SELvaDURAL A. P. S. (1973).

Géotechnigue 23, No. 3, 407-421.

Bending of an infinite beam resting on a porous
elastic medium

A. P. S. SELVADURAI*

The theories of classical continuum mechanics
ignore the microstructure a material may possess in
its elemental volume. Results obtained from such a
theory for the forces, displacements, stresses, etc.,
are representative of average values over regions, the
dimensions of which are large on the scale of the
internal structure. It is then foreseeable that for
materials with a dominant internal structure such as
porous, granular, fibrous or laminated media under
certain loading conditions, the classical theories will
fail to-give meaningful results.

In recent years, numerous concerted efforts have
been directed towards the development of continuum
theories which describe the role of microstructure in
material behaviour. In the simplest form of a
micromorphic elastic material a consideration of its
microstructure requires the introduction of two new
material constants, in addition to the classical Lamé
constants, one of which has dimensions of length.
The presence of this new material constant makes it
possible to introduce the effects of the internal
structure or size effects which are unrecognized in
the classical theory. It is shown that the response
of the micromorphic elastic continuum closely re-
sembles that of an idealized porous elastic medium.
A solution is presented to the problem of an infinite
beam resting on such a medium.

Les théories classiques de la mécanique du milieu
continu ne tiennent pas compte de la microstructure
des matériaux A I'échelle de I’élément de volume.
Les résultats que ’on obtient par I'application de ces
théories au calcul des forces, déplacements, con-
traintes etc., représentent des valeurs moyennes sur
des régions de grande dimension par rapport a
I'échelle de la structure interne. On peut donc
prévoir que ces théories classiques ne pourront don-
ner de résultats valables sous certaines conditions de
charge dans le cas des matériaux ayant une struc-
ture interne préponderante, tels que les milieux
poreux, granulaires, fibreux ou i lamelles.

Au cours des dernidres années, de nombreuses
recherches ont été consacrées au développement de
théories du milieu continu décrivant le role de la
microstructure dans le comportement des matériaux.
Sous la forme la plus simple d’un matériau &lastique
4 structure fine, pour tenir compte de sa micro-
structure, il faut introduire en plus des constantes
classiques de Lamé deux nouvelles constantes dont
Pune a la dimension d’une longueur. La présence
de cette nouvelle caractéristique de matériau rend
possible I'introduction des effets de structure interne
ou d’effets de dimension qui sont ignorés dans la
théorie classique. On montre que la réponse du
milieu continu élastique & structure fine est similaire
a celle d’'un milieu élastique poreux idéal. On
présente une solution du probléme d'une poutre
infinie reposante sur un tel milieu.

In classical continuum mechanics the fundamental assumption is made that the transmission
of loads on both sides of a surface element, in a material volume, can be described completely
in terms of the field of stress vectors defined on this surface. These stress vectors represent
the force per unit area transmitted across the surface. The concept of including ‘couple
stress vectors’ in addition to these conventional stress vectors, representing the couple per
unit area transmitted across the surface, was originally introduced by Voigt (1887) and later
expanded by the Cosserats (1909). Such an assumption seems appropriate for materials
possessing a fibrous, granular, porous or layered internal structure, where interaction between
adjacent material elements may introduce internal moments. The development of theories
of microcontinua capable of describing materials which possess an internal structure has
recently become a very active field of research. Comprehensive expositions and surveys of
the subject are given by Truesdell and Toupin (1960), Grioli (1960), Aero and Kuvshinski
(1960), Toupin (1962), Mindlin and Tiersten (1962), Mindlin (1962), Koiter (1964), Mindlin
(1964), Green and Rivlin (1964), Eringen and Suhubi (1964), Eringen (1969), Kréner (1969),
Hermann (1972) and others. In the present Paper, however, attention will be limited to the
theories of elastic microcontinua proposed by Mindlin and Tiersten (1962) and Eringen and
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Suhubi (1964). These theories are generally referred to as the ‘indeterminate’ couple
stress theory (Cosserat continua) and the micromorphic theory (micromorphic continua)
respectively. In particular, the linear theory of couple stress elasticity for a centrosymmetric
homogeneous isotropic elastic material was formulated by Mindlin and Tiersten (1962).
The couple stress theory derived by Mindlin and Tiersten may be regarded as a generaliza-
tion of the classical theory of elasticity although it differs from the classical theory in several
significant aspects. First, the modified strain energy density function from which the con-
stitutive equations are derived contains not only terms involving the usual infinitesimal strains
but also the gradients of the local rigid rotation (macrorotation) or curvature. Second, and
the most significant feature of the theory, is that the generalized constitutive equations for an
isotropic elastic material contain, in addition to the classical Lamé constants, two new elastic
constants, one of which can be expressed in terms of a material parameter / which has dimen-
sions of length. The presence of a.characteristic length in the couple stress theory makes it
possible to introduce the effects of internal structure or size effects, which are unrecognized
in the classical theory. As this characteristic length tends to zero, so both the new elastic
constants approach zero and the couple stress theory converges to the classical theory.

