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The paper examines the problem of a flat rigid circular disc that is compressed between two finitely deformed
incompressible elastic halfspace regions with smooth surfaces. This problem yields a unilateral contact problem
where the zone of separation needs to be determined. The analysis of the unilateral contact problem is reduced to
the solution of a set of triple integral equations associated with the internal indentation of a penny-shaped crack
and the internal tensile pressurization of an annular crack. The solutions to these problems can be obtained in an

approximate series form in terms of the non-dimensional parameter involving the radius of the rigid disc to the
radius of the separation zone. The extent of the separation zone is determined from the vanishing of the contact
stress at the point of separation. Specific solutions are developed for the case where the initial finite deformation
is for halfspace regions with a strain energy function of the Mooney-Rivlin form.

1. Introduction

The class of problems that deal with the mechanics of incremental
deformations superposed on finitely deformed elastic bodies has several
engineering applications that relate to both pre-stretched and pre-
compressed rubber-like elastic solids used in load transmission. The
initial pre-stress is assumed to follow the classical theory of finite de-
formations of elastic solids and the superposed or incremental de-
formations are described by an infinitesimal elasticity theory. A number
of researchers, including Trefftz (1933), Biot (1939), Neuber (1943) and
Green et al (1952), have made seminal contributions to this topic
particularly as it relates to the study of stability problems in elastic
solids. The theory of small deformations superposed on large proposed
by Green et al (1952) has a rigorous development to accommodate
initial finite deformations that are applicable to modern developments
in the mechanics of rubber-like materials (Rivlin, 1960; Spencer, 1970;
Ogden, 1984; Rajagopal, 1995; Barenblatt and Joseph, 1997; Selva-
durai, 1977, 1980, 2006, 2011, 2015). Comprehensive expositions of the
topic of small deformations superposed on large have also been pre-
sented by Truesdell and Noll (1965), Green and Zerna (1968), Green and
Adkins (1970), Eringen and Suhubi (1974), Beatty and Usmani (1975)
and Hill (1975a,b, 1976, 1977). The theory of small deformations su-
perposed on large is a useful approach for examining hyperelastic ma-
terials that are pre-stressed, as opposed to continuously undergoing
moderately large deformations similar to that described by the theory of

second-order elasticity (Rivlin, 1953; Green and Spratt, 1954; Carlson
and Shield, 1965; Selvadurai and Spencer, 1972; Selvadurai, 1974,
1975; Choi and Shield, 1981; Carroll and Rooney, 1984; Lindsay, 1985,
1992; Sabin and Kaloni, 1983). The present paper deals with the
compression of a rigid disc inclusion by two identical elastic halfspace
regions, with frictionless surfaces that are subjected to a radial finite
deformation. The analogous classical elasticity problem of a disc inclu-
sion embedded between initially undeformed elastic halfspace regions
was examined by Selvadurai (1994a,b). Of related interest are the
classical elasticity problems examined by Barber (1976) dealing with the
concave rigid punch problem, the axisymmetric indentation by an
annulus and the axisymmetric compression of an oblate spheroidal body
solved, respectively, by Gladwell and Gupta (1979) and Gladwell and
Hara (1981). The axisymmetric problem of indentation of the single face
of a pre-compressed penny-shaped crack was examined by Selvadurai
(2000a) and the elegant study by Gladwell (1995), which extends the
work of Selvadurai (1994a,b) to include inclusions with an arbitrary
planform. Further references to contact problems along these lines are
given by Galin (1961), Ufliand (1965), Selvadurai (1979), Gladwell
(1980, 2008), Johnson (1985), Curnier (1992), Hills et al. (1993), Sel-
vadurai (2000b), Kachanov et al. (2003), Willner (2003), Selvadurai and
Atluri (2010), Aleynikov (2011), Barber (1974, 2002, 2018), Popov et al
(2019), Selvadurai and Samea (2020) and Samea and Selvadurai (2020).

