 mm,
which was supplied by Cold Spring Granite Ltd., in Pinawa, Manitoba. The plane surfaces
of the cylinder were machine polished, allowing for the development of a sealed surface
for the placement of the patch permeameter developed by Selvadurai [57]. This type of
permeameter was successfully used to measure the effective permeability of an Indiana
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limestone cuboid measuring 508 mm [18] and a cuboid of Lac du Bonnet granite measuring
300 mm [38]. A schematic view of the experimental configuration is shown in Figure 9.
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Figure 9. A schematic view of the experimental configuration adopted for performing steady-state
cavity flow permeability tests.

The permeameter provides a cavity radius of 5 mm and sealing is established by
applying an axial load to the permeameter; the sealing pressure is 2.5 MPa over an annular
region with an internal radius of 12.5 mm and external radius of 50 mm. It is noted that
a sealing stress of approximately 2.5 MPa is sufficient to reduce any interface leakage to
within 0.1% of the cavity pressure that induces steady flow. It is natural to enquire whether
the application of the sealing stress can contribute to the closure of micro-cracks, defects
and pores in the Lac du Bonnet granite. To the author’s knowledge, the blocks of the Lac
du Bonnet granite supplied were defect-free, although the only way of assessing this is to
perform CT scans on the core that was tested. The elastic modulus of the Lac du Bonnet
granite was in the range of 70 GPa [33]. Therefore, pore closure during the application of a
sealing stress of 2.5 MPa will not be an issue in the current tests. An alternative procedure
that involves completely bonding a stainless-steel plate to the plane surface of the cylinder
is also a possibility provided that no movement of the location of the annular sealing region
is contemplated. The axial sealing load is measured using an Interface Model 1200 Load Cell
with a load capacity of 50 kN. The steady flow to the cylindrical cavity region is provided
by a Quizix 5000 Precision Pump; flow rates can be varied between 0.000070 mL/min and
30 mL/min. The sample containing the partially drilled central cavity is first saturated using
a venturi vacuum saturation technique at −10 kPa, with periodic adjustment of the water
level in the saturation chamber to facilitate extraction of air from the unsaturated regions.
Periodic weighing of the sample is also conducted to ensure that the saturation procedure
is effective. Once the vacuum saturation is complete, the saturation is compared with the
porosity estimates. In general saturation levels of approximately 98% can be achieved using
the variable height reservoir arrangement. Attainment of 100% saturation requires the
application of a greater vacuum, which can also lead to pore compression and alterations
to permeability. A 98% level of saturation is considered to be acceptable for steady-state



Geosciences 2023, 13, 241 13 of 18

permeability tests and corrections are needed to account for the air void fraction if transient
tests are contemplated. The cavity pressure inducing steady flow in the granite cylinder
is measured via a Honeywell pressure transducer (Model TJE CP 300 psi). The fluid used
in the permeability tests was normal tap water at a room temperature of approximately
24 Deg C. The steady flow rate from the cavity is the important experimental information
that enables the estimation of the permeability of the Lac du Bonnet granite. Even though
the pumps can supply very low flow rates, the reciprocating action of the pump operation
can lead to fluctuations in the recorded pressure. The estimation of the actual flow rate is,
however, best achieved by using the volume flow over a prescribed time interval. Since the
variation in the cumulative volume with time is steady, this data can be used to estimate
the flow rate. Typical examples of the Quizix 5000 Precision Pump records that indicates
the cumulative volume with time are shown in Figures 10–12 and this information is used
to calculate the flow rate under a given inlet pressure. Figure 13 indicates, for purposes of
illustration, enlarged views of the flow rates for typical time intervals.
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The steady-state flow experiments are conducted at a cavity pressure of 250 kPa, which
for a fluid unit weight of 9.784 kN/m3, corresponds to a potential of ϕ0 = 25.55 m. All the
tests were performed at a laboratory temperature of approximately 24 Deg C. The parame-
ters used in the estimation of the permeability of the Lac du Bonnet granite are as follows:

Radius of the cylinder (b) = 0.075 m
Radius of the cylindrical cavity (a) = 0.005 m
Depth of the cavity (l) = 0.050 m
Height of the cylinder = 0.300 m
Cavity potential causing steady flow (ϕ0) = 25.55 m
Dynamic viscosity of water at 24 Deg C = 9.11 × 10−1 MPa s