The influence of the characteristic length parameter / on stress concentration phenomena
in elastic solids has been investigated by Mindlin and Tiersten (1962), Mindlin (1962), Muki and
Sternberg (1965) and others. The plane strain problem of a cylindrical cavity in an infinite
body subjected to a homogeneous field of stress at infinity has been studied by Mindlin
(1962). The solutions obtained by Mindlin indicate that the stress concentration at the cavity
surface is no longer independent of the radius a of the cavity, as it is in the case of the classical
elasticity theory, but depends upon the ratio lla. Asljatends to zero the stress concentration
factors for the couple stress solution approach their classical values. As the factor //a be-
comes large the stress concentration predicted by the couple stress theory becomes lower than
those encountered in the classical theory.

It may be further noted that in the presence of couple stresses, the conventional stress tensor
is no longer symmetric and that generally the antisymmetric part of this stress tensor and the
isotropic part of the couple stress tensor are indeterminate. However, imposing the con-
dition that the conventional stress tensor of the couple stress theory converges to its equivalent
in the classical theory, as I — 0, for every choice of the isotropic couple stress component, it
can be shown that in the absence of body couples the solution of a boundary value problem
in the couple stress theory of elasticity is unique to within an arbitrary isotropic couple stress
field (Muki and Sternberg, 1965).

The couple stress theory proposed by Mindlin and Tiersten (1962) may offer only a partial
representation of all possible microstructural effects. However, it provides a simple model
for the investigation of certain kinds of phenomena which may be attributed to the micro-
structure of a material. For example it offers a simple approach for the treatment of poly-
crystalline plastic materials (Lippman, 1968), internal buckling of laminated media (Biot,
1965) and several other problems of engineering interest.

A general non-linear theory for simple microelastic solids was developed by Eringen and
Suhubi (1964). A special case of the theory proposed by Eringen and Suhubi is the theory
of micropolar elasticity. A full account of the linear theory of micropolar elasticity is given
by Eringen (1966, 1969). The deformation of a micropolar elastic medium is fully described
by a displacement vector and an independent rotation vector (microrotation). This independ-
ent rotation vector contributes to the basic difference between micropolar elasticity and couple
stress elasticity (and of course the classical theory of elasticity). From a physical point of
view micropolar elasticity is concerned with materials whose constituents are dumb-bell
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shaped molecules which are allowed to rotate independently without any stretch. In the
special case where the microrotation becomes equal to the macrorotation the micropolar
theory of elasticity converges to the indeterminate couple stress theory. Therefore for future
reference the infinite beam problem will be formulated in relation to the linear theory of micro-
polar elasticity. Despite the many significant advances in the theoretical aspects of the
mechanics of materials with internal structure, the experimental verification of the applicability
of these theories to real materials has received only limited attention. Koiter (1964) has sug-
gested a test procedure for the determination of the characteristic length parameter /. Tests
include simple torsion of cylindrical specimens and bending of plate elements. Tests carried
out by Schijve (1966) and Ellis and Smith (1967) indicate that for certain metallic materials,
within the range of testing considered, couple stresses have no significant effect. Brown and
Evans (1972) have analysed the propagation of twist in a granular medium consisting of
spherical elastic particles and conjecture that couple stresses are less significant in a granular
body than in metallic materials. On the other hand experiments conducted by Hoppmann
and Shahwan (1965) on a ‘grid model’ of a continuum indicate the possibility of couple stress
effects being present in materials with a fully continuous internal structure. 1In this article it
will be shown that the mathematical model of the micropolar elastic continuum bears a close
formal resemblance to an elastic medium which exhibits an idealized porous microstructure
and that the characteristic length parameters (b, ¢) of the mathematical model (and hence the
characteristic length parameter / of the indeterminate couple stress theory) bear a direct
relation to the pore size of such a medium. However, it must be emphasized that the
micropolar theory of elasticity is a rational continuum theory based on proper postulates,
thermodynamics and uniqueness theorems. Its interpretation as an idealized porous elastic
medium is only motivational to exhibit its physical basis.

