Predicting the behavior of a saturated rock with variations in pore fluid pressure during geo-energy production and storage, deep geological disposal of nuclear wastes, etc. with skeletal mechanical behavior in the linear elastic range is carried out using the isothermal theory of poroelasticity that incorporates Biot’s effective stress principle. For conditions that are not within linear elasticity, other effective stress coefficients are used. Several experimental methods for determining Biot’s and other effective stress coefficients have been documented in the literature. The objective of this study is to review the fundamentals of these techniques, their advantages and disadvantages, and to include several case studies. Current techniques for Biot’s coefficient are based on different premises: jacketed and unjacketed bulk moduli or compressibility values; volume changes of the bulk and pore fluid from a drained triaxial test on a saturated sample; isotropic-isochoric compression tests on a saturated sample; matching volumetric strains for dry and saturated samples; estimation of the Biot coefficient from other poroelastic parameters; and approximation of the jacketed bulk modulus from ultrasonic wave velocities and/or unjacketed bulk modulus from the mineralogical compositions. Other effective stress coefficients are based on matching failure envelopes for dry and saturated samples and variations of rock properties (such as volumetric strain, permeability, and ultrasonic wave velocities) with respect to confining stress and pore pressure. This article discusses variations in Biot’s and other effective stress coefficients produced using the different techniques and how factors such as pore geometry, test conditions, stress path, and test temperature affect the coefficients. [DOI: 10.1115/1.4055888]

Keywords: the Biot coefficient, effective stress coefficient, poroelasticity, jacketed test, unjacketed test

1 Introduction

The motivation for this study is derived from the pioneering papers by Biot [1] and Biot and Willis [2] that laid out the guiding principles of poroelasticity for an isotropic porous solid, which has been used across various disciplines for eight decades. Energy-related subsurface activities and other processes such as oil and gas exploitation [3–10], underground CO₂ sequestration [11,12], hydraulic fracturing [13,14], enhanced geothermal systems or EGS [15,16], underground compressed air energy storage or CAES [17,18], deep geological disposal of nuclear waste [19–22], underground wastewater disposal [23,24], longwall mining [25], wellbore stability [26,27], fault re-activation due to fluid pressure increase [28,29], water level changes in wells [30], tide effects on compressible aquifers [31], and glacial advance and retreat [32] contribute to perturbations in the geosphere in terms of changes to the total stresses, pore pressures, and the thermal regime. The impacts of these processes often result in coupled hydro-mechanical (HM) or thermo-hydro-mechanical (THM) phenomena where the responses of fluid-saturated rock masses need to be predicted [33,34]. Other field processes such as in situ seismic wave velocity measurements [35,36] also involve the response of a saturated rock. Similarly, interpretation of THM loading of a rock in laboratory conditions involves the behavior of the fluid-saturated rock [37–39]. The rock response, however, is dependent on how the external stresses are partitioned between the solid skeleton and the pore fluid. The partitioning for the linear elastic state can be estimated using Biot’s theory of poroelasticity [1], where Biot expressed stresses as functions of strains, elastic properties, and fluid pressure or increment of the fluid volume per unit volume of the porous rock. The original definition of Biot’s effective stress has been continually extended to account for nonlinear and inelastic behavior of the rock; therefore, succeeding studies used a general effective stress framework similar to that of Biot’s where the pore pressure factor was called the effective stress coefficient (some referred to it as the effective pressure coefficient) for the stress regimes which fall outside Biot’s linear poroelasticity. This article reviews Biot’s theory of three-dimensional consolidation [1] concerning the relationship between strain, stress, pore fluid pressure, and the pore fluid volume increment for a porous material at an equilibrium condition (no transient pore fluid pressure effects). Fundamentals of the theory of linear poroelasticity have been reviewed by many investigators [40,41]. The theory of poroelasticity has been extensively applied to geomaterials, for example, see Ref. [42] for a review of applications of this theory to various analytical problems in geomechanics, and Ref. [43] for a review of applications to shearing and failure of geomaterials. Biot [1] and Biot and Willis [2] introduced a scalar multiplier for the pore pressure term in the stress-strain-fluid pressure relationship, which is commonly known as the Biot coefficient z. An overview of the original derivations of the analytical relations for...
2 An Overview of Biot’s Theory of Three-Dimensional Consolidation

2.1 Relationship Between Strain, Stress, Fluid Content, and Fluid Pressure for an Isotropic Elastic Porous Material

Biot [1] extended the classical elastic stress–strain relationship for an isotropic poroelastic material to include the pore pressure term (P). In Cartesian tensor notation, the constitutive relation for an isotropic material can be written as

\[\varepsilon_{ij} = \sigma_{ij} - \left(\frac{1}{6G} + \frac{1}{9K} \right) \sigma_{kk} \delta_{ij} + \frac{P}{3H} \delta_{ij} \]

where \(\sigma_{ij} \) and \(\varepsilon_{ij} \) are the classical Cauchy stress and small strain tensor, respectively, in an infinitesimal cuboidal element of the porous material. As is common in solid mechanics, stress and strain are assumed positive in extension, \(P \) is assumed to be positive when it results in extension, \(G \) and \(K \) are the shear and bulk moduli of the drained elastic solid, respectively, \(\delta_{ij} \) is the Kronecker delta, and \(H \) is a new physical constant.

Biot [1] introduced a new variable as the variation of fluid content (\(\xi \)) which is equal to the increment of fluid volume per unit volume of the porous medium: a positive \(\xi \) corresponds to a gain of fluid by the porous material. Since the developments focus on ideal fluids, the shear stresses do not affect the fluid content, and the effect of normal stresses on fluid content is assumed to be isotropic. Therefore, the fluid content–fluid pressure may be written as Eq. (2) where \(H' \) and \(R \) are two physical constants

\[\xi = \frac{a_{kk} P}{3H'} + \frac{P}{R} \]

In the case of an isotropic stress state, the potential energy increment per unit volume of the saturated porous material is given by

\[dW = \frac{1}{2} (\sigma_{ij} d\varepsilon_{ij} + P d\xi) = \frac{1}{2} (\varepsilon_{ij} d\sigma_{ij} + \xi dP) \]

Assuming that the work done to bring the material from its initial state to the final condition of strain and fluid content is path-independent implies that

\[\frac{\partial \varepsilon_{ij}}{\partial P} = \frac{\partial \xi}{\partial \sigma_{ij}} \]

Equation (4) combined with Eqs. (1) and (2) leads to \(H = H' \).

Equations (1) and (2) are the fundamental relations for a linear isotropic porous material under equilibrium conditions with respect to strain and fluid content, and are dependent on four physical constants \(G, K, H, \) and \(R \). Rewriting Eqs. (1) and (2) with respect to stresses, Eq. (5) is obtained

\[\sigma_{ij} = 2G\varepsilon_{ij} + \lambda a_{kk} \delta_{ij} - \frac{P}{K} \delta_{ij} \]

where \(\lambda \) is Lamé’s parameter under drained conditions (i.e., constant pore pressure) defined in Eq. (6) and \(\alpha \) is a constant defined in Eq. (7)

\[\lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)} \]

\[\alpha = \frac{K}{H} \]

where \(E \) is Young’s modulus and \(\nu \) is Poisson’s ratio. The variation in fluid content in fluid pressure can be expressed as

\[\frac{\xi}{R} = \alpha a_{kk} + \frac{1}{R} \frac{\lambda}{K} P \]

A more complete presentation of the equations presented in this section can be found in texts on poroelasticity (e.g., Refs. [49] and [50]).

2.2 An Implied Effective Stress Relationship and Biot Effective Stress Coefficient for Isotropic Elastic Porous Material

The analytical development of Biot [1] as defined by Eq. (5) is an effective stress relation. The first two terms on the right side of Eq. (5) lead to the corresponding normal strain induced by the total stress and the third term is the pore pressure term multiplied by the pore pressure parameter, which is referred to as the Biot coefficient, see, e.g., Ref. [51]. Although Biot [1] and Biot and Willis [2] did not specifically refer to this as the effective stress coefficient, it is implied and used in the literature. The stress–strain–pore pressure relation of Eq. (5) (Eq. (2.11) in Biot [1]), is associated with an effective stress equation that is similar in nature to the effective stress equation introduced by Terzaghi [52]. As is commonly used in the literature, any equation that is a relationship between the total stress, the skeletal stress, the fluid pressure, and the relevant constitutive properties of the geomaterial is an effective stress equation. Biot’s effective stress relationship assumes that the total isotropic confining stress (\(\sigma_{ij} \)), or total stress (as used by many authors in the literature), is the sum of the effective stress or \(\sigma'_{ij} \) (i.e., the stress carried by the porous skeleton), and the pore fluid pressure (\(P \)) multiplied by a constant, \(\alpha \), which is commonly referred to as the Biot coefficient or, in much of the literature, as the Biot–Willis coefficient [2], and defined by Eq. (9)

\[\sigma'_{ij} = \sigma_{ij} - \alpha P \delta_{ij} \]

Biot [1] applied his theory of three-dimensional consolidation to two special test conditions, namely, jacketed and unjacketed compressibility tests. In the jacketed test, where there is no variation in pore pressure in Eq. (8), \(\alpha \) measures the ratio of the fluid volume increment to the volume change of the elastic porous solid, that is

\[\alpha = \frac{\xi}{a_{kk}} \]

Biot and Willis [2] considered the jacketed and unjacketed compressibility test conditions in Eqs. (1). In the jacketed test, an isotropic stress of \(\sigma_{ij} = -\sigma a_{ij} \) is applied to the porous material, \(P = 0 \), and the shear stresses are zero. The volumetric strain and jacketed bulk modulus (\(K \)) of the porous material (inverse of jacketed compressibility) are related through

\[a_{kk} = -\frac{\sigma}{K} \]

Hence for the jacketed compressibility test, Eq. (5) yields
In the unjacketed test, an isotropic (compressive) stress of $\sigma_{ij} = -\sigma$ is applied on the solid skeleton, the fluid pressure is equal to $P = \sigma$, and the shear stresses are zero. The volumetric strain and unjacketed bulk modulus (K_s) of the porous material (inverse of unjacketed compressibility) are related through

$$\varepsilon_{kk} = -\frac{\sigma}{K_s}$$ \hspace{1cm} (13)$$

Substituting the results for the unjacketed compressibility test into Eq. (5), we can write

$$-\sigma = 2G\left(-\frac{\sigma}{3K_e}\right) + \lambda \left(-\frac{\sigma}{K_e}\right) - 2\sigma$$ \hspace{1cm} (14)$$

Solving Eqs. (12) and (14) for σ and eliminating σ, Biot and Willis [2] derived Eq. (15) which is usually referred to as the original definition of the Biot coefficient or the jacketed-unjacketed method

$$\varepsilon = 1 - \frac{K}{K_s}$$ \hspace{1cm} (15)$$

In the literature, K_e is commonly referred to as the bulk modulus of the solid phase or grains. In the case of an ideal homogeneous rock composed of only one mineral (and no pore space), the unjacketed modulus or K_e is equal to the bulk modulus of the mineral or K_e'. With low-poverty and low permeability rocks, there is an unacceptably long testing period required to reach equilibrium of the pore fluid pressure, which is a prerequisite for determining ε. Furthermore, there are no assurances that the entire pore space is saturated with the pore fluid. This has posed a challenge to the rock mechanics community dealing with applications of poroelasticity [53,54]. Consequently, researchers proposed various methods to either directly determine the Biot coefficient or to approximately determine it through the consideration of contributions to the two components of the bulk moduli encountered in Eq. (15). The developments were based on deriving new analytical results from the original definition of Biot [1] and Biot and Willis [2] or the concept that the response of a fluid-saturated rock is dominated by the effective stress. The latter idea opened a new gateway to compare the responses of dry and saturated rock samples to estimate the effective stress, and hence, the Biot coefficient. The original definition of effective stress by Biot [1] and Biot and Willis [2] is constantly being extended to include nonlinear and inelastic skeletal properties, therefore, this review regards ε as the Biot effective stress coefficient relevant to isotropic linear poroelasticity only. In much of the literature, the Biot [1] and Biot–Willis [2] solutions are referred to as the “conventional” or “direct” techniques. However, other researchers have referred to the physical experiments therein and called the technique the “jacketed-unjacketed” test method. Several published articles used the terms “direct” versus “indirect” methods. While all these terms (jacketed–unjacketed, direct, indirect, etc.) are used throughout this review; the intention is to prevent any bias in choosing only one of these descriptors for the methods discussed herein. In a general sense, any techniques that were established based on the analytical definition for ε following the original suggestion by Biot [1] or Biot and Willis [2] are generally called direct methods. The estimation of ε or its components using other methods are thus referred to as indirect methods (e.g., the method based on an estimation of the bulk or grain modulus).