The presence of the disc inclusion and axial compression of the
finitely deformed halfspaces gives rise to a unilateral contact problem
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where the radius of the separation region is an unknown. Unilateral
contact problems in elasticity have a well-founded mathematical tradi-
tion highlighted by the works of many researchers including Signorini
(1933), Prager (1963), Fichera (1963, 1964, 1972), Duvaut and Lions
(1976), Villaggio (1977, 1980), Kinderlehrer and Stampaccia (1980),
Haslinger and Janovsky (1983), Panagiotopoulos (1989), Moreau et al.
(1988), Fremond (1988), Kikuchi and Oden (1988), Kalker (1990),
Klarbring (1986,1993), Klarbring et al. (1991), Raous et al. (1995),
Selvadurai and Boulon (1995), Selvadurai (2003), Wriggers and Laursen
(2007), Hills et al (2017), and many others, who approached the topic
incorporating a variety of mechanical actions including friction, slip,
adhesion and separation. The classical contact mechanics problems have
antecedents commencing with the works of Hertz (1882, 1895), (see
also Johnson, 1982), Boussinesq (1885), Love (1928) and Harding and
Sneddon (1945), with the development of compact results for indenta-
tion problems that have seen a great deal of use and, on some occasions,
abuse. These studies also generated advances by a number of elasticians
including Mindlin and Deresiewicz (1953), Galin (1961), Lur’e (1964),
Dundurs and Stippes (1970), de Pater and Kalker (1975), Goodman
(1962, 1974), Johnson et al. (1971) and others that are referred to in the
preceding articles. The extension of these classical studies to include
frictional contact was also examined by Spence (1968, 1975), Turner
(1979), Klarbring et al. (1991), Popov (2010) and more recent studies
are given by Zhupanska (2009), Ballard and Jarusek (2011), Ballard
(2013) and Selvadurai (2016, 2020). In order to examine the problem of
the incremental compression of the disk by finitely deformed elastic
halfspaces, we examine two auxiliary problems: the first deals with the
frictionless indentation of a penny-shaped crack contained in a finitely
deformed elastic infinite space by a rigid disc and the second with the
internal tensile traction loading of an annular crack located in a finitely
deformed elastic infinite space. In both cases, the Mode I stress intensity
factors are evaluated at the outer boundary of the respective defects. As
proposed by Barenblatt (1956, 1962) the vanishing of the combined
Mode I stress intensity factor obtained from the two auxiliary problems
provides the condition for estimating the unknown radius of the sepa-
ration zone.

2. Governing equations

The fundamental equations governing small elastic deformations of
an incompressible isotropic elastic material subjected to an initial finite
deformation are given by Green et al. (1952) and in Green and Zerna
(1968) and only the salient results required for the formulation of the
auxiliary problems are presented for completeness. Also, for ease of
reference, the formulation is kept to that presented by Green et al.
(1952) and, when necessary, the relevant expressions applicable for the
formulation of the axisymmetric problems will be summarized. The
material points in the isotropic elastic material are defined by a general
curvilinear coordinate system 6; (1 = x; 6 = y; 63 = z), which
moves with the body as it deforms. The covariant and contravariant
metric tensors associated with the undeformed and deformed states are
given by g;,Gy and g¥, G, respectively. Although the theory of small
deformations superposed on large can be developed for a general form of
a strain energy function, the solution of the governing equations in an
analytical form is feasible when attention is restricted to a specialized
form of a strain energy function. Attention is therefore restricted to
incompressible hyperelastic materials with a strain energy function
W(I;,I,) of the Mooney-Rivlin type, defined by
W, L) = Ci(I; = 3)+ Cy(I, - 3) (€D)]
where C; and C, are constants and I; and I, are the principal invariants
given by
I =g°Gy 5 L =gyG" (2

and for an incompressible material, I; = 1. For this class of materials,
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we can define a contravariant stress tensor ¢”, measured per unit area of
the deformed body and referred to ; coordinates of the deformed body;
the hyperelastic constitutive equation governing the incompressible
elastic material is thus given by

o7 = ®gl +WBY + pGY (3)

where p is an isotropic stress to be determined by satisfying the
boundary conditions of the problem and
B =Ig" - ¢"¢" G,
ow ow 4
O=2— ; ¥Y=2—
011 012
We restrict attention to the special case where the finite deformation
in the incompressible elastic material is maintained by the equal biaxial
stretch in the x and y directions, which give rise to stretches 4; = 1, = 4
and 13 = y. The incompressibility constraint gives 4%y = 1 and the stress
state corresponding to the initial finite deformation is given by the
contravariant stress tensor

ol :022:(D/12+‘I’/12(12+u2) 4p

5
03 = o’ + 29232 +p ®)