LINEAR MICROPOLAR ELASTICITY

The theory of linear micropolar elasticity is given by Eringen (1966, 1969) and only the
relevant results will be briefly reviewed.  Attention will be confined to a body in a state of plane
micropolar strain, the deformation of which is completely determined by the displacement
components u(x, y) and u(x, y) in the rectangular Cartesian co-ordinate directions x, y
respectively and the microrotation &(x, y).

The components of the linearized micropolar strain tensor can be expressed in terms of
u, v and @ in the form

o o
x = 5x w =73
ov ou (1)
€xy=5;—(p ny='é—+¢

In plane strain the constitutive equations for the stress tensor ¢t and the couple stress tensor m
for a linear micropolar elastic material are

. Lax = Ae+Q2p+k)e,, Loy = (p+e)e,, + Heyx
Cly = de+(u+x)e,, tyx = (p4K)ey, +peyy, R )

t,, = Ae
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and
o oD

Myz =y 5= my, =y-— Ce e e 3)
respectively, where e=e¢, +¢,,.
Note that A and p are the classical Lamé constants and y and « are the two additional con-
stants which arise due to the consideration of the microstructure of the medium. It can be
shown that the following thermodynamical restrictions on A, p, x and y are necessary and
sufficient to ensure the internal energy to be non-negative (i.e. if the internal energy is non-
negative, energy is only stored during a deformation and no energy is produced).

M+2u+620 p>20 k20 20 N C))

In the absence of body forces and body couples the static equations of force equilibrium and
moment equilibrium are :

Ol Oty _ Oty Otyy _
Ty =0 w0 0
and
om,, ém,,
—éxi+ 3;+txv_tyx=0 R (),

respectively. The components of surface traction T, in the x and y directions on a surface
F(x, y)=0 are

Ti = ntoetngty, T, =nt.+nt, e (7)
where 7, and n, are components of the outward unit normal to the surface and
2yp2= M OF0x
‘ n2+n2 =1 n, = E3y B ()]
Similarly the boundary condition for the surface couple is
M, = m.n.+m,n, B )]

Stress functions

Stress functions ¢(x, y) and ¥(x,y) are introduced, consistent with equations (5) and (6),
such that

f =28 0¥ P 2¥ )
0y oxoy W ox? T Oxdy
N .
fay = Toxdy aE = -8x8y+8_x2 (19)
44 ¥
my, = Bx my, = —a; J

The compatibility conditions necessary and sufficient for the integrability of the kinematic
system in a simply connected domain are

Oey, Oey, 0D _ Oty Oeyy 0D om,, _om,,
y axtaT? Hmten=0 it - -l

By making use of equations (2), (3) and (10) the compatibility conditions can be reduced to
the form
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Loy 2p2 = _\p2 Y o2
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Eliminating ¥ and ¢ in turn from equation (11b) gives

V=0 } : (14)

V¥ —-c2V3P) = 0

The solution of the plane strain problem in linear micropolar elasticity is reduced to the
solution of the linear partial differential equations (14) subject to boundary conditions (equa-
tions (7) and (9)).

AN IDEALIZED POROUS ELASTIC MEDIUM

The mathematical theory of the micropolar elastic medium as presented in the previous
section embodies purely abstract concepts of microstructure. In deriving the constitutive
equations (2) for such a medium we have not taken into account any specific form of an in-
ternal structure. It is therefore pertinent to inquire whether in fact such a theory could in
any way model the behaviour of a material with a specific internal structure.

Several researchers have attempted to correlate microcontinua to specific structural models
of continua where beam-like elements composing the internal structure of the material are not
only capable of sustaining traction forces but also traction couples. Details of such treat-
ments are given by Adomeit (1967), Askar and Cakmak (1968), Banks and Sokolowski (1968),
BaZant and Christensen (1972) and Fliigge (1972).