2.3 Limits of the Biot Effective Stress Coefficient for an Isotropic Elastic Porous Geomaterial

2.3.1 Upper Limit. Triaxial experiments under isotropic stress conditions are used to reliably measure K_s in soil-like materials and weak porous rocks without excessive time demands to attain equilibrium of the applied stresses. If $K \ll K_e$ (e.g., isotropic saturated soils), σ approaches unity. Biot and Willis [2] examined the limits of the coefficient ε. They discussed that ε for an elastic isotropic material cannot be greater than unity. This is because K in Eq. (15) is positive and cannot be zero, and K_e is also positive. Similarly, given that the fluid volume change in a jacketed test cannot exceed the total volume change, ε in Eq. (10) must satisfy the condition of $0 \leq \varepsilon \leq 1$.

If $\varepsilon = 1$, Biot’s effective stress reduces to Terzaghi’s effective stress (Eq. (16)), where σ' is the simple effective stress

$$\sigma' = \sigma - P$$ \hspace{1cm} (16)$$

Terzaghi’s effective stress equation is very simple in form and widely used in soil mechanics; however, the simple relationship does not contain any influence of the constitutive properties of the porous material and the solid phase that will guide a user toward making an appropriate simplification [55].

Measuring the unjacketed bulk modulus in low-porosity rocks poses considerable challenges due to the time required for (i) the pore fluid to saturate the pore space and (ii) achieving equilibrium under the applied stresses. Estimation of K_e for this class of materials can also introduce errors in the calculation of ε. Nevertheless, the bulk modulus in low-porosity rocks approaches the bulk modulus of the solids; hence, according to Eq. (15) ε becomes much smaller than that for soils and approaches its lower limit.

2.3.2 Lower Limit. Biot and Willis [2] rewrote Eq. (5) by replacing the pore pressure term with the variation in fluid content term (Eq. (17)), where Q is a new physical constant

$$\sigma_{ij} = 2G\varepsilon_{ij} + \lambda \varepsilon_{kk} \delta_{ij} + Q\xi \delta_{ij}$$ \hspace{1cm} (17)$$

The skeletal shear stresses are not influenced by pore pressure or variations in the fluid content. Pore pressure is now defined by Eq. (18) where K_1 is a new physical constant

$$P = Q \varepsilon_{kk} + K_1 \xi$$ \hspace{1cm} (18)$$

To define the lower limit of ε, Biot and Willis [2] once again considered the jacketed and unjacketed compressibility tests in Eq. (17) in conjunction with the pore pressure relation of Eq. (18). In the jacketed test, an isotropic stress of $\sigma_{ij} = -\sigma \delta_{ij}$ is applied on the solid skeleton, $P = 0$, and shear stresses are zero. The normal strain and volumetric strain of the porous solid can be determined from Eq. (11) by knowing the jacketed bulk modulus. Substituting this information in Eq. (17) yields

$$-\sigma = 2G\left(-\frac{\sigma}{3K_e}\right) + \lambda \left(-\frac{\sigma}{K_e}\right) + Q\xi$$ \hspace{1cm} (19)$$

From $P = 0$ condition

$$0 = Q \left(-\frac{\sigma}{K_e}\right) + K_1 \xi$$ \hspace{1cm} (20)$$

Eliminating σ and ξ gives

$$K = \frac{2}{3}G + \lambda \cdot \frac{Q^2}{K_1}$$ \hspace{1cm} (21)$$

Here, for the unjacketed test, as is common in Soil Mechanics and poromechanics, an isotropic (compressive) stress of $\sigma_{ij} = -\sigma \delta_{ij}$ is partitioned between the portion taken by the fluid or $P = -\sigma \delta_{ij}$ and the portion taken by the solid phase of the porous material which is equal to $\sigma_{ij} = -(1 - \phi) \sigma \delta_{ij}$. This approach helps bring the porosity (ϕ) term into the discussion. The normal strain and volumetric strain of the porous solid can be determined from
Eq. (13) by knowing the unjacketed bulk modulus. Substituting this information in Eqs. (17) and (18) yields

\[-(1-\phi)\sigma = 2G \left(\frac{\sigma}{3K_s} + \lambda \frac{\sigma}{K_s} \right) + Q\zeta \]

(22)

\[-Q\sigma = Q \left(\frac{\sigma}{K_s} + R_1 \zeta \right) \]

(23)

Eliminating \(\sigma \) and \(\zeta \) yields

\[1 - \left(\frac{Q + R_1}{R_1} \right) \phi = \left(\frac{2}{3}G + \lambda \frac{1}{K_s} \right) \frac{1}{K_s} \]

(24)

Substituting Eq. (21) into Eq. (24) yields

\[\left(\frac{Q + R_1}{R_1} \right) \phi = 1 - K \frac{1}{K_s} \]

(25)

Comparing these results with Eq. (15), \(z \) can be defined as

\[z = \left(\frac{Q + R_1}{R_1} \right) \phi \]

(26)

From Eq. (18), if a positive fluid pressure is applied to the porous material while at the same time the volumetric strain is held fixed, a positive fluid content increment must result; \(R_1 \) must therefore be positive. Alternatively, if the fluid pressure is held constant and a positive stress is applied, the volumetric strain must be positive while there is a net increase in the porosity. Thus, there is a negative fluid content increment, and \(Q \) must be positive. Since both \(R_1 \) and \(Q \) are positive, it can be concluded from Eq. (26) that \(z \) cannot be smaller than the porosity of the porous material.

The trivial lower limit for the Biot coefficient can also be approached by considering the basic definition for \(z \) given by Eq. (15). If the skeletal material is monomineralic and if the porosity tends to zero, then it is feasible to assume that \(K \rightarrow K_s \), and in this case \(z \rightarrow 0 \).

Alternative expressions for Eqs. (17) and (18) for undrained conditions, incorporating undrained elastic parameters and Skempton’s pore pressure parameter \(B \), can be found elsewhere, e.g., Cheng [33]. Detournay and Cheng [49], and Rice and Cleary [56].

3 Fundamentals of the Direct and Indirect Techniques for Determining the Biot Coefficient

In this section, the original method for determining the Biot coefficient from Biot [1] and Biot and Willis [2] and other developments are discussed along with the advantages and disadvantages of each method. Several case studies for each technique from the literature are summarized to show the range of applicability of each method. In the remainder of this review, as is common in rock mechanics, compressive strain and stress are assumed to be positive.

3.1 Jacketed–Unjacketed Tests. The fundamentals of jacketed and unjacketed compressibility tests are provided in Sec. 2.2 and the common relationship between the bulk and solid moduli are shown by Eq. (15). Nur and Byerlee [57] later provided an alternative theoretical solution and independently proved that Eq. (15) is theoretically exact. The solution given in Ref. [57] is discussed here for completeness. Assuming that the solid skeleton is homogeneous, isotropic, and linear elastic over the range of the applied stresses and the pore spaces are fully interconnected, Ref. [57] calculated the elastic volumetric strain of a rock sample under an externally applied confining stress, \(\sigma \), and an internally applied pore fluid pressure \(P \). By superposition of the volumetric strains under only \(P \) and for the case where the medium is under an external confining stress of \(\sigma - P \) (Fig. 1), Eq. (15) was achieved. This equation is traditionally used in poroelasticity and is also known as the original method for determining \(z \). It is sometimes referred to as the method based on jacketed–unjacketed bulk moduli or compressibilities. Reference [57] also used the term effective stress for the relationship between stress, strain, and pore pressure proposed by Biot [1].

Nur and Byerlee [57] also experimentally demonstrated the validity of Eq. (15). They conducted several isotropic compression tests on saturated and dry samples of the Weber sandstone. Pretest porosity (\(\phi \)) of the sandstone was about 6%. Tap water was used as the pore fluid for the tests on the saturated samples. The results of the tests are presented in Fig. 2. The volumetric strain plotted against the total confining stress (Fig. 2(a)) shows a significant scatter. Plotting the data against \(\sigma - P \) slightly improved the scatter (Fig. 2(b)); however, the scatter of the data was remarkably reduced when they were plotted against Biot’s effective stress as defined by Eq. (9) and shown in Fig. 2(c).

According to Biot and Willis [2], use of Eq. (9) requires the measurement of the matrix and grain compressibility or bulk moduli. Generally, two triaxial isotropic compression tests are required to determine \(z \); a test on a jacketed specimen (which is dry with no fluid saturation), or a drained test carried out on a saturated specimen provided sufficient time is allowed for the fluid pressure to equilibrate) to measure \(K \) (using Eq. (11)) and a test on an unjacketed specimen to determine \(K_s \) (using Eq. (13)).

In the jacketed test, an external confining stress is applied to the specimen and varied over a specified range while the pore pressure is maintained constant (drained condition). This test can also be conducted on a dry specimen. However, Biot and Willis [2] pointed out that the dry specimen may not exhibit the same properties as the saturated specimen; an example could be the case where the elastic properties are affected by capillary forces at the interface of the pore fluid and the solid grains.

In the unjacketed test, a pressure \(\sigma = P \) is applied to the sample. The unjacketed test can also be carried out on a jacketed specimen provided that the increments of the pore and confining pressures are identical. Under the loading condition in an unjacketed test, any measured deformation is that of the solid phase. In an unjacketed test, the rock should either be highly permeable or a low strain rate should be used, which is crucial for draining the pore water in a practical experimental time frame.

If the porosity skeleton is homogeneous and composed of only one mineral, then \(K_s \) is equal to the bulk modulus of the constituent mineral. If the porous skeleton is inhomogeneous and composed of several minerals (as occurs in most rocks), then \(K_s \) represents a weighted average of the bulk moduli of the constituent minerals [58,59]. Other approaches based on theories for effective properties for multiphase elastic solids have also been used recently to provide estimates for the solid material compressibilities for the Cobourg limestone, Grimsel granite, and Lac du Bonnet granite [53,60,61], respectively.