The scalar invariant p is determined from the boundary condition of
the initial finite deformation problem. If the elastic medium is subjected
to only an equal bi-axial stress field, the zero axial stress requirement
gives

p= —p@(®+22°P) )

and the equal bi-axial stress field corresponding to (5) can be ob-
tained from (5) and (6).i.e.

o' =0 = {/12 - /1—14}(<I> +1°9) 7

In the absence of any initial finite stretch, A =y =1 and all 67 =0

We superimpose a further infinitesimal state of deformation on the
finitely deformed elastic region, characterized by the following
displacement field:

w (%, y,2) =u(x,,2) 5 w(x%,y,2)=v(x,y,2); w(x,y,z) =wlkyz) (8)

where the incremental displacement field satisfies the incompressi-
bility condition

ou dv ow 0
a + a—y + a_Z =

As has been pointed out by Green et al (1952) and Woo and Shield
(1961), the solution of the equations governing superposed de-
formations is facilitated by the introduction of displacement function
techniques, where the functions ¢,(x,y,z) are pseudo-Laplacian and
satisfy the equations

)

~2 i
Vot hms 003,20 =0 5 (n=1,2) 10)
07?
where
S S &
_9 I 11
0X2+ e 11

In (10), k; and k, are the roots of the equation
Kdss +k{du +dss —a—c} +du =0 12)

and, since attention is restricted to a strain energy function of the
Mooney-Rivlin type (1), we have

a=423(C, +1°C) ;
dyy =242 (Cy + 22Cy)

c=42(C + 12Cy)

) ) 13
dss = 222(Cy + 22Cy) (13)

For the case of a strain energy function of the Mooney-Rivlin type
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(1), these constitutive parameters and the solution of (12) give the
following roots:

kl =1 k2 = 176 ://13 (14)

The displacements and stresses governing the superposed incre-
mental deformation can be expressed in the terms of the potentials ¢, (x,
¥,2). The expressions relevant to the formulation of the mixed boundary
value problems required to solve the unilateral contact problem can be
written as follows:

0 0 )
u(x,y,2) == (o, +@); v(x,y,2) == (@, +@2); wx,y,2) == (kio,
0x dy 0z

+kapy)
(15)
and
02401 ‘324’2
O, = d44{(1 + kﬂm‘l‘ (1 +k2)?az}
52401 62(#’2
- 16
Oy, dM{(l+k|)0yaz+(l+k2)ayaz} (16)

2

0 0
0., = ki (kidss + d44)?(/;]+ ky (kodss + day) P

o7

The results (15) and (16) can also be transformed to generate
appropriate expressions to formulate problems with axial symmetry.

3. The unilateral contact problem

We consider the problem of two finitely deformed incompressible
elastic halfspace regions, with smooth surfaces, that are subjected a
radial stress field ¢''. A smooth rigid disc inclusion of radius a and
thickness 2h is placed at the interface of the halfspace regions and the
entire region is subjected to an incremental uniform axial compressive
stress field o¢. This results in contact between the disc inclusion and the
finitely deformed halfspace region with a separation region of radius b.

Elastic halfspace
subjected to a finite
radial stretch A

2
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Smooth contact between the two finitely deformed halfspace regions is
re-established beyond the radius b(Fig. 1).

The objective of the study is to solve the resulting three-part mixed
boundary value problem associated with the axisymmetric contact
problem and to establish the influence of the initial finitely deformed
state of the two halfspace regions, the aspect ratio of the rigid disc and
the influence of the constitutive parameters characterizing the Mooney-
Rivlin form of the strain energy function (1), on the extent of the sep-
aration zone.