The simplest model of an idealized porous elastic material consisting of plate-like elements
arranged as shown in Fig. 1(c) is considered. These elements possess perfect elastic properties
(no couple stress effects) which are characterized by elastic constants E, and v,, the Young’s
modulus and Poisson’s ratio respectively. The spacings of the plate elements A are assumed
to be large compared to their thicknesses s(k >s). These plate elements are rigidly connected
to each other such that the relative rotations at the joints are zero. Other elaborate forms of
microstructure (including models containing joints capable of restrained rotations) can also
be considered (Fig. 2) but this particular model presents a case which is simple enough to
permit analysis of the overall response of the model by conventional elasticity (Selvadurai,
1973). By subjecting the model of the porous elastic medium to simple states of stress such
as uniform compression, tension with restricted lateral contractions, shear, bending and torsion,
expressions can be obtained for the micropolar elastic constants A, g, «, y in terms of E,,
vy, § and A.

As an example of such a calculation consider the case of the cubical element (Fig. 1(b))
subjected to a strain €*,,=e¢,, (the terms indicated with an asterisk refer to the components
of the stress and strain in the plate-like elemetns) in the x-direction. We note that each of
these plate elements is subjected to a state of plane stress such that the stresses t*,.,, t*,,,
1*.y (Where t*,,=1*,.) in a plate element parallel to the xy plane are given by

E E
ex = (T;%ij (*xx +voe*,,) t*y = (1__%"2-) (e*yy+voe* )
‘ 0 (1] (15)
*® ]

xy =TS E*xy
(1 +w)

where €*,., €*,,, €*,, are the components of the classical strain tensor (obtained by substi-
tuting =0 in equation (1)) in the plate elements. The condition of restricted lateral con-
traction implies that €*,,=¢*,,=0. The shear strains are also equal to zero.

On any plane x=constant the applied force is distributed over both horizontal and vertical
plate elements, the material area of which is 2m2sh. The total force in the x-direction,
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.. (Fig. 1(b)) is
Fre = 2msht* o, = 2mish —20 o ... (6
(1=-ve%)
Due to the applied state of strain and by definition, the vertical plate elements which lie

normal to the x-axis are subjected to zero stress and zero strain. On the planes y=constant,
the force necessary to maintain such a state of strain is

F*,, = misht*,, = msh %:22) - .. .. .an

(1
A similar force will be necessary on planes z=constant, or
Eyw
F*,, = mz“vh(_lTo;%“ﬁe’”‘ R ¢ £
When these forces are divided by the gross area over which they act the gross stress for the
porous medium is obtained. Hence
2E, s

Lix = 7577 €xx
1—veH)h
(1-ve? (19)

Lo, = I —_EOXQ__;YG

w =t = AR

When the porous medium is subjected to the three normal strain components e,.,, €,, and ¢,,,
by superposition

_ s E,
lex = }; (—1__1‘055 [2€xx + VO(ellv + ezz)] (20) ‘
In general, for a linear micropolar elastic medium
txx = (A + 2,"’ + K)exx + A(eyy + ezz) . . . . . (21)
By comparing equations (20) and (21) it is noted that
O+2pte) = 5. 2B
: h(1—v,?)
(22
A= ‘E_E‘ﬁ?__
h(1—-»%)

Similarly by subjecting the model of the porous medium to other simple states of stress as
described earlier it can be shown that the elastic constants A, p, %, v of the micropolar elastic

medium are related to E,, v, s and 4 by the expressions

__Ewy s - _Eo
A= -3k "~ &=
Y %)
E, s Ey, s :

SR (e R )
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Fig. 3. The infinite beam subjected to a uniform strip load

It should be noted that although the thicknesses s and the spacings 4 of the plate elements are
the same in all three co-ordinate directions the model itself is not isotropic. This may be
easily verified by rotating the reference co-ordinate system x, y, z. The co-ordinate system
as chosen coincides with the principal directions of the model.

THE INFINITE BEAM PROBLEM

Consider the plane strain problem of an infinite beam resting on a micropolar half plane.
We assume smooth contact at the beam-elastic half plane interface. The beam is subjected
to a uniform strip load of intensity p and width 24 (Fig. 3). First consider the problem in
which the surface of the micropolar elastic half plane, y=0, is subjected to a sinusoidal normal
stress.