The unjacketed bulk modulus is independent of the stress level in the elastic domain. For the low-porosity Westerly granite (porosity \(\phi \sim 1\% \)) and under \(\sigma = 0 - 250 \) MPa, Nur and Byerlee [57] measured \(K_s = 45.5 \) GPa (Fig. 3). Reference [62] also reported a constant \(K_s = 41.2 \) GPa from an unjacketed test on the Flechtinger sandstone (\(\phi = 9.1 - 10.8\% \)) under stresses between 2 MPa and 55 MPa.

In contrast, some publications have reported a variable \(K_s \). For example, Ref. [63] reported nonlinearity in an unjacketed test on the Castlegate sandstone; they deduced that \(K_s \) was between 52.28 GPa and 60.70 GPa as the confining stress increased from 22 MPa to 144 MPa. However, the justification for this odd behavior is not clear to the authors of this review. Reference [64] found that \(K_s \) of a Vosges sandstone increased from 28.1 GPa to 52.9 GPa as confining stress increased from 5 MPa to 25 MPa; they attributed this behavior to the possible closure of the
microcracks as a result of the increased confining stress. However, the authors of this review cannot confirm their justification.

The bulk modulus of a porous rock \(K \) is dependent on the magnitude of the applied confining stress and pore pressure. As shown in Fig. 3, the bulk modulus of Westerly granite increased as \(r \) increased; however, \(K \) approached \(K_s \) at about \(r = 100 \text{ MPa} \), and was attributed by the authors \[57\] to possible pore closure. According to Ref. \[64\], the bulk modulus of the Berea sandstone remained constant at \(r > 30 \text{ MPa} \); however, they did not provide any explanation for this behavior.

Table 1 summarizes several case studies on rocks where the Biot coefficient was measured using the jacketed-unjacketed testing technique. Cylindrical sample diameter and length are represented by symbols \(D \) and \(L \), respectively. The table includes several sedimentary and crystalline rocks, such as the Westerly granite, Flechtinger sandstone, Berea sandstone, Castlegate sandstone, Indo-Chinese granodiorite, Callovo-Oxfordian claystone, Opalinus clay, Sorcy limestone, Eau Claire shale, Charcoal granite, and Lac du Bonnet granite, where values between 0.04 and 1.00 were reported for the Biot coefficients. Initial sample porosities before testing were between \(< 0.5\% \) and \(28.4\% \). The table includes a wide range of confining stresses from 0 to 240 MPa. The pore fluids used were water, distilled water, or de-ionized water.

3.2 Bulk-Pore Volume Changes

Equation (10) can be rewritten as the ratio of the pore fluid volume change \((\Delta V_r) \) to the bulk volume change of the rock sample \((\Delta V) \), i.e.,
Table 1 Biot coefficient determined for different rocks from jacketed-unjacketed tests

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity Ø (%)</th>
<th>Equipment</th>
<th>$D \times L$ (mm)</th>
<th>σ (MPa)</th>
<th>Pore fluid</th>
<th>P (MPa)</th>
<th>K (GPa)</th>
<th>K_s (GPa)</th>
<th>α</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westerly granite [57]</td>
<td>1</td>
<td>Triaxial</td>
<td>—</td>
<td>0–240</td>
<td>Water</td>
<td>0</td>
<td>2.3–43.9</td>
<td>45.5</td>
<td>0.04–0.95</td>
<td>■ See text for details.</td>
</tr>
<tr>
<td></td>
<td>■ Jacketed test was conducted on a dry sample.</td>
</tr>
<tr>
<td></td>
<td>■ K and α were calculated by the authors of this review paper from the results presented in Fig. 3.</td>
</tr>
<tr>
<td>Flechtinger sandstone [62]</td>
<td>9.1–10.8</td>
<td>Triaxial</td>
<td>50 x 100</td>
<td>2–55</td>
<td>Water</td>
<td>1</td>
<td>2–15</td>
<td>41.2</td>
<td>0.64–1.00</td>
<td>■ Sample was preconditioned by cycling σ between 0 and 60 MPa. Test temperatures varied between 30°C and 120°C.</td>
</tr>
<tr>
<td>Castlegate sandstone [63]</td>
<td>26</td>
<td>Triaxial</td>
<td>51 x 104</td>
<td>22–144</td>
<td>DI water</td>
<td>6.89</td>
<td>6.9–11.9</td>
<td>52.3–60.7</td>
<td>0.80–0.87</td>
<td>—</td>
</tr>
<tr>
<td>Berea sandstone [65,66]</td>
<td>23</td>
<td>True Triaxial</td>
<td>35 x 35 x 35 mm</td>
<td>5–10</td>
<td>Water</td>
<td>0–5.0</td>
<td>7.9–13.3</td>
<td>29.4–30.9</td>
<td>0.71–0.74</td>
<td>■ Prismatic sample 35 x 35 x 35 mm.</td>
</tr>
<tr>
<td></td>
<td>■ Porosity measured under an isotropic stress of 5 MPa in a true triaxial cell.</td>
</tr>
<tr>
<td>Berea sandstone [67]</td>
<td>21</td>
<td>Triaxial</td>
<td>51 x 100</td>
<td>10–30</td>
<td>DI water</td>
<td>5–28.5</td>
<td>4.55</td>
<td>27.8</td>
<td>0.84</td>
<td>—</td>
</tr>
<tr>
<td>Indo-Chinese granite-diorite [68]</td>
<td>2.7</td>
<td>Triaxial</td>
<td>—</td>
<td>2–55</td>
<td>Water</td>
<td>2</td>
<td>2.5–8.2</td>
<td>19.5</td>
<td>0.55–0.87</td>
<td>■ Three samples tested: intact, with artificial vertical and horizontal fractures.</td>
</tr>
<tr>
<td></td>
<td>■ Samples preconditioned by three cycles of σ between 0 and 60 MPa ($P = 0$).</td>
</tr>
<tr>
<td></td>
<td>■ Test temperatures varied between 30°C and 150°C.</td>
</tr>
<tr>
<td>Callovo–Oxfordian claystone [69]</td>
<td>15.3–17.6</td>
<td>Triaxial</td>
<td>38 x 10</td>
<td>12–16</td>
<td>Water</td>
<td>4–6</td>
<td>2.0–3.0</td>
<td>21.7</td>
<td>0.87–0.91</td>
<td>■ α for a transversely isotropic case was also determined, which is discussed in Sec. 5.5.</td>
</tr>
<tr>
<td></td>
<td>■ A synthetic pore water was used that had the same salinity as the in-situ fluid.</td>
</tr>
<tr>
<td>Callovo–Oxfordian claystone [70]</td>
<td>17.9–18.2</td>
<td>Triaxial</td>
<td>38 x 10</td>
<td>10–14</td>
<td>Water</td>
<td>0–4</td>
<td>2.18</td>
<td>—</td>
<td>0.92</td>
<td>■ A synthetic pore water was used that had the same salinity as the Opalinus clay.</td>
</tr>
<tr>
<td>Opalinus clay [71]</td>
<td>13.3</td>
<td>Triaxial</td>
<td>38 x 12</td>
<td>4.5–8.0</td>
<td>Water</td>
<td>2.0</td>
<td>0.9</td>
<td>19.2</td>
<td>0.95</td>
<td>■ K_s was not measured but taken from other references.</td>
</tr>
<tr>
<td>Sorcy limestone [72]</td>
<td>28.4</td>
<td>Triaxial</td>
<td>60 x 125</td>
<td>22.5–27.5</td>
<td>Distilled water</td>
<td>5</td>
<td>13.2</td>
<td>83.0</td>
<td>0.84</td>
<td>■ Porosity was determined after the test.</td>
</tr>
<tr>
<td>Eau Claire shale [73]</td>
<td>10</td>
<td>Triaxial</td>
<td>30 x 60</td>
<td>0–50</td>
<td>DI water</td>
<td>0</td>
<td>3.9–17.0</td>
<td>49.3</td>
<td>0.80</td>
<td>■ The reported α is for $\sigma' = 10$ MPa.</td>
</tr>
<tr>
<td>Opalinus clay [73]</td>
<td>13</td>
<td>Triaxial</td>
<td>30 x 60</td>
<td>0–20</td>
<td>Water</td>
<td>0</td>
<td>1.7–2.7</td>
<td>8.9</td>
<td>0.70</td>
<td>■ In-situ brine was used for pore water.</td>
</tr>
<tr>
<td>Rock</td>
<td>Pretest porosity Ø (%)</td>
<td>Equipment</td>
<td>$D \times L$ (mm)</td>
<td>σ (MPa)</td>
<td>Pore fluid</td>
<td>P (MPa)</td>
<td>K (GPa)</td>
<td>K_s (GPa)</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Charcoal granite [73]</td>
<td>2</td>
<td>Triaxial</td>
<td>30×60</td>
<td>0–50</td>
<td>DI water</td>
<td>0</td>
<td>9.7–46.4</td>
<td>63.2</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Lac du Bonnet granite [74,75]</td>
<td><0.5</td>
<td>Triaxial</td>
<td>58×153</td>
<td>0–1.1</td>
<td>Distilled water</td>
<td>0</td>
<td>13.4</td>
<td>50.0</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- For the unjacketed test, the confining fluid (Syltherm 800 heat transfer fluid) was applied to the sample saturated with distilled water.
- K_s is the average unjacketed modulus during loading and unloading under $\sigma = 2$–22 MPa.

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity Ø (%)</th>
<th>Equipment</th>
<th>$D \times L$ (mm)</th>
<th>σ (MPa)</th>
<th>Pore fluid</th>
<th>P (MPa)</th>
<th>ΔV_P (mm3)</th>
<th>α</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flechtinger sandstone [62]</td>
<td>9.1–10.8</td>
<td>Triaxial</td>
<td>50×100</td>
<td>2–55</td>
<td>Water</td>
<td>1</td>
<td>—</td>
<td>0.52–1</td>
<td>Sample was preconditioned by cycling confining stress between 0 and 60 MPa. Temperature varied between 30 °C and 140 °C.</td>
</tr>
<tr>
<td>Berea sandstone [65]</td>
<td>2</td>
<td>Triaxial</td>
<td>$44 \times 87 \times 100$</td>
<td>0–5</td>
<td>Water</td>
<td>0</td>
<td>200</td>
<td>0.64–0.71</td>
<td>Prismatic sample $44 \times 87 \times 100$ mm. Plane strain test in drained condition. Porosity measured at $\sigma = 5$ MPa.</td>
</tr>
<tr>
<td>Sorcy limestone [72]</td>
<td>28.4</td>
<td>Triaxial</td>
<td>60×125</td>
<td>22.5–27.5</td>
<td>Distilled water</td>
<td>2–7</td>
<td>—</td>
<td>0.81</td>
<td>Two stress paths were followed: σ increased under constant P; P increased under constant σ.</td>
</tr>
<tr>
<td>Opalinus clay [80]</td>
<td>9.0–17.4</td>
<td>Oedometer</td>
<td>—</td>
<td>—</td>
<td>Water</td>
<td>—</td>
<td>—</td>
<td>0.8–0.95</td>
<td>A synthetic pore water was used, which had the same salinity as the Opalinus clay. See text for measurement details. Vertical effective stress varied from about 1 to 50 MPa.</td>
</tr>
</tbody>
</table>
This technique only requires one drained isotropic compression test, which was discussed by many researchers [49,76–79]. This technique seems very attractive for high-porosity rocks where the entire pore space can be easily saturated, and the pore fluid is a single phase. The bulk volume change of a rock is conventionally measured using displacement sensors (e.g., strain gages, LVDTs, etc.); however, the pore volume change is equal to the volume of pore fluid drained out of the specimen subjected to isotropic compression. The latter measurement is extremely challenging for low-porosity rocks due to the minute volume of pore fluid drained during isotropic compression.