The three-part boundary value problem governing the unilateral
contact problem can be posed in terms of the following mixed boundary
conditions applicable to the surface of the single finitely deformed
halfspace region 0<z < oo: i.e.

w(r,0) =h 0<r<a 17)
6 (r0)=0 ; a<r<b 18)
w(r,0) =0 b<r < oo 19)
6.(r0)=0 ; 0<r<oo (20)

along with the requirement that 6;—0,, = oy as (r,2)— 0. The contact

stress uniformly reduces to zero at the location of separation, satisfying
the condition

Lim{2(r — b)}'/%5__(r,0)—0

r—b*

2D

This constraint provides the Barenblatt (1956,1962) condition for
determining the radius of the zone of separation. In order to solve the
posed unilateral contact problem it is convenient to adopt the repre-
sentation of the mixed boundary value problem posed by (17) to (20) as
the summation of two auxiliary problems related to (i) the internal
indentation of a penny-shaped crack by a smooth rigid disc inclusion of
radius a and thickness 2h and (ii) the internal loading of an annular
crack of internal radius a and external radius b by uniform tensile normal

Incremental compressive
axial stress o,

222222 22222222222222

(|

o

Separation

| boundary _\

111

Smooth contact
zone

111111

2h} 0

S

Rigid disc with
smooth surfaces

Traction free
separation zone

EERSTETEERY

Incremental compressive —f >
axial stress o,

a4

preetttfieees

Elastic halfspace
subjected to a finite
radial stretch A

Fig. 1. Axisymmetric compression of a rigid disc by finitely deformed incompressible elastic halfspaces.
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tractions op. The combination of these auxiliary problems and the su-
perposition of the far-field compressive axial stress field o can satisfy
the mixed boundary conditions governing the unilateral contact prob-
lem. For the solution of the resulting axisymmetric mixed boundary
value problems associated with the auxiliary problems, we seek Hankel
transform developments (Sneddon, 1951) of the governing partial dif-
ferential equation (10). For a halfspace region occupying 0<z < oo, this
can be expressed in the form

&z
Vi,

In (22), A,(¢) are arbitrary functions that need to be determined for
each auxiliary problem.

(22)

nird= /) ) 6An(é)exp< - )Jo(ér)dé

3.1. The internal indentation of a penny-shaped crack in a finitely
deformed elastic medium

We consider an incompressible elastic infinite space, which contains
a penny-shaped crack and, in its finitely deformed configuration, the
radius of the penny-shaped crack is b. The penny-shaped crack is sym-
metrically indented by a smooth rigid disc inclusion of radius a and
thickness 2h (Fig. 2). Considering the symmetry of the internal inden-
tation of a penny-shaped crack about the plane z = 0 we can formulate
the first auxiliary problem as a mixed boundary value problem for a
single halfspace region z>0, which can be posed as follows;

6, (r0)=0 ; 0<r<o (23)
w(r,0) =h 0<r<a (24)
w(r,0) =0 b<r < o0 (25)
6, (rn0)=0 ; a<r<h (26)

The boundary condition (23) can be used to obtain a relationship
between A; (¢) and A, (&). The remaining boundary conditions give rise
to a system of triple integral equations for a single unknown function
A(&), which take the forms

h((1+ k)1 + k) :

0<r<
W — ko) <r<a

/ " LA Er)de = @7)
JO

Elastic infinite space
subjected to a finite

radial stretch A j
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a<r<b (28)

/0 " EAE)Io(ErdE = 0

/ EA(E) Ty (Er)dE =0 b<r<oo (29)
0

Triple integral equations of the type (27) to (29) can be solved in a
variety of ways and these are documented by Tranter (1960), Cooke
(1963a, b), Williams (1963), Sneddon (1966), Kanwal (1971), Jain and
Kanwal (1972), Gladwell (1980). Selvadurai and Singh (1984), Selva-
durai (1985) and Barber (2018). Assuming that (28) admits a

representation

[ eanenic—o {11

we obtain the following system of coupled integral equations for the
unknown functions f; (r) and f>(r):