The boundary conditions (7) and (9) of the micropolar elastic problem reduce to

t(x,0) = — Q, cos ax
tx,0) =0 Y 1))
my(x,0) =0

and in addition the stress components t and the couple stress components m should tend to
ZEro as y — oo,

It can be verified that the complete solution of this problem is given by the two stress
functions

B(x, y) = aiz(cle’“”-i-cgaye“’”) cOS ax N V5))
and
¥(x, y) = (cse™% +c,e™ ) sin ax N 1)
where
1
€1 = Qs Ca=%9 32=a2+z§

27
b2 b?
€3 = 4Qo(1—")§7]‘ Cy = -4Qo(1"”)77‘

The deflexion v(x, 0) of the surface of the half plane produced by the sinusoidal load Q, cos ax
can be shown to be equal to (within a rigid body displacement)
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Fig. 4. The infinite beam subjected to a sinusoidal load

- 20 1. B _ «
o(x, 0) (2p+~)(x+)&)[a+n( 8)]cos x L@
where

x = (A42u+x) ,3=4(1-—v)-b—;95 N 1))

Consider the bending of the infinite elastic beam. It is assumed that the beam is subjected
to an external sinusoidal load distribution

p(x) = pycos ax B ()]

and that the contact pressure distribution at the interface is O(x) (Fig. 4(c)). The differential
equation for the deflexion of the beam, w(x) is

Er d'w = 3
1 Tt () = plx) R 1))
where E1 is the rigidity of the beam. '
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It is noted that

(0 = 0x) %0 =wx) . . . ... (D)
and from (24) and (28) we have ‘
O(x) = Q’ii’%(’““—’\? anw(x) S 03
From equations (30), (31) and (33)
wix) = 2xpo COS ax N € 1)

[2xETo* + (2p + <)(x + Ven]

Consider the case of the infinite elastic beam subjected to the uniform strip load as shown in
Fig. 3. Any arbitrary load p(x) symmetrical about the y-axis can be represented in the form
of a Fourier integral

p(x)=f°°p(a)c05axda 39
where
p(a)=f0°°p(z)cowcdg Y 1)

From equations (34) and (35) it may be concluded that the deflexion of the infinite beam due
to the uniform strip load is given by

_ 2pa* (= sin (¢d/a) cos (éx/a)
YO =%m), werarraep ¢ 0 6D

where
__ 2F _
S ChronEny T« -
o6 — a1 el ; e
(f) 4(1 V)( ) £41 [(5')2_*_4:2]4}
b=bla ¢&=alc

Similarly expressions for the bending moment M (x) shearing force ¥'(x) in the beam and the
contact pressure Q(x) at the interface are

a®

_ 2pa® (= sin (éd/a) cos (¢x/a)
M) = = [ e e - @)
_ 2pa (= ¢ sin (éd/a) sin (€x/a)
Ve = [ T ¢ coe - O
2p [*® [14 £2(¢€)] sin (¢éd/a) cos (Ex[a)
00) ==~ fo 2T 81 Q0] d¢ N (1))

It is noted that the expressions thus obtained for the deflexion, bending moment, shearing
force etc. (equations (37), (39), (40) and (41)) for the micropolar elastic problem are very
similar in character to those obtained by Biot (1937) for the classical elastic problem and they
are dependent on the two new material parameters x and y. It has also been assumed that the
infinite beam-¢lastic half plane interface is capable of transmitting tensile stresses and that
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there is no loss of contact at the interface. Alternatively a uniform normal load may be im-
posed throughout the length of the infinite beam. A normal load of this type, by virtue of
its symmetry, will give a constant vertical displacement on the surface of the elastic half plane.
The infinite beam is then subjected to a rigid body translation in the vertical direction and the
fiexure of the infinite beam is thus unaffected by the additional superimposed loading.