Reference [65] utilized this method for a sample of the Berea sandstone. The sample volume was about 380 mL. The pore volume change was very small (about 0.2 mL), drained from the test sample in the form of small drops, each measuring 0.02–0.03 mL in volume. Consequently, because of this uncertainty, they concluded that the calculated Biot coefficient was unreliable.

Reference [80] used a special case of Eq. (27) and estimated the Biot coefficient of the Opalinus clay under oedometric conditions \((\varepsilon_{\text{ocd}}) \) where radial deformation \((\varepsilon_r) \) is not permitted. Equation (28) was used for a transversely isotropic condition, where \(E_{\text{ocd}} \) is the oedometric modulus (and equal to the increment of the total vertical stress divided by the increment of the corresponding volumetric strain after the induced pore pressure has completely dissipated), \(E_s \) and \(
u_{xy} \) are Young’s modulus and Poisson’s ratios in the direction parallel to the bedding plane, and \(E_t \) and \(
u_{tx} \) are the same parameters but in the direction perpendicular to the bedding plane. This method resulted in \(\varepsilon_{\text{ocd}} = 0.8 \sim 0.95 \) for vertical effective stresses of about 1–50 MPa.

\[
\varepsilon_{\text{ocd}} = \frac{\Delta V_f}{\Delta V} \bigg|_{\varepsilon_r = 0} = 1 - \frac{E_{\text{ocd}}}{3K_s} \left[1 + \frac{2\nu_{tx}E_s}{E_t(1 - \nu_{xy})} \right] \tag{28}
\]

Table 2 summarizes the experimental details of the Biot coefficient measurements of the Flechtinger sandstone, Berea sandstone, Sorcy sandstone, and Opalinus clay using the bulk-pore volume changes method.

3.3 Isotropic–Isochoric Compression Test

The Biot coefficient can be determined by adjusting the confining stress \((\Delta P) \) to prevent volume change \((\varepsilon_r = 0) \) in the sample as a result of any variations in the pore pressure \((\Delta P) \). This relation can be derived from the definition of bulk modulus, that is

\[
K = \frac{\Delta P'}{\Delta \varepsilon_r} = \frac{\Delta (\sigma - P)}{\Delta \varepsilon_r} \tag{29}
\]

Re-arranging for \(\varepsilon_r \), we find

\[
\varepsilon_r = \frac{\Delta \varepsilon - K \Delta \varepsilon_r}{\Delta P} \tag{30}
\]

For \(\varepsilon_r = 0 \), \(\varepsilon_r \) is equal to

\[
\varepsilon_r = \frac{\Delta \varepsilon - K \Delta \varepsilon_r}{\Delta P} \tag{31}
\]

Only one drained isotropic compression test of a saturated sample is needed in this technique. However, a pressure feedback system is required such that the confining stress can be adjusted following a change in the pore pressure, in order to compensate for the sample volume change.

Theoretically, one could instead measure the change in pore pressure \((\Delta P) \) required to suppress the volume change of the sample imposed by a change in the confining stress \((\Delta \sigma) \).

This technique becomes disadvantageous when testing low-porosity rocks due to the long time required for deformation equilibrium.

He et al. [81] used this method in a core holder equipped with axial and radial strain gauges and measured \(\varepsilon_r \) for the Bakken shale using Eq. (31); they determined the Biot coefficients of samples prepared parallel and perpendicular to the bedding plane.

Ling et al. [82] compared the Biot coefficient for nine cores of the Bakken shale, determined using this technique and the jacketed–unjacketed test method, both with the assumption that the material was isotropic.

Müller and Sahay [78] controversially argued that the effective stress coefficient determined from Eq. (27) can be different from those determined from Eqs. (15) or (31). The authors used the experimental data of the Berea sandstone reported in Ref. [83] and the Bentheimer sandstone from Ref. [84] and showed that (i) the results of Eq. (27) were generally lower than those from Eq. (15) for the Berea sandstone by a maximum difference of 0.25; (ii) they were higher for the Bentheimer sandstone for the range of simple effective stress studied \((i.e., 0-70 \text{ MPa}) \). These authors [78] argued that these differences were the impact of inhomogeneities at a small scale such as microcracks and other pore-scale features.

The details of the testing of the Bakken shale, Kansas chalk, and Gosford sandstone are provided in Table 3.

3.4 Matching Volumetric Strains of Dry and Saturated Samples

This technique was first proposed by Franquet and Abbas [87]. It does not require the measurement of the bulk or grain moduli. Drained isotropic compression tests are performed on two samples: a dry sample with zero pore pressure \((P = 0) \) (called test 1) and a drained test on a saturated sample with variations in either \(\sigma \) or \(P \) (called test 2). The volumetric strains from test 1 are recorded and plotted as a function of the effective stress (which is equal to the total confining stress due to the lack of pore pressure). From test 2, the volumetric strains are plotted as a function of the pore pressure or confining stress. Assuming that: (i) the two samples are identical and (ii) water causes no (chemical) weakening effect on the saturated sample and there are no capillary forces at the interface of the fluid and the solid that could affect the elastic properties.

Table 3 Biot coefficient determined for different rocks from isotropic-isochoric compression tests

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity ((%))</th>
<th>Equipment</th>
<th>(D \times L) (mm)</th>
<th>(\sigma) (MPa)</th>
<th>Pore fluid</th>
<th>(P) (MPa)</th>
<th>(x)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakken shale [81]</td>
<td>2.2–7.3</td>
<td>Core holder</td>
<td>25 × 50</td>
<td>22.9–27.1</td>
<td>Nitrogen</td>
<td>6.20–12.30</td>
<td>0.57–0.70</td>
<td>—</td>
</tr>
<tr>
<td>Bakken shale [82]</td>
<td>4.2–10.4</td>
<td>Triaxial</td>
<td>26 × 52</td>
<td>19.5–24.0</td>
<td>Nitrogen</td>
<td>6.0–12.0</td>
<td>0.58–0.87</td>
<td>—</td>
</tr>
<tr>
<td>Kansas chalk [85]</td>
<td>38.8</td>
<td>Triaxial</td>
<td>37 × 75</td>
<td>4.5–17.5</td>
<td>Distilled water</td>
<td>0.7–14</td>
<td>0.92–1</td>
<td>■ Axial stress was increased to suppress the axial strain (only) that occurred due to increased pore pressure.</td>
</tr>
<tr>
<td>Gosford sandstone [86]</td>
<td>17.6–18.9</td>
<td>Triaxial</td>
<td>38 × 64</td>
<td>28–34</td>
<td>Brine</td>
<td>17–27</td>
<td>0.84–0.91</td>
<td>■ Porosity measured at (\sigma = 3.6 \text{ MPa}).</td>
</tr>
</tbody>
</table>

\[
\varepsilon_r = \frac{\Delta \varepsilon - K \Delta \varepsilon_r}{\Delta P} \tag{30}
\]
Fig. 4 Representation of the technique based on matching the volumetric strains of dry and saturated samples. Data are from tests on the Weber Sandstone conducted by Ref. [57], which were presented previously in Fig. 2. For any data point of \(\sigma \) and \(P \), there is only one possible volumetric strain magnitude that corresponds to point X on the dry isotropic compression test data (black solid) curve; hence, \(z \) can be determined using Eq. (9).

By matching \(\varepsilon \), from the two tests, the corresponding \(z \) can be calculated for each pair of \(\sigma \) and \(P \) from Eq. (9). A graphic description of this approach is depicted in Fig. 4.

3.5 Estimation of Dry Bulk Modulus or Unjacketed Bulk Modulus

This method is based on the use of Eq. (15) but with an estimation of either the bulk or unjacketed modulus or both. Estimating \(K_s \) from the properties of the minerals of a rock avoids the long duration associated with measuring \(K_r \) from a conventional unjacketed test for low-porosity rocks.

For the low-porosity argillaceous Cobourg limestone from southern Ontario, Canada, Ref. [53] approximates \(K_s = 66.0 \) GPa to 67.9 GPa from the volume fraction-based mineralogical compositions of the limestone determined from XRD measurements. The theoretical basis for estimating \(K_s \) was based on the theory of multiphase elastic materials [88–91]. From an isotropic compression test on a dry cylindrical sample of the rock measuring 150 mm in diameter and 300 mm in length under \(\sigma = 5 \) to 15 MPa, Selvadurai [53] measured the bulk modulus as 22.73 GPa; hence, \(z = 0.66 - 0.67 \).

Reference [60] used the mineralogical compositions and mineralogical elastic deformability properties reported in the literature and approximated the \(K_s \) of the Grimsel granite from Switzerland in order to estimate its Biot coefficient.

For the Lac du Bonnet granite obtained from the western region of the Canadian Shield, \(K_s = 40.2 \) GPa was estimated based on the Young’s modulus and Poisson’s ratio determined from UCS tests on relatively large samples \((D \times L = 100 \times 200 \text{ mm} \text{ and } 150 \times 300 \text{ mm})\) [61]. \(K_s \) was approximated as 58 MPa using the mineralogical composition of the rock from XRD. Consequently, the Biot coefficient was determined to be 0.3.

Reference [62] approximated the unjacketed modulus of the Flechtinger sandstone from its mineralogical composition as between 40.8 GPa and 41.8 GPa.

Compressional and shear wave velocities \((V_{P\text{wave}}, \text{ and } V_{S\text{wave}}\text{, respectively})\) can be used to estimate the bulk modulus of a porous rock as shown in Eq. (32). In this equation, \(P_{\text{dry}} \) is the dry bulk density. Alam et al. [92] estimated the bulk modulus of the Valhall reservoir chalk in the North Sea using Eq. (32) while assuming that its grain modulus was equal to that of its constituent mineral (i.e., calcite)

\[
K = \rho_{\text{dry}} \left(V_{P\text{wave}}^2 - \frac{4}{3} V_{S\text{wave}}^2\right)
\]

Reference [93] discusses a specific apparatus that can measure the bulk moduli for isotropic confining pressure oscillations over a broad frequency range. The authors summarized the bulk moduli and grain moduli (estimated from the mineralogical compositions) of several sandstones and limestones conducted by others: the Lavoux limestone [94], the Rustrel limestone [95], the Indiana limestone [95], the Vogesian sandstone [96], the Thuringian Sandstone [97], and the Fontainebleau Sandstone [98]. The rocks had porosity values in the range of 7% to 24% and the estimated Biot coefficients were between 0.55 and 0.82.

According to Ref. [85], \(K \) estimated from Eq. (32) can differ from that measured using static techniques due to the difference in strain amplitudes. The other issue with ultrasonic testing is that at ultrasonic frequencies in saturated rock, the fluid pressure can be different from pore to pore; this lack of local fluid pressure equilibrium following application of the external load invalidates the conditions of the theory of poroelasticity [93]. As a result, the elastic moduli (including bulk modulus) at ultrasonic frequencies in saturated rock are different from those of the static conditions.