O<r<a

b<r<oo (30)

fln) = 2 nh(1+ k)1 + k)
i N —1? (ki — k2)
_ /mtivtz_“zimdt . 0<n<a 31
Jb (#—n?)
B 2 [ —efit)dr o
£ nwy—b( [ =5 ) e ©2)

These two coupled integral equations can be reduced to a single
Fredholm integral equation of the second kind for an unknown function
w(7) in the form

al - - - .
v =1+ [ v@KEDE : o<kl 33)
where
o 2E( 3 |1 —c2E
KEi) = - {o@® - o6} — 34)
B 1+cC 1—y? =z
O(y) =l (1 7%,) ;< v y=&orj (35)

—

ol Penny-shaped Rigid disc with > o'l
crack smooth surfaces ey

— X

—_—
Lb_,_, Traction free ™%
zone —_—
-

e
-

v

Fig. 2. Axisymmetric smooth indentation of a penny-shaped crack in a finitely deformed elastic solid by a rigid disc.
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Elastic infinite space
subjected to a finite
radial stretch 4
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Fig. 3. Action of compressive tractions on the surfaces of an annular crack.

and ¢ = a/b < 1. The limit for the expression for K(£,7), as -7, can
be obtained using L’Hospital’s rule, which gives

(1 - c*)n Q)

Lim=———5——"> (36)
=) -7)
where
F() 4 +l62+ 4+64 5, 80+256 “y 448+1024 4
¢)=|—-c+—=c —+—c — 4+ —|c —t—
" VAN 2 3n o3 a’ o’ 2 5
_ 2p (1 +/)> 1-7
Q) = +in| —— ; =c{|—= 37)
=0 I—p e ey

The methods for the solution of Fredholm integral equations of the
second-kind are many and varied. The purely numerical solution of such
equations is described by Atkinson (1976, 1997) , Baker (1977), Delves
and Mohamed (1985), Atkinson and Shampine (2008) and others.
Methods applicable to specialized types of kernel functions are also
presented by Kanwal (1971), Delves and Mohamed (1985) and Polyanin
and Manzhirov (2008). The intention here is to develop an approximate
analytical result that can be used to estimate the Mode I stress intensity
factor at the boundary of the penny-shaped crack. The approach given in
Selvadurai and Singh (1984) was used to consider the solution for (1)
in (33) as a power series in terms of the parameter c(< 1). Omitting
details, it can be shown that the approximate series expression, in terms
of ¢, for the Mode I stress intensity factor at the boundary of the inter-
nally indented crack in a finitely deformed incompressible elastic me-
dium of infinite extent is given by

h(Cy + 2*Cy)

b Qo Fy(c) (38)

K'=

where

+ —) c
T

Vi (kidss + das) (1 + k) — vk (kadss + dag) (1 + k)
(© + 22¥) (ki — ko)

(39

o |

+ 0(c%) ) (40)

C; and C, are the elasticity parameters characterizing the Mooney-
Rivlin form of the strain energy function (1) with the linear elastic
shear modulus of the incompressible elastic material G defined by

G=2C,(14+T) ; T=G/C 41

The neo-Hookean form of the strain energy function is obtained by
setting I' = 0. The accuracy of the series approximation for the estima-
tion of the Mode I stress intensity factor for the internally indented
penny-shaped crack for the classical elasticity problem has also been
verified through analysis based on boundary integral equation tech-
niques (Tan and Selvadurai, 1986).