LIMITING CONDITIONS

First, the micropolar elastic solution to the problem of an infinite beam loaded by a con-
centrated force P can be obtained as a limiting case of the uniform strip load problem. As
the width of the loaded region d — 0, the total load 2pd — P and considering that

sin £d
&d

the expressions (37), (39), (40) and (41) reduce to
Pa® ®  cos(¢x/a)

o0 ~1

W) = T [ ety de L. . (2
M(x) = 22 f : [Tfjr%—%‘.%]dg ... . @2
Vi) =L fo ’ f—zjg;%‘gjdg S @29
0(x) = ﬂ—f; fo L +[ff?3i°;g)’;/“) de L. . (429

The solution to the concentrated force problem is of fundamental importance in the treatment
of beams of finite length. By superposing two concentrated force solutions the solution to
the problem of an infinite beam loaded by a concentrated moment can be obtained. A suc-
cessive superposition, similar to that adopted by Drapkin (1955) for the linear elastic case,
can then be used to obtain solutions for beams of finite length.

Second, the additional micropolar elastic constants « and y are contained in the function
£2(€). As these constants tend to zero 2(£) — 0, and the micropolar elastic solution converges
to the classical elastic solution. In the case of an infinite beam loaded by a concentrated
force the expressions (42) converge to Biot’s solution as 28 —>0.

Third, by replacing (2u+ «) by 2y, y by 47 and subsequently letting « — o the couple stress
solution to the infinite beam problem is obtained on the basis of the indeterminate couple
stress theory of Mindlin and Tiersten (1964). The equivalent solutions for the deflexion,
bending moment etc., are obtained by replacing 2(¢) (equation (38)) in the equations (37) to
(41) by B(¢) where

29 = 41-0ele?[1- ot ]

where
=9 a0 #
g=7 P=2= 12(1—,)

and 7 is the single new parameter necessary to describe couple stress effects for plane strain
deformations.
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Fig. 5. The variation of M(o) with a/! for the concentrated force

NUMERICAL RESULTS

The infinite integrals of the type (37) and (39) to (41) can be evaluated mumerically, by
employing the methods outlined by Biot (1937), Drapkin (1955) and Vésic (1961). The in-
tegration procedure can be further improved by replacing the integration parameter ¢ by
e, The Author gives numerical results for the infinite beam problem derived from the
indeterminate couple stress theory.

First consider results for the infinite beam loaded by a concentrated force P. The varia-
tion of the values of the bending moment at x=0, M (0), computed from equation (42b) for
various values of a/I and for values of v=0 and 0-5 are shown in Fig. 5. The variation of the
bending moment along the length of the infinite beam for values of af/l=001, 1-0 and »=0, 0-5
is shown in Fig. 6. The corresponding curves for the classical elastic case, afll - oo, given by
Biot (1937) are also presented in these figures for comparison. We observe that as the
characteristic length parameter / of the supporting medium becomes larger, the maximum
value of both the positive and negative bending moment is significantly reduced. The contact
pressure distribution at the infinite beam—elastic half plane interface, derived from equation
(42d), is shown in Fig. 7. As the characteristic length parameter / increases the maximum
value of the contact pressure also increases.

The variation of M (0) with a/! for the case of the infinite beam loaded with a uniform strip
load of width 2a is shown in Fig. 8.

CONCLUSIONS

In classical continuum mechanics the existence of any internal structure in the material is
ignored. Therefore, the results obtained from the classical theory for the forces, stresses,
displacements etc., are representative of the average values over regions the dimensions of
which are large on the scale of the internal structure. It is then foreseeable that for materials
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Fig. 7. Concentrated force problem: distribution of contact pressure at the beam-elastic medium interface
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Fig. 8. The variation of M(o) with a/l for the uniform strip load of width 2q

with a dominant internal structure, such as poroelastic media, under certain conditions of
loading, the classical theory will fail to give meaningful results. In these circumstances it
becomes necessary to take into account the effects of force systems which vary significantly
in distances comparable with the lengths that characterize the internal structure. The
theories in continuum mechanics which employ the concepts of couple stresses therefore serve
to form a basis for the treatment of materials with internal structure.

The Author has considered here the bending of an infinite beam resting on an elastic half
plane exhibiting couple stresses. The numerical results presented indicate that the charac-
teristic length parameter / of the supporting medium has a significant influence on the magni-
tude and distribution of the bending moment in the infinite beam and on the contact pressure
at the infinite beam-elastic half plane interface. It has been shown that the couple stress
parameter / bears a direct relation to the physical dimensions which characterize the internal
structure of an idealized poroelastic medium. The reliability of such an idealization of a
porous elastic medium can only be verified by careful experimental investigation.
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