Furthermore, there are additional concerns regarding ultrasonic testing; determining mineralogical compositions from a thin section may not be an accurate volumetric representation of the rock.

3.6 Estimation of Biot Coefficient From Other Poroelastic Properties

The Biot coefficient is related to other fundamental poroelasticity parameters of a rock, including Skempton’s pore pressure parameter \(B \), the drained bulk modulus of a porous rock \(K_d \), and the undrained bulk modulus \(K_u \), which are related through

\[
z = \frac{1}{B} \left(1 - \frac{K_u}{K_a}\right)
\]

Measurements of the parameters \(B \) and \(K_a \) involve undrained triaxial experiments. Of particular significance in an undrained test is the calibration of the test results for compliance with the measuring system. It was shown by several researchers [69,72,95–101] that the compressibility of the water in a drainage system of a triaxial cell, as well as deformations of the pore pressure transducers, can have a substantial influence on reaching pressure undrained conditions for measuring the poroelastic parameters (such as \(K_u \)). Similar to \(z \), \(B \) is not a constant parameter; it decreases with an increase in simple effective stress [67,102–105].

Reference [72] determined \(z = 0.85 \) for samples of the Sorcy limestone having a high porosity of 28.4%.

Reference [105] determined the Biot coefficient of Fontainebleau sandstone specimens \((\theta = 3 - 10\%\) based on the test results of the rock storage coefficient \(s \) using Eq. (34), under simple effective stresses up to 180 MPa. The values of \(z \) were determined to be between 0.25 and 0.85

\[
z = \frac{s}{KB} = s
\]

3.7 Biot Coefficient as a Function of Bulk and Grain Compressibilities

Equation (15) can be rewritten in terms of the bulk and grain compressibilities as represented by Eq. (35) [77,79,106,107] where \(C_b \) and \(C_s \) are the compressibility of the bulk material (in a dry or drained condition) and the solid grains, respectively. \(C_b \) and \(C_s \) can be determined from the jacketed and
unjaclted tests as described in Sec. 3.1 and are equal to inverse values of K and K_s, respectively (see Fig. 3)

\[x = 1 - \frac{C_a}{C_b} \quad (35) \]

4 Other Interpretations of Effective Stress Coefficients and Their Measurements

Following a general effective stress framework similar to Biot’s effective stress principle, scholars from various disciplines have defined and measured effective stress coefficients for conditions such as failure state or permeability hysteresis which do not comply with Biot’s linear isotropic poroelasticity. They considered a factor for the pore pressure term in their effective stress definitions, called the effective stress (or effective pressure) coefficient. Several developments from this category are discussed in the Secs. 4.1–4.5.

4.1 Effective Stress Coefficient for the Failure State—Matching Failure Envelopes of Dry and Saturated Samples.

This technique has been used by many researchers, for example, Refs. [87] and [108]. Several triaxial compression tests on dry samples are conducted under various confining stresses; therefore, a Mohr–Coulomb envelope can be constructed for the effective stress (pore pressure is zero). By performing an additional triaxial test with nonzero pore pressure, and assuming that (i) there is no heterogeneity among the samples and (ii) water causes no (chemical) weakening effect on the saturated sample and there are no heterogeneity among the samples and (ii) water causes no (chemical) weakening effect on the saturated sample, a circle is drawn and shifted to the left of the diagonal. This can be done using the graphical approach shown in Fig. 5. By knowing $\sigma_1 - \sigma_3$ from the tests on the saturated sample, a circle is drawn and shifted to the left of the diagonal until it touches the Mohr–Coulomb failure envelope (i.e., the material exhibits elastic behavior up to the development of failure). It is worth noting that the saturated and dry specimens should be tested within the same stress ranges in order to obviate the nonlinearity issue of the failure envelope.

\[x_f = \frac{\sigma_1 - \sigma_3}{2P} - \frac{\sigma_1 - \sigma_3}{2P} \cos \varphi + \frac{c}{P} \cot \varphi \quad (36) \]

Using a similar approach, Ref. [108] determined the x_f for the peak and residual strength of rock; no clear relationship between the two was observed.

Baud et al. [109] conducted triaxial strength tests on samples of the Bleurswiller sandstone and concluded that using a linear fit to the differential stress versus $\sigma - \sigma_f P$ for the brittle regime resulted in an effective stress coefficient of about 0.95 for the sandstone. These authors [109] reported that the brittle failure of wet samples occurred at a significantly lower stress than in dry samples (i.e., water weakening effect).

The failure envelope method might seem simpler than others as it does not include any compressibility measurements. However, unlike the original Biot theory, the sample undergoes anisotropic stresses, and the pore pressure response is expected to be different from that under isotropic compression. This is because, while the material is subjected to a deviatoric stress that approaches failure, damage evolution results in the generation of new cracks and changes to the pore network. Consequently, this technique is intended to determine x_f for peak and residual strengths, which are expected to be distinctly different from Biot coefficient calculated using Eqs. (15), (27), (31), (33), (34), and (35). A review of the experimental data of a wide variety of rocks is given in Ref. [104], and it concluded that Terzaghi’s effective stress generally governs the shear failure of rocks where $x_f = 1$ can be assumed, although there are exceptions.

4.2 Effective Stress Coefficient From Variations of Permeability With Pore Pressure and Confining Stress. There are several measurement interpretation techniques published in the literature for the effective stress coefficient based on rock permeability measurements (x_k); these are discussed below. Each technique is assigned a different subscript for x_k.

4.2.1 Trial-and-Error Method. This technique involves measuring the permeability (k) of a rock at various P and σ combinations. By assuming an initial effective stress coefficient of $x_{k,trial}$, the results are plotted as a function of σ', for several constant P values. $x_{k,trial}$ is then varied until all curves merge into one curve or into a narrow band. It should be noted that this method yields a single value of $x_{k,trial}$ for the entire spectrum of P and σ, and consequently σ'. A transient method following the pressure transmission technique (proposed by Refs. [110] and [111]) measured the permeability of a carbonate rock to nitrogen. After attaining equilibrium at a predefined value of pore pressure, only the upstream pressure was instantaneously raised. The downstream gas pressure build-up was monitored as a function of time until it equaled the upstream gas pressure again. The resulting data was used to determine k and $x_{k,trial}$. As depicted in Fig. 6, when $x_{k,trial} = 1.0$ all data from the various pore pressure values merged into a single curve; hence, this value can be regarded as the most representative value of the effective stress coefficient for permeability of this rock.

The details of determining the effective stress coefficient of the Niobrara shale and a carbonate rock sample using the trial-and-error method are provided in Table 4.

4.2.2 Partial Derivatives of Permeability With Respect to Pore Pressure and Confining Stress. Several researchers used a fundamental assumption that certain properties of rocks, such as k, ε, V_{wave}, are functions of the effective stress [82,112–114]. As
two permeability curves corresponding to was measured as a function of pore pressure and at two constant stress. Equation (41) was used by other researchers, e.g., Refs. [115] and [116].

In reference [102] the permeability of the Stainton sandstone was measured as a function of pore pressure and at two constant confining stresses of 10 and 20 MPa. As depicted in Fig. 7, the two permeability curves corresponding to \(\sigma = 10 \text{ MPa} \) and \(\sigma = 20 \text{ MPa} \) were found to be approximately 1.84 MPa apart on the \(k-P \) coordinate plane (i.e., \(\Delta P = 1.84 \text{ MPa} \)); using Eq. (39) resulted in \(\epsilon_{k,P}^{\text{tran}} = 5.4 \) for the sandstone.

Using Eq. (41) [112] estimated \(\epsilon_{k,P}^{\text{tran}} \) to be in the range of 0.3 to 0.85 for the Chelmsford granite as plotted in Fig. 8. Since this method includes loading-unloading cycles, the resulting values of \(\epsilon_{k,P}^{\text{tran}} \) will be representative of various states of effective stress. Equation (41) was used by other researchers, e.g., Refs. [115] and [116].

The details of tests on the Stainton sandstone, Pottsville sandstone, Pigeon Cove granite, Westerly granite, Chelmsford granite, and Barre granite are summarized in Table 4.

4.2.3 Response Surface and Variations of Transformed Permeability. This method also involves measuring the permeability of a rock at various confining stress and pore pressure combinations. The response surface approach proposed by Ref. [119] can then be used to fit a surface to a set of data (here, permeability, \(k \)) that are dependent on the two variables (here \(\sigma \) and \(P \)). This approach was utilized by several researchers [114,117,120]. To yield a smooth surface, a linear or second-degree polynomial surface can be fitted to the transformed permeability (\(k' \)) data. A quadratic response surface of \(k' = \sigma - P \) is defined by Eq. (42), where \(\lambda \) varies from –3 to +3, with \(\lambda = 0 \) representing the natural log transformation

\[
k' = a_1 + a_2\sigma + a_3P + a_4\sigma^2 + a_5\sigma P + a_6P^2
\]

where the coefficients \(a_1 \) through \(a_6 \) are calculated by a least squares regression analysis. Once these coefficients are determined, substituting \(k' \) from Eq. (42) into Eq. (40) will yield a three-dimensional surface for the effective stress coefficient on the \(\epsilon_{k,P}^{\text{tran}} = \sigma - P \) surface (Eq. (43))

\[
\epsilon_{k,P}^{\text{tran}} = \frac{-a_3 + a_5 + 2a_6P}{a_1 + 2a_4 + a_5P}
\]

Reference [114] determined the transformed permeability response surface for samples of the Ekofisk chalk having a 15% porosity. The authors proposed a natural log transformation form for both loading and unloading cycles and fitted the quadratic response surfaces of Eq. (43) to the permeability data.

In Ref. [121] Eq. (43) is used for \(k' \) data from the Austin chalk and Saratoga limestone samples.

Li et al. [120] utilized Eq. (43) to estimate \(\epsilon_{k,P}^{\text{tran}} \) for the Ebei sandstone. Their calculations resulted in values less than zero and value greater than unity. They found that these extreme and unsatisfactory values occurred at the boundaries of the \(\sigma - P \) domain. They concluded that the negative values, and values smaller than the porosity of the rock, are not physically possible. Eventually, they concluded that the most satisfactory values might be between 0.06 and 0.86.

Experimental data of the effective stress coefficient measurements for the Northern Hubei sandstone using this technique are summarized in Table 4.