3.2. The application of tensile tractions to an annular crack in a finitely
deformed incompressible elastic infinite domain

We consider the problem of an annular crack located in an incom-
pressible elastic domain of infinite extent that is subjected to the radial
stress field ¢''. In the finitely deformed configuration, the plane z = 0
contains an annular crack of external radius b and internal radius a. The
entire domain is subjected to an incremental compressive axial stress o,
such that the entire plane z = 0 is under a uniform compressive stress. In
the unilateral contact problem, however, the separated zones are sub-
jected to zero traction. The zero shear traction constraint is satisfied by
the symmetry about the plane z = 0, which renders the entire plane free
of shear tractions. The surfaces of the annular crack are now subjected to
a uniform tensile traction oy (Fig. 3). Considering the halfspace region
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220, the mixed boundary problem associated with the internal traction
loading of the annular crack can be posed as follows:

6.(r,00=0 ; 0<r<oo (42)
u,(r,0) =0 0<r<a (43)
u(r,0)=0 ; b<r<oo (44)
o.(r,0)=00 ; a<r<b (45)

The solution of the annular crack problem has been investigated
extensively in fracture mechanics literature and references to relevant
articles are given in Smetanin (1968), Moss and Kobayashi (1971),
Kassir and Sih (1975), Cherepanov (1979), Choi and Shield (1982) and
Broberg (1999). An approximate solution to the annular crack was also
developed by Selvadurai and Singh (1985), who used the power series
expansion technique to solve the triple integral equations resulting from
the mixed boundary value problem posed by (42)—(45). The approaches
used to estimate the stress intensity factors at the boundaries of the
annular crack can give varying estimates; comparisons of the results are
given by Choi and Shield (1982) and Selvadurai and Singh (1985). The
details are not repeated but the result of interest to the analysis of the
unilateral contact problem is the Mode I stress intensity factor (negative)
at the outer boundary of the annular crack (r = b), which can be
expressed in the form
260\/_

n

K = (46)

Flfo (C)

where

1 8
24 97?

5 )c5 +0(c%)

4 16\, (1 64 4
Fol)=1-(S)e=(F) —(gt# ¢ —4 el

16 (1 8+64+8 +256
|24 9r’ on’ 9% 1

T

Implicit in this analysis is the requirement that the crack tip remains
open in order to develop a non-zero Mode I stress intensity factor. As is
evident, the displacement boundary conditions associated with the in-
ternal loading of the annular crack are null boundary conditions.
Consequently, the stress intensity factor will be independent of the me-
chanical properties of the incompressible elastic material and the initial
finite deformation that is applied to the domain and dependent only on
the applied incremental stress o .

4. The location of the separation zone with unilateral contact

The unilateral contact problem associated with the frictionless
compression of the frictionless disc inclusion by the finitely deformed
incompressible elastic halfspace regions, under a radial stress ¢'' and
subjected to an incremental uniform compressive loading ¢, requires
that: (i) The plane surfaces of the inclusion region are in contact with the
halfspace regions. (ii) In the separation region the surfaces of the half-
space regions are traction free. (iii) The finitely deformed elastic half-
space regions re-establish frictionless contact beyond the separation
zone. (iv) The normal stress 0,,(r,0)—0¢ as r—oo. (v) As demonstrated
by Barenblatt (1956, 1962), the contact stresses must uniformly reduce
to zero at the location of separation r = b. All the conditions associated
with the unilateral contact problem as indicated by (i) to (iv) will be
satisfied by the mixed boundary conditions associated with the auxiliary
problems outlined in sections 3.1 and 3.2. The solutions developed in the
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auxiliary problems are indeterminate to within the radius of the location
of the zone of separation r = b. Barenblatt’s condition requires that, to
determine the radius of the separation zone, the combined Mode I stress
intensity factors for the two auxiliary problems at the location r =b
should reduce to zero. The vanishing of the combined Mode I stress
intensity factor gives the following characteristic equation for the
evaluation of b/a:

(h(CD +29)Q, 48)

20pa

)cw) —Foy(c) =0

This equation can be solved to determine the radius of the zone of
separation. The lowest positive root of (48) gives the radius of the sepa-
ration zone. It should be remarked that the resulting value for the radius
of the separation zone is an analytically derived result that uses a series
expansion technique in terms of ¢ < 1. The parameter that controls the
radius of the normalized separation zone (b/a) is the multiplier

2
N— (ﬁ) <<I>+/1 ‘{’)QO
a 20,

Since N is a non-dimensional parameter, (48) can be solved for the
separation at the frictionless interface between initially stressed
incompressible elastic halfspace regions containing the rigid disc of
thickness 2h and radius a. Fig. 4 illustrates the variation of (b/a) as a
function of the non-dimensional parameter N.