Prior to performing the cavity flow permeability test, the intact granite cylinder was
also subjected to patch permeability testing, where the position of the pressurised patch
was moved over the plane surface of the cylinder (Figure 14). In this case, the near-surface
permeability of the granite can be determined using the theoretical estimate (14). The
results of these tests indicated near-surface permeability estimates in the range (0.43 to 1.00)
× 10−19 m2. In the experimental configuration indicated in Figures 9 and 14, it is clear that
the sealing action of the upper surface of the cylinder does not extend over the entire surface
of the sample as indicated in the last boundary condition in (5), where the sealing extends
over the region a < r < b and not a < r < C, where C is the radius of the cylinder. The influence
of the unsealed region b < r < C, on the estimated flow rate was extensively investigated
computationally by Selvadurai and Selvadurai [18]. It was concluded that the assumption
of a perfectly sealed entire upper surface of the cylinder was a satisfactory alternative to the
partial sealing experimental technique that would enable the development of a compact
analytical result for the interpretation of the test data.
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The results of the three cavity permeability tests and the permeability estimates derived
from the results (14) and (26) are summarised in Table 1. When using the result (26), it
is necessary to obtain an equivalent estimate for (a/l) in terms of ap/lp. Using the result
(25) and Figure 8, it can be shown that for a cavity aspect ratio a/l ≈ 0.10, the aspect ratio
ap/lp ≈ 0.08. The development of a stable cumulative volume is attained through the supply
of clean de-ionised water and maintaining the laboratory temperatures at a stable value.
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Table 1. Results of cavity flow permeability tests.

Experiment Flow Rate
Q (mL/min)

K (m2) Estimated
from Result (15)

K (m2) Estimated
from Result (27)

Test 1 0.000176 0.785× 10−19 0.878× 10−19

Test 2 0.000164 0.731× 10−19 0.817× 10−19

Test 3 0.000150 0.670× 10−19 0.749× 10−19

4. Concluding Remarks

The estimation of permeability for defect-free granitic rocks has been the subject of
extensive investigations conducted over the past five decades. The most conventional
approach for estimating permeability is to conduct steady-state one-dimensional flow
tests through cylindrical samples. Alternative steady-state permeability tests that involve
departures from the one-dimensional require the development of theoretical relationships
that can analyse and interpret the steady-state test data accurately. Cavity flow perme-
ability tests involving cavities partially drilled into cylindrical samples of rock provide
the opportunity to assess the bulk permeability of the rock when the flow is initiated at
the interior of the test specimen. The techniques for interpreting the test results can vary
from the hybrid combination of flow that takes place from the surface of the cavity and
flow that takes place at the base of the cylindrical cavity. A second approach derives a
relationship for the flow rate from a prolate spheroidal cavity maintained at a constant
potential. This study provides approximate theoretical relationships that can be used to
estimate the permeability of the rock. The results of steady-state flow experiments con-
ducted on a large diameter cylinder installed with a cylindrical cavity are used to estimate
the permeability of the rock. The hybrid approach of introducing an impervious barrier be-
tween the radial flow region and the sealed halfspace region containing a circular aperture
leads to permeability estimates in the range (0.670 to 0.785) × 10−19 m2. The modelling
that employs the flow from a prolate hemispheroidal cavity leads to permeability esti-
mates in the range (0.749 to 0.878) × 10−19 m2. The overall range for the permeability of
the Lac du Bonnet granite can be assigned by combining the limits in the above results.
A comprehensive study of the permeability of the Lac du Bonnet granite was conducted
by Selvadurai et al. [38] who performed surface permeability tests on a cuboid measuring
300 mm and used the data to estimate the permeabilities within the block, and with the aid
of computational modelling, to arrive at an effective permeability for the granite based on
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the geometric mean. The results of that investigation gave permeability values in the range
(0.840 to 1.090) × 10−19 m2. Other estimates for the permeability of the Lac du Bonnet
granite obtained from both laboratory and in situ tests conducted on boreholes give the fol-
lowing values: Stevenson et al. [58] give the following estimates: (0.01 to 0.05) × 10−19 m2,
Katsube and Hume [59] indicate a value of (0.90) × 10−19 m2, and Souley et al. [60] give a
value of (0.60) × 10−19 m2. The variability of the geomechanical properties of geomaterials
is well known and the property of permeability is expected to display a wide statistical
variation (Harr [61]). The in situ estimates can be influenced by the methodology adopted
for the installation of the borehole, the test procedure and the approach used to interpret
the test data. From the results of the laboratory investigations conducted here, the range
of permeability for the intact Lac du Bonnet Granite can be assigned values in the range
(0.670 to 0.878) × 10−19 m2.
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