4.2.4 Cubic Root Equation. Reference [118] introduced Eq. (44) for the permeability of the Westerly granite. In this equation, \(A \) and \(B \) are two constants that depend on the geometric parameters of the cracks in the rock, and \(\epsilon_{k,\text{cubic}} \) is the effective stress coefficient from this method. Differentiation of Eq. (44) with respect to pore pressure delivers Eq. (45). Experimental data for the effective stress coefficient of the Westerly granite using

\[
\epsilon_{k,\text{cubic}} = \sqrt[3]{\frac{A}{B}}
\]
Table 4 Effective stress coefficient determined for different rocks from permeability variation techniques

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity Ø (%)</th>
<th>Equipment</th>
<th>k technique</th>
<th>D x L (mm)</th>
<th>σ (MPa)</th>
<th>P (MPa)</th>
<th>k (m3)</th>
<th>(a_k) equation no.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niobrara shale [111]</td>
<td>2–5.5</td>
<td>Core holder</td>
<td>Pressure transmission</td>
<td>38 x 48</td>
<td>13.8–34.5</td>
<td>Nitrogen</td>
<td>3.4–32.4</td>
<td>20–45</td>
<td>Trial-and-error</td>
</tr>
<tr>
<td>Niobrara shale [111]</td>
<td>—</td>
<td>Core holder</td>
<td>Pressure transmission</td>
<td>38 x 25</td>
<td>13.8–34.5</td>
<td>Nitrogen</td>
<td>3.4–32.4</td>
<td>200–2500</td>
<td>Trial-and-error</td>
</tr>
<tr>
<td>Carbonate [111]</td>
<td>—</td>
<td>Core holder</td>
<td>Pressure transmission</td>
<td>38 x 35</td>
<td>13.8–34.5</td>
<td>Nitrogen</td>
<td>3.4–32.4</td>
<td>100–900</td>
<td>Trial-and-error</td>
</tr>
<tr>
<td>Stainton sandstone</td>
<td>16</td>
<td>Triaxial</td>
<td>—</td>
<td>38 x 78</td>
<td>10–20</td>
<td>Water</td>
<td>2–15</td>
<td>10.8–11.8</td>
<td>41 5.4</td>
</tr>
<tr>
<td>Pottsville sandstone</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19 x 25</td>
<td>40–200</td>
<td>Distilled water</td>
<td>10–30</td>
<td>10$^{-20}$–10$^{-19}$</td>
<td>41 0.2–1.1</td>
</tr>
<tr>
<td>Pigeon Cove granite</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19 x 25</td>
<td>40–160</td>
<td>Distilled water</td>
<td>10–30</td>
<td>10$^{-20}$–10$^{-19}$</td>
<td>41 0.3–1.2</td>
</tr>
<tr>
<td>Westerly granite</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19 x 25</td>
<td>20–120</td>
<td>Distilled water</td>
<td>10–30</td>
<td>10$^{-22}$–10$^{-20}$</td>
<td>41 0.4–0.8</td>
</tr>
<tr>
<td>Chelmsford Granite</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19 x 25</td>
<td>40–180</td>
<td>Distilled water</td>
<td>10–30</td>
<td>10$^{-20}$–10$^{-18}$</td>
<td>41 0.3–0.9</td>
</tr>
<tr>
<td>Barre Granite</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19 x 25</td>
<td>40–160</td>
<td>Distilled water</td>
<td>10–30</td>
<td>10$^{-20}$–10$^{-19}$</td>
<td>41 0.43–0.85</td>
</tr>
<tr>
<td>Northern Hubei sand-</td>
<td>2.4–5.5</td>
<td>—</td>
<td>—</td>
<td>25 x 40</td>
<td>12–44</td>
<td>Nitrogen</td>
<td>6–25</td>
<td>2 x 10$^{-16}$</td>
<td>41 and 42 ((\lambda = 0)) 0.01–0.98</td>
</tr>
<tr>
<td>stone [117]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25 x 40</td>
<td>12–44</td>
<td>DI water</td>
<td>1–86</td>
<td>10$^{-21}$–10$^{-19}$</td>
<td>44 and 45 0.95–1.23</td>
</tr>
</tbody>
</table>

Partial derivatives of permeability with respect to pore pressure and confining stress (\(a_{P,\sigma}\))

- Niobrara shale [111]
- Carbonate [111]
- Partial derivatives of permeability with respect to pore pressure and confining stress (\(a_{P,\sigma}\))

Response surface and variations of transformed permeability (\(a_{K,\sigma}\))

- Northern Hubei sandstone [117]
- Cubic root equation (\(a_{k,cub}\))

Westerly granite [118] — Triaxial Steady state 25 x 25 11–96 DI water 1–86 10$^{-21}$–10$^{-19}$ 44 and 45 0.95–1.23 — Range of \(a_{k,cub}\) for 3 loading-unloading cycles.

- Range of \(a_{k,cub}\) for differential method of Eq. (44) and graphical method of Eq. (45).
Fig. 7 Permeability of the Stainton sandstone as a function of pore pressure at confining stresses of 10 MPa and 20 MPa. The $\Delta P = 1.84 \text{MPa}$ offset between the two curves resulted in $a_{k_{\text{der}}} = P \cdot \sigma = 5.4$ for the sandstone [102].

This graphical technique are summarized in Table 4. There is a second method for finding $a_{k_{\text{cubic}}}$ from Eq. (44); rearranging Eq. (45) results in Eq. (46). The plot of the pore pressure as a function of the partial derivative term gives a straight line with a slope B and intercept $a_{k_{\text{cubic}}}$.

$\frac{\partial \left(\frac{k}{P}\right)}{\partial P} = \frac{B a_{k_{\text{cubic}}}}{\sigma - a_{k_{\text{cubic}}}}$

$P = B \frac{\partial P}{\partial \left(\frac{k}{P}\right)} + \frac{\sigma}{a_{k_{\text{cubic}}}}$

Fig. 8 Determination of $a_{k_{\text{der}}} = P \cdot \sigma$ for the Chelmsford granite from variations in permeability due to pore pressure and confining stress [102]: (a) loading scheme; (b) variations of permeability as a function of confining stress under different constant pore pressure values; and (c) variations of permeability as a function of pore pressure under different constant confining stress values.

4.3 Effective Stress Coefficient From Variations of Deformation With Pore Pressure and Confining Stress

4.3.1 Partial Derivatives of Deformation with Respect to Pore Pressure and Simple Effective Stress. This technique is based on the fundamental assumption that a physical property of a rock is a function of the effective stress. Unlike Sec. 4.2.2, this approach assumes that variations of a parameter q will be composed of the contributions from the simple effective stress (or differential pressure) and pore pressure. Similar to Eq. (40) but taking the derivatives of q with respect to P and σ', the effective stress coefficient from this method, $a_{q_{\text{der}}} = P \cdot \sigma'$, is determined using Eq. (47).

Fig. 9 The graphical method for determining $a_{k_{\text{cubic}}}$ for the Westerly granite from the cubic root permeability equation. The data is taken from the first loading cycle at a confining stress of 96 MPa. $a_{k_{\text{cubic}}}$ is varied until the curve approaches a straight line [118].
By fitting a quadratic response surface to the transformed volumetric strain.

The experimental results of the 36% porosity sample are shown in confining stresses and pore pressures were between 0.74 and 1.03.

The details of estimation of the effective stress coefficients of the Kansas chalk, Ekofisk chalk, and Bakken cores are summarized in Table 5.

4.3.2 Response Surface and Variations of Transformed Volumetric Strain. By fitting a quadratic response surface to the transformed volumetric strain (e'_v) data of the Ekofisk chalk, Ref. [114] suggested that $e'_v - \sigma - P$ has the form of Eq. (50) and the corresponding effective stress coefficient $x_{e,\text{tran.}\ P\&\sigma}$ can be determined from Eq. (51). The parameter λ for the loading and unloading cycles of three samples with porosity values of 15%, 24%, and 36% were between 1.0 and 2.6 and. The $x_{e,\text{tran.}\ P\&\sigma}$ at all average confining stresses and pore pressures were between 0.74 and 1.03. The experimental results of the 36% porosity sample are shown in Fig. 11 and all sample results are summarized in Table 5.

Reference [121] also applied Eq. (50) to e'_v data from the Austin chalk and Saratoga limestone samples

$$e'_v = a_1 + a_2\sigma + a_3P + a_4\sigma^2 + a_5\sigma P + a_6P^2$$

4.4 Effective Stress Coefficient From Partial Derivatives of Geophysical Properties With Respect to Pore Pressure and Simple Effective Stress. Todd and Simmons [123] introduced Eq. (52) for the effective stress coefficient based on experimental data of compressional wave velocity (V_{wave}). Similarly, the effective stress coefficient can be written as in Eqs. (53) and (54) based on shear wave velocity (V_{sheave}) and the attenuation factor (Q_p), respectively.

Reference [124] used Eq. (52) for V_{wave} and Eq. (54) for Q_p；they used each set of geophysical measurements in a true triaxial apparatus to determine the effective stress coefficient of the Berea sandstone and Michigan sandstone

$$x_{e,\text{tran.}\ P\&\sigma} = -\frac{a_3 + a_5\sigma + 2a_6P}{a_2 + 2a_4\sigma + a_5P}$$

$$x_{V_{\text{wave}},\text{det}\ P\&\sigma} = 1 - \frac{\partial V_{\text{wave}}}{\partial P} \frac{\partial P}{\partial e'_v}$$

$$x_{V_{\text{sheave}},\text{det}\ P\&\sigma} = 1 - \frac{\partial V_{\text{sheave}}}{\partial \sigma} \frac{\partial \sigma}{\partial e'_v}$$

$$x_{Q_p,\text{det}\ P\&\sigma} = 1 - \frac{\partial Q_p}{\partial \sigma} \frac{\partial \sigma}{\partial e'_v}$$

Mulchandani and Sharma [125] used the V_{wave} and V_{sheave} measured by Ref. [126] on carbonate samples (saturated with brine or butane) and determined the effective stress coefficients using Eqs. (52) and (53), respectively.

Variations of V_{sheave} for prismatic samples of the Gosford sandstone under different isotropic confining stresses and pore pressures were measured in a true triaxial apparatus [127]; using Eq. (52) the effective stress coefficient was determined to be between 0.92 and 0.98 for $\sigma = 4.2 - 6.8$ MPa.

020801-14 / Vol. 75, MARCH 2023 Transactions of the ASME
Table 5 Effective stress coefficient determined for different rocks from deformation variation techniques

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity Φ (%)</th>
<th>Equipment</th>
<th>$D \times L$ (mm)</th>
<th>σ (MPa)</th>
<th>Pore fluid</th>
<th>P (MPa)</th>
<th>$ae^{P,P_{R0}}$ equation no.</th>
<th>$ae^{P,P_{R0}}$</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas chalk</td>
<td>[85]</td>
<td>38.1</td>
<td>Oedometer</td>
<td>23 × 38</td>
<td>3–21 Distilled water</td>
<td>1.5–19.5</td>
<td>49</td>
<td>0.85–0.98</td>
<td>Values reported under σ are axial stresses.</td>
</tr>
<tr>
<td>Bakken cores</td>
<td>[122]</td>
<td>3.7–14.4</td>
<td>Triaxial</td>
<td>25 × 25</td>
<td>10–70 Argon</td>
<td>0–60</td>
<td>48</td>
<td>0.25–0.95</td>
<td>$ae^{P,P_{R0}}$ was determined based on variations of axial strain.</td>
</tr>
<tr>
<td>Ekofisk chalk</td>
<td>[114]</td>
<td>15–36</td>
<td>Triaxial</td>
<td>25 × 56</td>
<td>6.9–55.2 Nitrogen</td>
<td>6.9–27.6</td>
<td>50 and 51 ($\lambda = 1.0 - 2.6$)</td>
<td>0.74–1.03</td>
<td>Three samples with porosities of 15%, 24%, and 36% were tested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Samples were seasoned by cycling to the maximum target confining stress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ae^{P,P_{R0}}$ was determined based on variations of volumetric strain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Range of $ae^{P,P_{R0}}$ for loading and unloading paths of all three samples.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See the results of the 36% porosity sample in Fig. 11.</td>
</tr>
</tbody>
</table>
Other researchers [128–130] also estimated the effective stress coefficient using Eqs. (52) and (53). Several case studies from the literature are reported in Table 6, including tests on the Berea sandstone, Michigan sandstone, Juan de Fuca ridge basalt, and Oman dolerite.