In the limiting case when the halfspace regions are initially un-
stressed, A—1, d4s = dss = 2(C1 + C2) = 2G and (49) reduces to

(49

4
o) )¢

47)

12

Q| >

2 1 '/-

Log,, (N)

Fig. 4. Variation in the normalized zone of separation as a function of the
parameter N [The solid line is the analytical result based on the solution of Eq.
(48); The solid circles g are the results based on FE computations using ABA-
QUS ™],
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(O3 -2
=1 a) \oy 4 aoy

This result is in agreement with the analogous classical elasticity
interface separation problem for an incompressible elastic interface that
can be deduced from the results given by Selvadurai (1994a,b) and
Selvadurai et al. (2018).

It could be visualized that, as the non-dimensional pre-compression
60/(® + 12¥) increases, the zone of separation will decrease and c—1.
Therefore, the result based on the series expansion-based analytical
approach will not be entirely accurate. To assess the limits of applica-
bility of the analytical estimation of the separation zone, the unilateral
contact problem was examined using the finite element (FE) scheme
available in the general-purpose FE code ABAQUS™. In the computa-
tional simulations, the penalty function and augmented Lagrangian
techniques were used as a Signorini-constraint enforcement method.
The results of the FE computations showed good agreement with the
analytical approach. Fig. 4 illustrates the variation of parameter b/a
with the non-dimensional parameter N that accounts for the normalized
axial stress, the aspect ratio of the rigid disc and the constitutive pa-
rameters characterizing the finitely deformed elastic halfspace regions.
The solid line in Fig. 4 is derived from the solution of equation (48) and
the solid circles indicate the results derived from the FE modelling.
There is good correlation between the analytical and computational
results for a wide range of the non-dimensional parameter N. As the non-
dimensional parameter (Gh/coa)—0, the non-dimensional parameter
N-0 and the ratio (b/a)—1. This conforms to the expected response of
the unilateral contact problem.

The developments involving small deformations superposed on large
are also viewed as a methodology for estimating stability of elastic
media subjected to large deformations, where the incremental de-
formations are perturbations introduced to assess the stability of the
system. In the context of the unilateral contact problem, development of
instability can occur when the elastic media are subjected to finite radial
compression; instability will occur when Qy—0. For the Mooney-Rivlin
material with

ky=21"° (51)

dss =20 ; k=1 ;

we obtain the condition for the development of instability as
P420+4387-1=0 (52)

This gives 1 ~ 2/3, which is identical to the result obtained by Green
et al. (1952) and others, for the compressive finite strain needed to cause
surface instability in a Mooney-Rivlin material. The lowest positive root
of (48) is selected to avoid surface instabilities that can load to non-
uniqueness.

5. Concluding remarks

The axisymmetric unilateral contact problem resulting from incre-
mental compression of a smooth rigid disc by finitely deformed
incompressible elastic halfspace regions, is examined using its reduction
to two three-part boundary value problems. Since the equations gov-
erning the incremental deformations are linear, the superposition of the
two auxiliary problems is permissible. The application of Barenblatt’s
condition for the vanishing of the combined Mode 1 stress intensity
factor enables the determination of the extent of the separation zone.
The methodology presented in the paper is such that it can be applied to
a wide range of similar axisymmetric problems; these include the esti-
mation of the zone of separation between (i) two identical but differing
initially finitely deformed elastic halfspace regions, (ii) two dissimilar
finitely deformed halfspace regions, (iii) two transversely isotropic
elastic media, (iv) identical or dissimilar inhomogeneous elastic media
where the elasticity properties vary in the axial direction, and the
methodology can be adopted to estimate the peak anchoring capacity of
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a disc anchor embedded in either frictional or dilatant contact properties
at the interfaces, a topic of interest to geomechanics. The study culmi-
nates in a generalized result for the normalized dimension of the zone of
separation, where the constitutive influences of cases (i) to (iv) can be
accommodated through a single variable encountered in the parameter
N.
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