4.5 Effective Stress Coefficient as a Function of Bulk, Grain, and Pore Compressibilities. Geertsma [133] rederived the effective stress coefficient in terms of compressibilities of bulk and pore volume as a consequence of changes in total stress and pore pressure. As discussed by Ref. [106], there are four different compressibilities for a porous rock, which can be associated with changes in either the bulk volume (V_b) or pore volume (V_p) as a result of changes in either confining stress or pore pressure as defined in Eqs. (55)–(58). C_{br} and C_{bp} represent the bulk compressibilities induced by variations of confining stress and pore pressure, respectively.

\[C_{br} = \frac{1}{V_b} \left(\frac{\partial V_b}{\partial \sigma} \right) \]
(55)

\[C_{bp} = -\frac{1}{V_b} \left(\frac{\partial V_b}{\partial P} \right) \]
(56)

\[C_{pe} = \frac{1}{V_b} \left(\frac{\partial V_p}{\partial \sigma} \right) \]
(57)

\[C_{pp} = -\frac{1}{V_b} \left(\frac{\partial V_p}{\partial P} \right) \]
(58)

In Ref. [106] it was shown that

\[C_{bp} = C_{br} - C_s \]
(59)

\[C_{pe} = \frac{C_{bp}}{C_0} \]
(60)

\[C_{pp} = C_{pe} - C_s \]
(61)

\[C_{po} = \frac{C_{bp} - C_s}{\Phi} \]
(62)

\[C_{pp} = \frac{[C_{bp} - C_s(1 + \Phi)]}{\Phi} \]
(63)
Hence, two effective stress coefficients can be defined as follows:

\[z_0 = \frac{C_{bP}}{C_{b0}} = 1 - \frac{C_L}{C_{b0}} \quad (64) \]

\[z_P = \frac{C_{P_P}}{C_{P_P}} = 1 - \frac{\varphi C_L}{C_{b0} - C_L} = 1 - \frac{C_L}{C_{P_P}} \quad (65) \]

Zimmerman et al. [106] analytically proved that the effective stress coefficient determined from variations of the pore volume \(z_P \) is always greater than the effective stress coefficient estimated from changes in the bulk volume \(z_0 \). They also derived Eqs. (66) and (67) as the bounds for \(z_0 \) and \(z_P \), respectively. Compared to Eq. (26), Eq. (66) tends to overestimate the lower limit of the effective stress coefficient

\[\frac{3\varphi}{2 + \varphi} \leq z_0 \leq 1 \quad (66) \]

\[\frac{1 + 2\varphi}{3} \leq z_P \leq 1 \quad (67) \]

In reference [61], Eq. (66) was used to estimate the Biot coefficient for the Lac du Bonnet granite with a porosity of \(\varphi = 0.7\% \). The effective coefficient estimated from Eq. (66) was 0.01, which was significantly lower than the experimentally derived value of \(z = 0.30 \). Selvadurai [61] also observed that the Biot coefficient is rarely below 0.2 for the low porosity range of 2–15%.

Three sandstones (Boise sandstone, Berea sandstone, Bandera sandstone) were tested in a triaxial apparatus [106] and measured the variations of \(C_{P_P} \) and \(C_{bP} \) under different confining stresses and pore pressures were measured. \(C_{P_P} \) values were plotted versus effective stress and under several constant pore pressures; once an optimal value for the effective stress coefficient of each rock was used, the different \(C_{P_P} - \sigma' \) curves merged into a narrow band and \(z_P \) was estimated as 1.02, 1.02, and 1.06, for the Boise, Berea, and Bandera sandstones, respectively. See Table 7 for details of these three sandstone experiments and also the Bakken shale.

Ling et al. [82] measured the \(C_{b0} \) and \(C_{bP} \) in nine samples of the Bakken shale and estimated \(C_L \) using Eq. (59); \(z_0 \) varied between 0.55 and 0.91 for all the samples.

Detailed experimental results from measuring the pore and bulk compressibilities, undrained compressibility, and unjacketed grain compressibility for the Penrith, Doddington, and Stainton sandstones are provided in Ref. [102].

5 Discussion of Factors Affecting the Effective Stress Coefficient

5.1 Effect of Porosity and Pore Shape. The higher the porosity, the lower will be the bulk modulus of the porous rock; consequently, the Biot coefficient will be higher. Wu [134] found a correlation between the Biot coefficient of a sandstone (measured using a static method) and porosity; the Biot coefficient increased with an increase in porosity. Reference [105] measured a higher Biot coefficient for samples of the Fontainebleau sandstone having \(\varphi = 9\% \) compared with samples with \(\varphi = 4\% \), at different simple effective stresses up to 100 MPa. The paper [135] also reported that the Biot coefficient of argillaceous rocks increases as the porosity increases. However, a recent attempt [81] was unsuccessful in finding any clear correlation between the Biot coefficients of the Bakken shale and the porosity or permeability of the rock.

The main question to be considered is: Why are \(z \) and effective stress coefficients in general large even in low-porosity rocks, as observed so far in this article? Biot’s theory of poroelasticity considers the elastic behavior of a porous medium at a macroscopic level [93]; thus, Biot’s effective stress coefficient as defined in Eq. (15) is independent of the pore shape. However, it was shown by succeeding studies that the bulk modulus (or compressibility) of a rock depends not only on the porosity but also on the pore geometry. According to [136], microcracks and joints in a rock sample increase their compressibility (or decrease \(K \)). Reference [137] found that the compressibility theoretically depends on the parameter \(\frac{h}{a} \), where \(h \) represents the standard deviation of the asperity heights and \(a \) is the total area of the cracks per unit volume of the rock. Using the effective medium theory, the key parameters affecting compressibility (or bulk modulus) of an elastic solid containing many cracks are the crack density defined as \(\frac{N}{a} \), the crack aspect ratio, and the porosity [137–140].

Given that the grain modulus is independent of the pore shape but the bulk modulus does decrease with an increase in the crack density, it can be concluded that Biot’s effective stress coefficient is also dependent on the pore geometry. Reference [140] analytically showed that the Biot coefficient of an elastic porous medium is dependent on the shape of the pores and the crack density; the Biot coefficient increases with an increase in the crack density.

It was also demonstrated [141] that there exist direct correlations between the Biot coefficients of various sedimentary and crystalline rocks and the pore throat apertures. Based on this linear function, \(z \) increased with an increase in the pore throat aperture.

A two-dimensional (2D) numerical study of a hard rock [142] demonstrated that elongated pores and cracks significantly increase \(z \) compared to circular pores, even if the porosities remain the same. They related this phenomenon to the fact that elongated pores and cracks have significantly smaller shape factors \(S \) as defined by

\[S = \frac{4\pi A}{L_1^2} \quad (68) \]

where \(A \) is the total area of the pores and cracks and \(L_1 \) is the pore perimeter in a 2D case.

Reference [142] also numerically proved that elongated cracks and their orientations to the loading direction create an anisotropic response for the Biot coefficient, resulting in a greater \(z \) normal to the crack axis. Tan et al. [143] conducted 2D discrete element modeling of a triaxial test on an Aue granite sample with

Table 7 Effective stress coefficient determined for different rocks from bulk-pore compressibilities

<table>
<thead>
<tr>
<th>Rock</th>
<th>Pretest porosity Ø (%)</th>
<th>Equipment</th>
<th>(D \times L) (mm)</th>
<th>(\sigma) (MPa)</th>
<th>Pore fluid</th>
<th>(P) (MPa)</th>
<th>(z_0) or (z_P)</th>
<th>Effective stress coefficient</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakken shale</td>
<td>4.2–10.4</td>
<td>Triaxial</td>
<td>26 × 52</td>
<td>—</td>
<td>Nitrogen</td>
<td>—</td>
<td>0.55–0.91</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Boise sandstone</td>
<td>25.6</td>
<td>Triaxial</td>
<td>51 × 51</td>
<td>2~40</td>
<td>Brine</td>
<td>1.5~15.5</td>
<td>1.02</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Berea sandstone</td>
<td>22.2</td>
<td>Triaxial</td>
<td>51 × 51</td>
<td>2~40</td>
<td>Brine</td>
<td>1.5~15.5</td>
<td>1.02</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bandera sandstone</td>
<td>16.5</td>
<td>Triaxial</td>
<td>51 × 51</td>
<td>2~40</td>
<td>Brine</td>
<td>1.5~15.5</td>
<td>1.06</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Applied Mechanics Reviews
an initial porosity of 2.3\% under confining stress and pore pressure of 20 MPa and 10 MPa, respectively, and studied the Biot coefficient evolution during failure. Their numerical results revealed that ξ approximately follows a piecewise function; ξ is nearly constant below the crack initiation stress, it linearly increases to approximate unity at the crack damage stress, and remains constant thereafter.

For higher porosity media such as soils, it can be concluded that $\xi = 1$, as in Terzaghi’s effective stress principle, is related to the large volume of the pores and cracks, not the porosity itself.

Detailed discussions regarding the effective stress coefficient of fractured rocks can be found elsewhere [144,145].

5.2 Effect of Simple Effective Stress. A porous rock usually exhibits a nonlinear behavior, its jacketed bulk modulus increases with an increase in simple or Terzaghi’s effective stress (see Fig. 3). As a result, the effective stress coefficient decreases with an increase in Terzaghi’s effective stress [62,63,79,105,122,146–148]; however, the Biot theory still holds if applied over incremental stress variations.

5.3 Effect of Stress Anisotropy. Although Eq. (9) was originally developed for the isotropic compression condition, a few studies have also measured the Biot coefficient under anisotropic stress conditions.

In Ref. [85] an attempt was made to estimate the Biot coefficient of saturated Kansas chalk samples following isotropic-isochoric compression tests. The confining stress was varied to maintain only a constant axial strain (and not a volumetric strain) in the sample, by increasing the pore pressure (see Table 3); the authors claimed that the measured lateral strain was negligible.

Reference [65] measured ξ of the Berea sandstone utilizing the jacketed-unjacketed test and the bulk-pore volume changes technique in a plane-strain triaxial apparatus that applied anisotropic stress conditions on the sample (Table 2).

One could expect a different Biot coefficient from an anisotropic stress condition compared to the isotropic test, which could be due to the potential to develop localized shear strain in the rock.

5.4 Effect of Loading–Unloading Cycles. Some of the cases reviewed in this work involved season or preconditioning the samples by several loading-unloading cycles before testing. In other cases, the actual techniques used for measuring the effective stress coefficient involved loading-unloading patterns. The loading-unloading can induce irreversible deformation of the porous skeleton. Both the one-dimensional and three-dimensional linear theories of consolidation proposed by Terzaghi [52] and Biot [1], respectively, have limitations as they do not account for the irreversibility of the skeletal deformations when elastoplastic unloading is involved. This issue is beyond the scope of this review and was highlighted in a recent study by Ref. [55].

Bernabé et al. [120] reported that the effect of the loading history becomes less significant once the sample has undergone a few (preconditioning) loading-unloading cycles before the test. They made this claim based on the effect of hysteresis and inelasticity of the rock on the permeability results.

Reference [112] reported a greater permeability effective stress coefficient during unloading than loading of the Pottsville sandstone and Pigeon Cove granite.

The authors of Ref. [115] did not observe any significant changes in the permeability effective stress coefficient for the Westerly granite as a result of three loading-unloading cycles ($\sigma = 10–96$ MPa, $P = 1–86$ MPa) where the effective stress coefficients were determined to be 0.95–1.23 (Table 4).

5.5 Effect of Material Anisotropy. In isotropic poroelastic media, the Biot coefficient takes a scalar form; however, many scholars discussed that ξ in transversely isotropic media such as argillaceous formations including shales and mudstones, can be defined as a tensor. The extension of the isotropic theory of linear poroelasticity to a porous anisotropic solid was originally undertaken by Biot [149]. Additional theoretical developments and some experimental results for the cases of anisotropic poroelasticity have been provided by many researchers (e.g., Refs. [6,69,76], and [105–157]).

In measuring ξ for Bakken shale samples under isotropic stress conditions, Ref. [81] found that ξ was larger for the samples taken parallel to the bedding plane (average $= 0.67$) than for the samples collected normal to the bedding plane (average $= 0.61$).

For the two samples of Callovo–Oxfordian claystone, Belmont et al. [69] measured different values for ξ in the directions perpendicular and parallel to the bedding plane using undrained and drained compressions of the claystone. The volumetric Biot coefficients were 0.85 and 0.90 for one sample and 0.87 and 0.98 for another sample, perpendicular and parallel to the bedding plane, respectively. The anisotropic Biot coefficients showed greater variations compared to the volumetric ξ which is $0.87–0.91$ (Table 1).

Hu et al. [71] determined Biot coefficients equal to 0.99 and 0.97 for the Opalinus clay in the directions perpendicular and parallel to the bedding plane, respectively. These values are slightly greater than the volumetric Biot coefficient of the Opalinus clay, which is 0.95 (Table 1).

Theoretical developments and experimental studies to measure the effective stress coefficient for a vertically transverse isotropic (VTI) rock such as coal are discussed in Ref. [154].

In Ref. [135] the Biot coefficients were estimated in different directions to the bedding plane using the in situ specific storage coefficient of argillaceous rocks.

For the Chelmsford granite, Ref. [112] tested samples from different orientations but did not observe any significant difference in the permeability effective stress coefficient for the different samples.

5.6 Effect of Measurement Technique. Various techniques applied to the same sample can yield different results for the effective stress coefficient; Ref. [69] reported slight differences in the Biot coefficient of the Callovo–Oxfordian claystone; using the jacketed-unjacketed test method resulted in $\xi = 0.85$ while estimating the Biot coefficient based on other poroelastic parameters using Eq. (33) yielded $\xi = 0.91$.

da Silva et al. [72] determined $\xi = 0.84$ for samples of the Sorcy limestone using the jacketed–unjacketed test technique whereas the bulk-pore volume changes and estimation from other poroelastic parameters (Eq. (33)) resulted in Biot coefficients of 0.81 and 0.85, respectively.

Figure 12 shows how the two methods based on isotropic stress conditions (i.e., jacketed–unjacketed test method, matching volumetric strain of dry, and saturated samples) resulted in slightly different values for ξ for the entire range of the applied effective stresses. The failure envelope method was expected to yield higher values for the effective stress coefficient but surprisingly it was close to the results produced using the matching volumetric strain method.

Another observation from Fig. 12 is that the effective stress coefficient decreased as the effective stress increased. This is affirmation of the discussion given in Sec. 5.2.

5.7 Effect of Test Temperature. The theory of linear poroelasticity has been extended to nonisothermal conditions and a complete presentation of the analytical equations can be found, for example, in Ref. [76]. The Biot coefficient is influenced by the test temperature; the effect is dependent on how the two parameters (i.e., the drained bulk modulus and the unjacketed bulk modulus) in Eq. (15) are affected by the temperature. In a drained condition, where Terzaghi’s effective stress is maintained constant, any alterations in the bulk modulus are the result of thermal
expansion of the porous skeleton [76]. Grain bulk moduli of rock minerals are also dependent on the thermal softening of the minerals.

Reference [62] determined α for the Flechtinger sandstone following Eq. (15). The test scheme included loading-unloading between 2 MPa and 55 MPa at each temperature. No remarkable changes were observed in α determined from the jacketed-unjacketed test with respect to test temperature. However, Ref. [62] reported that α calculated using the bulk and pore volume change method was 0.76–1 at 30°C (under different simple effective stresses) whereas it reduced to between 0.54 and 0.94 at 140°C (Fig. 13). Overall, the experiments by Ref. [61] contained the combined effects of loading-unloading and temperature (Fig. 13). Studying only the temperature effects (and not loading-unloading cycles) would require a dedicated test under constant stress and pore pressure. The testing conditions that resulted in changes in permeability caused by variations in the confining pressure and confining stress (or simple effective stress) cannot be greater than unity. However, some studies suggested that the Biot and other effective stress coefficients of clay-bearing rocks are dependent on the clay content; the higher the clay content, the higher the effective stress coefficients [161,162]. In studying unjacketed grain compressibilities of three sandstones with different clay contents, [102] observed that the rock with the higher clay content showed greater compressibility.

5.11 Effective Stress Coefficient Greater Than Unity. Based on Eq. (15), α cannot be greater than unity. However, some of the cases reported effective stress coefficients greater than unity; where the testing techniques were based on partial derivatives of permeability, deformation, or geophysical properties with respect to pore pressure and confining stress (or simple effective stress) (e.g., see Tables 4–7). Other studies also reported permeability effective stress coefficients greater than one (e.g., Ref. [26]). Reference [102] even reported a value of 5.4 for the effective stress coefficient of the Stanton sandstones based on the changes in permeability caused by variations in the confining stress and pore pressure. The testing conditions that resulted in effective stress coefficients greater than unity involved inelastic loading states and, therefore, do not follow the upper limit of for Biot coefficient (i.e., $\alpha \leq 1.0$) which was derived based on the theory of linear poroelasticity.

5.12 Accuracy in Reporting the Effective Stress Coefficient. Throughout this review, Biot and other effective stress coefficients have been reported to the accuracy provided in the

The results contain the combined effects of loading-unloading cycles and temperature.
5.13 Effective Stress Coefficient for Numerical Modeling. As demonstrated in this review, the effective stress coefficient is a state parameter. The effective stress coefficient cannot be constant; it is dependent on several factors (i.e., mean effective stress, temperature, and material state with respect to failure) that can be associated with a material point in the modeling. Ideally, the effective stress coefficient needs to be assigned to different grid points of an HM or a THM model as a function of the aforementioned factors, if such constitutive relations are available from laboratory or in situ experiments.

6 Concluding Remarks

This study reviewed the approaches that have been proposed in the literature to measure the Biot coefficient and other effective stress coefficients. Several case studies were reported for each method. The following observations can be drawn based on this review:

- The effective stress coefficient can be determined for different conditions, such as isotropic poroelasticity (i.e., Biot coefficient), inelasticity, or failure states.
- The original technique for determining the Biot coefficient was introduced for rocks with an elastic porous skeleton under isotropic stress conditions.
- The bulk-pore volume changes and isotropic-isochoric compression were both analytically derived from the original technique; hence, they provide the Biot coefficient for the elastic condition as well.
- The method based on matching the volumetric strain of dry and saturated samples was also proposed for the elastic state under isotropic compression, and thus, represents the Biot coefficient for the elastic condition.
- Other methods, which are based on partial derivatives of permeability, axial or volumetric deformation, and geophysical properties with respect to pore pressure and confining stress (or simple effective stress), usually involve loading-unloading cycles as part of the testing procedures. Therefore, it can be concluded that these methods suffer from potential irrecoverable deformation of the rock if broad ranges of confining stresses and/or pore pressures are applied to the sample. The resulting effective stress coefficients are different from the Biot coefficient which is only applicable to isotropic linear poroelasticity.
- The failure envelope method provides the effective stress coefficient for failure or residual strength conditions, which can be different from elastic compression under isotropic stress conditions.
- The bulk modulus estimated from geophysical measurements can differ from the static techniques due to the difference in strain amplitudes. Moreover, at ultrasonic frequencies, following the application of an external load on a saturated rock, the fluid pressure can be different from pore to pore; consequently, there is a lack of local fluid pressure equilibrium. These conditions invalidate the conditions of the theory of poroelasticity. As a result, the effective stress coefficients are different from the Biot coefficient.
- The effective stress coefficients in hard crystalline rocks are affected by the presence of elongated pores and cracks. The Biot coefficient is independent of the pore geometry; however, it was later demonstrated that the bulk compressibility is a function of pore shape, crack aspect ratio, and crack density. As a result, the Biot coefficient is a function of the pore geometry.
- Increasing simple effective stress will result in a reduction in the effective stress coefficient.
- In weak argillaceous rocks, α measured at different orientations to the bedding plane can be different.
- Other factors that influence the effective stress coefficient are the stress path and test temperature.

Acknowledgment

The support provided by the Nuclear Waste Management Organization (NWMO), Toronto, Canada to the lead author in preparation of the paper is greatly acknowledged. Both authors are thankful to Dr. Monique Hobbs and Dr. Paul Gierszewski of the NWMO and the anonymous reviewers of this journal for their critical reviews of the paper. The editorial assistance provided by Mrs. S. J. Selvadurai is gratefully acknowledged.

Author Contributions

HAK prepared the initial and subsequent versions of the paper. APSS contributed to the conceptual and editorial changes to several versions of the article.

Nomenclature

- a = crack dimension
- $A = $ total area of pores and cracks
- $A_{\text{crack}} = $ total area of the cracks
- $B = $ Skempton’s pore pressure coefficient
- $c = $ cohesion
- $C_h = $ jacketed compressibility
- $C_{ip} = $ bulk compressibility induced by variations of pore pressure
- $C_{ba} = $ bulk compressibility induced by variations of confining stress
- $C_{pp} = $ pore compressibility caused by changes in pore pressure
- $C_{pe} = $ pore compressibility caused by changes in confining stress
- $C_1 = $ unjacketed compressibility
- $D = $ cylindrical sample diameter
- $dW = $ work increment for an isotropic stress state
- $E = $ Young’s modulus
- $E_{\text{ed}} = $ oedometric modulus
- $E_{d} = $ Young’s modulus in the direction parallel to the bedding plane
- $E_{t} = $ Young’s modulus in the direction perpendicular to the bedding plane
- $P = $ pore pressure
- $G = $ shear modulus of the drained elastic solid
- $h = $ standard deviation of the asperity heights
- $H = $ a physical constant
- $H' = $ a physical constant
- $k = $ permeability
- $k = $ bulk modulus of the drained elastic solid or jacketed bulk modulus
- $k' = $ transformed permeability
- $K_d = $ unjacketed bulk modulus
- $K_p = $ jacketed bulk modulus
- $L = $ cylindrical sample length
- $L_1 = $ pore perimeter in a 2D case
Applied Mechanics Reviews
MARCH 2023, Vol. 75 / 020801-21

References

